
HAL Id: hal-01446610
https://inria.hal.science/hal-01446610

Submitted on 26 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Software Architecture Modeling and Evaluation Based
on Stochastic Activity Networks

Ali Sedaghatbaf, Mohammad Abdolahi Azgomi

To cite this version:
Ali Sedaghatbaf, Mohammad Abdolahi Azgomi. Software Architecture Modeling and Evaluation
Based on Stochastic Activity Networks. 6th Fundamentals of Software Engineering (FSEN), Apr
2015, Tehran, Iran. pp.46-53, �10.1007/978-3-319-24644-4_3�. �hal-01446610�

https://inria.hal.science/hal-01446610
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Software Architecture Modeling and Evaluation
Based on Stochastic Activity Networks

Ali Sedaghatbaf and Mohammad Abdolahi Azgomi

School of Computer Engneering, University of Science and Technology, Tehran, Iran
ali_sedaghat@comp.iust.ac.ir

azgomi@iust.ac.ir

Abstract. Quantitative and integrated evaluation of software quality
attributes at the architectural design stage provides a sound basis for
making objective decisions for design trade-offs and developing a high
quality software. In this paper we introduce a formal method for model-
ing software architectures and evaluationg their quality attributes quan-
titatively and in a unified manner. This method is based on stochastic
activity networks (SANs) and the quality attributes considered include
security, dependability and performance.

Keywords: Software architecture, quality attributes, quantitative eval-
uation, stochastic activity networks (SANs), reward structures.

1 Introduction

Dealing with quality attributes is one of the most difficult tasks in software engi-
neering. To know whether a quality attribute is achieved, it has to be quantified
by analysis or measured. However, not only quantification of each attribute has
its own difficulties, but also they have complex dependencies.

In software systems, quality attributes are principally determined by the
system’s architecture. Evaluating quality attributes at the architectural design
stage not only helps in assuring that stakeholders expectations are met, but also
aids in discovering flaws in a shorter time and with lower cost than latter stages.

According to an investigation on different types of quality attributes and their
application domains [1], security, dependability and performance are among the
top quality attributes important for software systems. The necessity of the in-
tegrated evaluation of security and performance has gained much attention in
research communities. However, a few have contributed to the quantitative eval-
uation of security. Dependability is a quality attribute closely related to both se-
curity and performance [2]. The necessity of the integrated evaluation of depend-
ability and performance led to the derivation of a new quality attribute called
perfomability. On the other hand, many of the methods proposed for quantita-
tive security evaluation are inspired from dependability evaluation techniques.
Therefore, despite the significant differences between security and performance,
their integrated and quantitative evaluation can be performed regarding their
close relation to dependability.



2 Ali Sedaghatbaf, Mohammad Abdolahi Azgomi

The purpose of this paper is to take a small step in the direction of devel-
oping a unified approach for reasoning about multiple quality attributes. The
attributes considered include security, dependability and performance (called
the SDP attributes in this paper). In this approach hierarchical colored stochas-
tic activity networks (HCSANs) [5,6] are used for architecture modeling and
activity-marking oriented reward structures [5] are used for evaluation.

Stochastic activity networks (SANs) [6] are stochastic extensions of Petri
Nets, which are more powerful and more flexible than other stochastic extensions
such as GSPNs and have been effectively used for performance, dependability,
performability and security evaluations. HCSANs are extensions of SANs, whose
hierarchical nature facilitates top-down and bottom-up model construction and
their support for colored tokens facilitates complex data manipulations.

The remainder of this paper is organized as follows: in section 2 the related
work is discussed. An introduction to HCSANs and activity-marking oriented
reward struc-tures is provided in section 3. Section 4 presents the proposed
approach and finally section 5 provides the concluding remarks and outlines the
future work.

2 Related Work

Discrete-time Markov chains (DTMCs) are used in [7] to model software architec-
tures and evaluate their security, performance and reliability. In this approach
each component is modeled as a simple state and the arcs between states model
the control flow between components. Quality attributes are evaluated by as-
signing reward functions to the states of the model.

In [8] a framework is proposed for analyzing the performance degradation
induced by different security solutions. In this approach UML is used for model-
ing both the architecture and different security solutions. These models are then
composed and converted to GSPN models for performance evaluation.

A methodology is proposed in [9] for combined performance and security risk
analysis for border management systems. These systems are good examples of
the systems in which both security and performance are critical. On one hand
travelers should not linger because of security checks and on the other hand
impostors should be distinguished from genuine travelers. In this approach the
UML models of systems architecture are annotated with performance require-
ments. From these models LQN models are extracted for performance analysis.
Also, cost curves are used to estimate the risk of misclassifying travelers with
different classifiers.

In comparison to the above methods, the approach presented in this paper
has the following distinguishing features:

– all the three SDP attributes can be evaluated quantitatively,
– the internal behavior of components can be modeled and analyzed,
– error propagation between components can be modeled,
– in contrast to many evaluation methods, any distribution function can be

used for estimating the time spent by each software activity and



Software Architecture Modeling and Evaluation Based on SANs 3

– the generality of the activity-marking oriented reward structures makes this
approach extensible to other quality attributes.

3 HCSAN-based Reward Models

In addition to the five primitives of ordinary SANs (i.e. place, input gate, out-
put gate, instantaneous activity and timed activity), Colored stochastic activity
networks (CSANs) [3,4] have the following two primitives: (1) token type: a non-
integer data type specifying the type of each token stored in a colored place and
(2) colored place: a place maintaining a list of tokens with a specific token type.
A selection policy (e.g. FIFO, LIFO, Priority) may be associated to each colored
place specifying the order in which tokens are removed from that place.

HCSANs as an extension of CSANs, have one additional primitive, i.e. macro
activity. A macro activity is a sub-model of an HCSAN model with a predefined
interface. This interface includes a set of fusion places, which are virtual (colored)
places that must be bound to concrete (colored) places in the encompassing
model.

As a modification of the SAN-based reward structures, the reward structure
of an HCSAN model can be defined formally as follows:

Definition 1. An activity-marking reward structure of an HCSAN model
with places P = SP ∪ CP and activities A = IA ∪ TA ∪ MA is a pair of
functions:

– C : A→ < where for a ∈ A, C(a) is the reward obtained due to the comple-
tion of activity a, and

– R : ℘(P,M) → < where for v ∈ ℘(P,M), R(v) is the rate of reward obtained
when for each (p,m) ∈ v the marking of place p is m,

where < is the set of real numbers, and ℘(P,M) is the set of all partial functions
between P and M .

In order to quantify the total reward associated with an HCSAN model at
an instant of time t, variable Vt can be used, which is defined as follows:

Vt =
∑

v∈℘(P,M)

R(v).Ivt +
∑
a∈A

C(a).Iat (1)

where Ivt is a random variable indicating that for each (p,m) ∈ v, the marking
of place p is m at time instant t, and the random variable Iat indicates that
activity a is the most recently completed activity with respect to time instant t.
If Ivt and Iat converge in distribution for all v and a with non-zero rewards as t
approaches ∞, then steady-state reward evaluation is also possible:

Vt→∞ =
∑

v∈℘(P,M)

R(v).Ivt→∞ +
∑
a∈A

C(a).Iat→∞ (2)

In order to evaluate the total reward accumulated in an interval [t, t + τ ]
variable Y[t,t+τ ] can be used, which can be expressed as:



4 Ali Sedaghatbaf, Mohammad Abdolahi Azgomi

Y[t,t+τ ] =
∑

v∈℘(P,M)

R(v).Jv[t,t+τ ] +
∑
a∈A

C(a).Na
[t,t+τ ] (3)

where Jvt is a random variable indicating the total time the model is in a
marking such that for each (p,m) ∈ v, the marking of place p is m during
[t, t + τ ], and the random variable Na

t indicates the number of completions of

activity a during [t, t + τ ]. Variable W[t,t+τ ] =
Y[t,t+τ]

τ can be used to evaluate
time-averaged measures.

4 The Proposed Approach

In this section we explain how to model software architectures and evaluate their
SDP attributes with HCSAN-based reward models. We call this approach SAN-
based architecture modeling (SANAM). In SANAM, HCSANs are used to define
the behavior models of components and connectors and HCSAN-based reward
structures are used to define and evaluate quality attributes.

A SANAM-based architecture model can be formally defined as a 4-tuple
SANAM = (CM,CN,HD,RS), where:

– CM = {cm1, cm2, . . . ,mn} is a set of component models such that each
component model cm = (IBM,PS,RS) consists of: an internal behavior
model IBM specified with HCSANs, a set PS of provided services such
that each provided service is modeled by a concrete macro activity and a
set RS of required services, each modeled by a virtual macro activity which
should be bound to a concrete macro activity providing the service.

– CN = {cn1, cn2, . . . , cnn} is a set of connector models. Connectors are build-
ing blocks for modeling interactions among components.

– HD = {hd1, hd2, . . . , hdn} is a set of hardware device models. Each software
component or connector may be bound with a set of hardware devices such
as processors, disks, links, etc. Speed, capacity, and failure behavior of these
devices have significant impacts on the SDP attributes of software and

– RS is a set of HCSAN-based reward structures which can be used for spec-
ifying and evaluating the quality measures of interest.

As an illustrative example, consider a Group Communication System (GCS)
used to store a set of documents and give users access to them. Several use
cases can be defined for a GCS (e.g. subscribe, unsubscribe, submit a document,
retrieve a docu-ment and update a document). In this paper we focus on doc-
ument retrieval. The SANAM model of this system is depicted in Fig. 1. This
model includes two software components (i.e. CApp and Serv) representing the
client application and the communication server respectively. Serv provides one
service (i.e. rDoc) which facilitates retrieving a document. This component is
bound with two hardware resources i.e. the processor SPrc and the disk SDsk,
and its communication with Serv is handled by the connector CSPr, which rep-
resents a client-server protocol. The behavior model of CApp is depicted in Fig 2.



Software Architecture Modeling and Evaluation Based on SANs 5

Fig. 1. SANAM model of a GCS system

This component iteratively generates requests, sends them to Serv and displays
the responses. In this model the timed activities genReq and display are bound
with the processor CPrc. The activity genReq (display) is enabled whenever a
token is put in the place resp (doc) and it has acquired an idle processor i.e.
the ID of this activity is put in the place acID by CPrc. After completion, this
activity releases the acquired processor. If display fails, an error message will
be displayed. Otherwise, the response of the server will be displayed which may
be either a valid document or a server-side error message. The virtual macro
activity rDoc corresponds to the required service of CApp. The behavior model

Fig. 2. HCSAN model of CApp

of the service Serv.rDoc is presented in Fig. 3. This activity first requests access
to the local disk and processor. If it acquires these resources, it will seek for the



6 Ali Sedaghatbaf, Mohammad Abdolahi Azgomi

requested document. In case of success, the content of the found document is
put in the place doc, and a token representing an error message otherwise.

The behavior model of CSPr includes two timed activities for transferring
requests and documents between Serv and CApp (see Fig. 4). The activity send
is enabled whenever a request is received from CApp and an idle processor is
available. After completion, if this activity succeeds in sending the request, the
activity Serv.rDoc will be enabled. Otherwise, the request token will be put back
in req to try again. The behavior of recv is similar to send. The only difference
is the type of token they process. The two activities intercept and modify are

Fig. 3. HCSAN model of Serv.rDoc

added to the behavior model of CSPr to represent Man-in-the-Middle (MitM)
attacks. In MitM attacks, an attacker establishes independent connections with
the communicating parties and relays messages between them such that they
believe that they are communicating directly over a private connection. But in
fact, the connection is controlled by the attacker. As such, attacker will be able
to intercept and modify the messages transferred between them.

For simplicity, the HCSAN models of the hardware resources are considered
identical. As depicted in Fig. 5, the incoming requests which include the ID of
the requesting activity are put in a queue and if at least one idle resource exists,
one of the requests is approved probabilistically and its ID is put in the place
resp. If the resource fails, it will be repaired. The order of processing requests
is determined by the selection policy associated with the place queue i.e. FIFO.
Whenever a timed activity releases a resource or the repair process completes, a
token will be put in the place idle.

Now, to evaluate reliability as a dependability measure, the notion of system
failure should be defined first. The GCS system fails when a token is put in the



Software Architecture Modeling and Evaluation Based on SANs 7

Fig. 4. HCSAN model of CSPr

place CApp.failure. Therefore, the reliability of this system can be specified as:

C(a) = 0,∀a ∈ A,

R(v) =

{
1 if v = {(CApp.failure, 0)}
0 otherwise

(4)

Performance measures can be evaluated in a similar way. For example, if we
define the throughput of the GCS system during some interval [t, t + τ ] as the
number of documents successfully displayed for users in this interval, then the
following reward structure can be used to specify throughput:

C(a) =

{
p if a = CApp.display and rdoc! = error

0 otherwise

R(v) = 0,∀v ∈ ℘P (P,M)

(5)

where p is the success probability of the activity display and rdoc is the token
that this activity has removed from the place CApp.doc (see Fig. 2).

To evaluate confidentiality as a security measure, we should determine in
which states this attribute is compromised. The confidentiality of the GCS sys-
tem is compromised whenever the content of a document is intercepted during
transfer i.e. place CApp.doc is marked with a token whose value is idoc. There-
fore, the confidentiality attribute can be specified using the reward structure

C(a) = 0,∀a ∈ A,

R(v) =

{
0 if v = {(CApp.doc, idoc)}
1 otherwise

(6)



8 Ali Sedaghatbaf, Mohammad Abdolahi Azgomi

Fig. 5. HCSAN model of the hardware resources

5 Conclusions and Future Work

Regarding the necessity of integrated and quantitative evaluation of software
quality attributes, we proposed SANAM as a formal method for modeling soft-
ware architectures and evaluating their quality attributes in a unified manner. As
future work we intend to define transformation rules to extract SANAM models
from software modeling notations (e.g. UML, PCM, etc.) and develop a software
tool for automating the transformation and evaluation procedures.

References

1. Mairiza, D., Zowghi, D. and Nurmuliani, N.: An investigation into the notion of non-
functional requirements. In: ACM Sym. Applied Computing (SAC 2010), Sierra,
Switzerland, pp. 311–317 (2010)

2. Bernardi, S., Merseguer, J. and Petriu, D.C.: Model-driven dependability assessment
of software systems. Springer Berlin Heidelberg (2013)

3. Azgomi, M.A., Movaghar, A.: Coloured stochastic activity networks: preliminary
definitions and behavior. In: 20th Annual UK Perf. Eng. Wksp., Bradford, UK, pp.
297–308 (2004)

4. Sedaghatbaf A. and Azgomi, M.A.: Attack modelling and security evaluation based
on stochastic activity networks. J. Secur. Commu. Networks 7(4), 714–737 (2014)

5. Sanders, W.H., Meyer, J.F. and Arbor, A.: A unified approach for specifying mea-
sures of performance, dependability, and performability. J. Computing 4, 215–237
(1991)

6. Movaghar, A.: Stochastic Activity Networks: a new definition and some properties.
Sci. Iran. 8, 303–311 (2001)

7. Sharma, V.S. and Trivedi, K.S.: Quantifying software performance, reliability and
security: An architecture-based approach. J Syst. Softw. 80, 493–509 (2007)

8. Cortellessa, V., Trubiani, C., Mostarda, L. and Dulay, N.: An architectural frame-
work for analyzing tradeoffs between software security and performance. First Int.
Sym. Architecting Critical Syst. Prague, Czech Republic, pp. 1–18 (2010)

9. Sacanamboy, M. and Cukic, M.: Combined performance and risk analysis for border
management applications. In Int. Conf. Dependable Syst. Networks, pp. 403–412
(2010)


