N
N

N

HAL

open science

High Performance Computing Applications Using
Parallel Data Processing Units
Keyvan Azadbakht, Vlad Serbanescu, Frank De Boer

» To cite this version:

Keyvan Azadbakht, Vlad Serbanescu, Frank De Boer. High Performance Computing Applications
Using Parallel Data Processing Units. 6th Fundamentals of Software Engineering (FSEN), Apr 2015,

Tehran, Iran. pp.191-206, 10.1007/978-3-319-24644-4 13 . hal-01446600

HAL Id: hal-01446600
https://inria.hal.science/hal-01446600
Submitted on 26 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://inria.hal.science/hal-01446600
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

High Performance Computing Applications
using Parallel Data Processing Units

Keyvan Azadbakht, Vlad Serbanescu, and Frank de Boer

Centrum Wiskunde & Informatica, Amsterdam, Netherlands
{k.azadbakht,vlad.serbanescu,f.s.de.boer}@cwi.nl

Abstract. Multicore processors are growing with respect to the number
of cores on a chip. In a parallel computation context, multicore platforms
have several important features such as exploiting multiple parallel pro-
cesses, having access to a shared memory with noticeably lower cost than
the distributed alternative and optimizing different levels of parallelism.
In this paper, we introduce the Parallel Data Processing Unit (PDPU)
which is a group of objects that benefits from the shared memory of the
multicore configuration and that consists of two parts: a shared memory
for maintaining data consistent, and a set of objects that are processing
the data, then producing and aggregating the results concurrently. We
then implement two examples in Java that illustrate PDPU behavior, and
compare them with their actor based counterparts and show significant
performance improvements. We also put forward the idea of integrating
PDPU with the actor model which will result in an optimization for a
specific spectrum of problems in actor based development.

Keywords: Multicore Processors, High Performance Computing, Actor
Based Implementation, Shared Memory, Programming Construct, Data
Management

1 Introduction

In computer science research and industry, hardware development has always
been progressing at a very fast rate in terms of performance and costs com-
pared to the software adapted to run on it. Ever since the notion of parallel
programming was first introduced, the demand for algorithms and models to
support this paradigm has drastically increased. Very important issues like syn-
chronization, concurrency and fine-grained task parallelism have been raised in a
wide spectrum of domains requiring significant computing power and speed-up.
Currently, chip manufacturers are moving from single-processor chips to new
architectures that utilize the same silicon real estate for a conglomerate of mul-
tiple independent processors known as multicores, which is also the focus of our
ongoing research in the UPSCALE European Project [26].

Throughout all of the mainstream languages, several libraries have been pro-
posed with the objective to efficiently and reliably map tasks to these cores
providing a high degree of parallelism to applications while avoiding race condi-
tions and data inconsistency. At a lower level, compilers have also been adapted



2 Keyvan Azadbakht, Vlad Serbanescu, and Frank de Boer

to ensure instruction-level parallelism on operations that do not depend on each
other and these optimizations are completely transparent to the user. Our on-
going research in this project focuses on how to ”lift” this transparency to a
higher level, offering an abstraction of task-level parallelism that allows the user
to specify how and which tasks are executed in parallel without the complexity
of monitoring data dependencies. We present this approach in one of the main
programming languages, namely the Java language, while avoiding the need to
learn specific instructions of particular Java libraries and packages or forcing
the programmer to adopt a certain ”pattern” to developing highly concurrent
applications.

In a parallel computation context, multicore platforms provide some features
like exploiting several parallel processes and having access to a shared memory
that enables us to propose new higher level software abstractions containing both
parallel processes and the memory which is shared among them, and encapsulat-
ing the before-mentioned low level coordination issues as one solid entity. In this
direction, we introduce the Parallel Data Processing Unit (PDPU) as the ele-
mentary effort towards the elaboration of this category of software abstractions.
In a nutshell, we may have multiple PDPUs in a software, each of which has its
own memory which is shared among constituent processes running in parallel.
In addition, the synchronization considerations caused by concurrent access to
the shared memory are managed as internal features and are hidden from the
programiners.

Through this solution we offer designers a reliable and efficient framework
for avoiding race conditions, deadlocks and managing critical sections in their
programs. We also allow them to analyze their code and identify the exact degree
of parallelism and cost of their parallel sections, while making a clear separation
between sequential and concurrent parts of their programs. Finally our solution
focuses on how to optimize memory accesses by separate processes in a MIMD
architecture [24, 25]. This is a crucial research question in the field of Computer
Science as more and more computation intensive applications are moving to
GRID environments or even further to CLOUD storage and resources. Therefore
we formulate our main objective in this paper as follows: to introduce a new
model for programming parallel data processing applications which encapsulates
the multithreaded java programming model and its synchronization features.
The model exposes an interface that is easy to use and transparent, while adding
optimizations for efficient memory management and data consistency. In the rest
of this paper, we first survey the related work in section 2. We then introduce
the definition of PDPU in section 3. The implementation efforts and evaluation
of PDPU will be addressed in section 4. In section 5, we put forward the idea of
integrating PDPU with the actor model in order to take advantage of simplicity
of higher level abstractions and better performance. Finally, we conclude the
paper and present future works in section 6.



Introducing Parallel Data Processing Units 3

2 Related Work

In this section we look at several solutions proposed and developed in mainstream
programming languages for adapting programs to run on multicores. We start
from some of the basic concepts and examples that have been validated and used
in research and industry for multicore programming. For each example we will
look at what aspects are drawn into our solution, mainly the ease of use and
readability of these solutions, as well as the drawbacks that we want to avoid
in our approach. Furthermore, we look at some complex directions of research
that are oriented towards memory management and mapping user-level threads
to kernel-level threads and propose their integration into our model.

We first look into the kernel-level threads [23] which is a POSIX standard
for programming in C, C++ and Fortran. The advantages of this standard are
that, when implemented correctly, it is extremely efficient and fast, ensuring a
high degree of parallelism that is specified by the user explicitly. The advantage
of these threads is that they can be directly mapped to the kernel threads of
an operating system making it very easy for the user to observe the load of
each task and appropriately balance the computation amongst cores by correctly
defining each thread’s functionality and adjusting it according to its profiling
results. It has been validated in numerous applications and has yielded the best
scaling results among parallel programming solutions [18,22]. The drawbacks
of this approach are centered around the fact that the user is responsible for
synchronization, avoiding race conditions or deadlocks and managing critical
sections and variables. The POSIX Library offers no warnings, compiler errors or
exceptions when these issues occur. In our solution we use the thread mechanism
due to its excellent performance and offer a certain degree of control to the user,
however some of the basic synchronization issues are handled implicitly and due
to our solution being specific to the Java language, it offers the user exceptions
on these issues if they are violated.

Another contribution to our proposal is related to the OpenMP standard
proposed in [21]. This solution is also specialized in shared-memory program-
ming and parallelism is fully implicit. It comprises of a set of directives used
to control repetitive instructions in particular and allow them to be scheduled
on the available cores such that they can be executed in parallel. The directives
offer limited control over scheduling options, the degree of parallelism and criti-
cal sections. What is the most important aspect that we draw from OpenMP is
the transparency of the parallelism, as it does not have to be explicitly specified
[17]. Basic instruction-level parallelism and, starting with the recently passed
OpenMP 3.0 standard, task-level parallelism are achieved by adding the appro-
priate directive before a repetitive instruction or a code-block.

A significant research topic related to OpenMP is how to use this standard
together with the well-known Message Passing Interface (MPI) standard for dis-
tributed programming [16]. This solution allows the user to explicitly model
parallel processes at a much higher programming level than POSIX Threads
while at the same time handling remote or local communication via messages.
The communication is completely transparent to the user and avoids the im-



4 Keyvan Azadbakht, Vlad Serbanescu, and Frank de Boer

plementation of sockets or remote method invocation. Essentially, every node
is considered a separate entity with its own address space, a model which dis-
regards shared memory. From a software engineering standpoint this standard
is the easiest to use in the FORTRAN, C and C++ languages as it does not
present any difficult language constructs and offers high level methods to han-
dle, spawn, finalize and synchronize processes either on the same machine or
on several computing entities. Communication transparency is the key feature
that we introduce in our model from the MPI standard, but without affecting
the shared memory model that an application may or may not be running on.
A study in [20] has shown that a hybrid approach between OpenMP and MPI
depending on the programming model can yield the best performance results
and our solution is based on this hybrid approach.

Nobakht et al. [3] proposed a modeling language for leveraging performance
and scheduling concepts to application level. The proposal introduces the notion
of concurrent object groups (COGs) that isolates multiple objects into sepa-
rate entities and exposes a user-friendly solution to set scheduling policies at a
higher-programming level. As stated in our main objective, we model our solu-
tion for the Java language, therefore we needed to carefully study the parallel
programming concepts introduced by the Java Platform[15]. The solutions for
this programming language are similar to POSIX threads in the sense that the
user is responsible for every step in the concurrent application’s design. Although
Java provides an abstraction for both Threads [14] and synchronization mecha-
nisms [13] a programmer still has the difficult task of learning and using these
new constructs being responsible for handling deadlocks, race conditions and
data consistency. Our goal is to combine these solutions and their advantages
to present a novel approach in multicore programming with a shared memory
model. Our proposed setting is more general than coordination languages [32]
in the sense that the data structures used for memory management can be cus-
tomized and are not restricted to a specific tuple-space, with our aim being
towards a more general data component.

3 The Definition of Parallel Data Processing Unit

Parallel Data Processing Unit (PDPU) is an abstract object (or unit) that puts
together a group of objects so that they process the data in the shared memory
concurrently. PDPU has two main constituents (Figure 1):

A group of processes: a frame that aggregates objects so that one can look at the
group of objects as one solid entity. The group members and their correspond-
ing details are abstracted away from the rest of the application (like a black
box). Instead, PDPU provides one interface just like one coarse-grained object.
There should be some reason that makes this frame meaningful e.g. conceptual
coherence among active object classes. At least, all of them have one feature in
common; they need a specific kind of data to process. From now on, we refer to
the group members as processes since they process the data in shared memory,



Introducing Parallel Data Processing Units 5

" PDPU
Data 1 Datal | | |
Consumer 1 <L Da.ta 2 Data 2 f Producer 1
Data 3 | = <« | Data 3

consumer q <

|| Datap Datan | |[=[ Frodeerk

Fig. 1. General Perspective of PDPU

though they can also behave the same as producers by pushing data in the input
shared memory through the interface.

Input and output shared memory: PDPU, as an individual object, has one input
shared memory for storing data received from outside. This memory is shared
within the processes, and the group processes the data from it. There is also
an output shared memory which is filled with the data produced by processes.
The processes do not share any memory except the input for reading and the
output for writing. Furthermore, the data elements are just added or removed
and they are immutable. We refer to those objects which are responsible to fill
in the input shared memory as data producers. Producers are not a part of
the PDPU, instead they use its interface in order to put the data. The output
shared memory is also accessed by the objects called consumers through PDPU
interface. Inside the PDPU, the shared memory is responsible for thread safety
and data consistency when processes work with data concurrently.

3.1 PDPU Interface Description

As shown in Figure 1, there are a group of processes inside the PDPU. Each
process must follow the following template:

Start Process ()
Do
data = retrieve()
result = process(data)
write(result)
Until (data meets ending condition)
End Process

This abstract template shows how proactively processes obtain the data from
the input shared memory and then process it based on their own logic. They



6 Keyvan Azadbakht, Vlad Serbanescu, and Frank de Boer

Table 1. PDPU interface

Method Name Output Method Description

Type
PDPU<InputType, Object PDPU Consructor which generates PDPU with m
OutputType>(Boolean, individual processes from reproducible Runnable
Runnable, int) process and specified data retrieving policy

(isAll). InputType is the input data type and
OutputType is the output data type.

PDPU<InputType, Object PDPU Consructor which generates PDPU
OutputType>(Boolean, with individual Runnable processes from List
List) and specified data retrieving policy (isAll).

InputType is the input data type and OutputType
is the output data type.

retrieve() InputType |Retrieve the data for process usage based on re-
trieving policy
add (InputType) Boolean Add the data to the shared memory and return

True if it is successful

write (OutputType) Boolean Write the data to the output shared memory and
return True if it is successful

read() OutputTypeReturn the data from output shared memory

may, if necessary, generate a result and put it in the output shared memory. In
the above mentioned code, there are two functions which are provided by PDPU
interface: retrieve and write. A brief description of the PDPU interface is given in
Table 1. The "retrieve()” method provides the process with the next data element
from input shared memory. It encapsulates which is the next data element and
how the synchronization issues are handled. The process may generate some
explicit result for processing each data element. In this case it uses ”write(data)”
to record them in the output shared memory. This function also encapsulates
the synchronization issues for writing in the output shared memory as well. The
process’s result, however, may be produced implicitly through the ”process()”
method, as you will see in section 4. On the other hand, there has to be a data
producer (or producers) which fills the input shared memory and consequently
provides the processes with the data to be retrieved and processed. To this aim,
the producer uses the interface method ”add(data)” which adds the data to the
shared memory. This function is propagated by PDPU interface.

In the definition of PDPU, there are two factors that impact the internal
design of it and both should be specified based on user’s problem requirements.

— Initialization phase: initial state and logic of the processes.
— Memory access: the way that the data in shared memory will be retrieved.

The processes may be instances of the same class and their internal state may be
the same after initialization. We refer to this type of processes as Reproducible
(R) and otherwise as Non-Reproducible (NR). If the process is reproducible, it
is enough to initiate one process and to send it to the PDPU object along with
its number of replicas. Otherwise, the programmer is supposed to make a list



Introducing Parallel Data Processing Units 7

of processes with different initial states, and then to send the list to the PDPU
object.

(1)  PDPU(isAll, process, m) //for Reproducible processes
(2) PDPU(isAll, processList) // For Non-Reproducible processes

Furthermore, the data elements in the shared memory can have two different
ways of being retrieved. The shared memory’s data is targeted either to all
processes or to any of them. In the first instance, it means all the m processes
will retrieve one specific data, and in the second case it means that it is enough for
the data to be processed just by one of the processes. An example of how PDPU
is used is given in Listing 1.1. The processes inside PDPU retrieve the next data
element as soon as they become idle. The start-up sequence of the processes is
also based on which one retrieves data from the input shared memory earlier.

Listing 1.1. PDPU User Example

public class PDPUUser {

Process[] process;
PDPU<InputType, OuputType> pdpu;
Input dataFlux = new input();

public void Init (int m) {
process = new process [m];
pdpu = new PDPWInputType, OuputType>("all", process);

for (int i =0 ; i <m; i++){
process [i] = new Process();
process [i].setPDPU(pdpu) ;

}

while (dataFlux.hasData())
pdpu.add(dataFlux.getNewData());

for (int i =1 ; i <=m; i++)
pdpu.add(dataFlux.endData());

}
}

public class Process implements Runnable{
PDPW<InputType, OutputType> pdpu;

public void setPDPU(PDPU<InputType, OutputType> pdpu){




8 Keyvan Azadbakht, Vlad Serbanescu, and Frank de Boer

this.pdpu = pdpu;

}

public void run() {
InputType x;
OuputType y;

)

while (x != ENDDATA){
x = pdpu.retrieve (i)
y = process (x);
pdpu. write (y);

}

OutputType process (InputType x){}

3.2 PDPU scientific impact

PDPUs bring about some advantages with respect to software engineering qual-
ities, as they provide:

— FEase of use: some lower level implementation details are handled not by
programmers, but by the PDPU; like allocating computation resources to the
processes, allocating shared memory, and the thread-safety issues concerning
access to the shared memory.

— Understandability of system design and code: PDPU as a coarse granular co-
hesive design component (or module) makes the design models of the system
simpler and easier to understand.

— Loose coupling: the producer interacts only with PDPU interface instead of
all processes.

Furthermore with respect to concurrent computation, PDPUs provide new ab-
stract constructs for parallel programming languages and, more generally, they
put forward a new paradigm of designing coarse grained objects which encapsu-
lates both memory and multiple computation resources.

4 PDPU Implementation and Evaluation

In this section we present a technical explanation of the shared memory man-
agement. We illustrate the operation of PDPU through a case study with two
examples in Java.

4.1 Memory management

As explained in section 3 the PDPU hides all of the elements concerning syn-
chronization, thread-safety and data consistency from the user. The memory can




Introducing Parallel Data Processing Units 9

be customized to support retrieval of each data item by either a single process
or all processes. In the first case, we implement the memory as a LinkedBlock-
ingQueue[13] which translates to a classic producer-consumer [12] problem with
the synchronization hidden from the user. The real issue appears in the second
instance where the memory must take into account blocking all processes when
new data is not available, releasing them for work when new data is added and
cleaning up the input data when all processes have read it. This case maps to
the classic readers/writers problem [11] with a garbage collection issue. We use a
ConcurrentHashMap with an index for a key and a counter/data pair for a value.
A CyclicBarrier is assigned to a separate counter (the current number of items
that were added up to a moment) which blocks all processes when no new data
is available. After each process reads an item from the hash map it increments
the item’s corresponding counter. The last process to read an item is responsible
for eliminating the item based on the counter reaching the fixed number of pro-
cesses. It is worth mentioning that because according to the definition of PDPU
the data is immutable both in input and output shared memories, we use object
cloning in order to have a copy of the data instead of reference to guarantee the
immutability of the data.

4.2 Example 1: The Behavior of PDPU with Respect to
Transferring Data

We first compare a Java program in the domain of actor based applications
with its PDPU-based counterpart. In this example, there is no computation and
the only important factor is delivering data elements to the processes. Figure
2 presents the PDPU in Object Oriented model. For implementing above men-
tioned actor based Java programs, we use ABS-API [7], an actor-model library
implemented in JAVA 8 using the newly introduced feature of lambda expres-
sions. We also run all the programs on SaraSURF cluster on a 16 core processor
2.70 GHz (Intel Xeon CPU E5-4650 0) with 128GB of memory[8] to have the
same framework for comparison.

PDPU 0.2 Process

$ 15

GroupUser

Fig. 2. The Object Oriented model containing PDPU



10 Keyvan Azadbakht, Vlad Serbanescu, and Frank de Boer

T
120 L PDPU-based Message Passing —+— |
Actor-based Message Passing —«

Time (seconds)
-
(=] 2] (=]
o o (=]
T T T
1 1 1

I
o
T
|

8]
(=]
T
|

0 1— _i i |
0 1 2 4 8 16
Number of processes

Fig. 3. The comparison between the behavior of Actor based and PDPU based Java
programs. 10° data items are sent to each process.

Let us assume a common actor based configuration in which there is a pro-
ducer of data that provides multiple actors with a stream of data objects through
message passing. The producer generates the data and sends it through asyn-
chronous method invocation. Each data element will be processed by all of the
actors. Therefore the producer composes and sends m messages for each data,
where m is the number of actors receiving the message. Thus, for n data elements,
the producer sends m * n messages. However, instead of broadcasting each mes-
sage to all actors, the PDPU alternative for this implementation involves having
a PDPU which contains a fixed number of m processes. The producer is sup-
posed to add each data element to the shared memory of the PDPU instance just
once through calling ”add(data)” and processes retrieve and process the data.
Therefore the producer adds the n data elements to the PDPU which starts m
processes. It is clear that, in terms of transferring data to the processes, the com-
putation complexities of producers are O(nm) and O(n+m) for the actor based
and PDPU based implementations respectively. The difference is more clear,
when we consider large m because of the future of multicore platforms, namely
manycores, with thousands or even millions of cores on a chip. Figure 3 illus-
trates the advantage of PDPU in terms of performance. The important point of
this plot is the behavior of these two approaches, disregarding the elapsed times.
As you can see, the line corresponding to actor based implementation grows ex-
ponentially, when m is increased. The PDPU based implementation, however,
grows at a linear rate. There are multiple factors other than computation com-
plexity that impact on the elapsed time in the actor based configuration, namely,
the resource consumption due to among others enqueueing and dequeueing the
messages and generating the call stacks.



Introducing Parallel Data Processing Units 11

4.3 Example 2: The concurrent version of sieve of Eratosthenes

In mathematics, the sieve of Eratosthenes, one of a number of prime number
sieves, is a simple algorithm for finding all prime numbers up to any given limit.
It does so by iteratively marking as composite (i.e. not prime) the multiples
of each prime, starting with the multiples of 2 [6]. To model the algorithm
in two different versions using actors [5] and PDPU, we use the well-known
parallel algorithm which partitions the sequence of candidate numbers [2,1]. In
this algorithm, the numbers are partitioned into smaller sequences of numbers
with almost the same size. The size of each partition must be equal or greater
than |y/n|, and the number of partitions must be equal or less than [n/|\/n]],
where n is the target number such that the first partition contains all of the
prime numbers that sieve composites throughout all partitions. Therefore the
first actor in the model, namely producer, will send asynchronous messages to
the others that will invoke the sieving process. To this aim, each prime number
must be sent m times to the m actors. This is where the PDPU based model
affects the performance of the program. If prime numbers are processed on the
same machine they can exploit PDPU abstraction which reads and writes the
numbers in a shared data structure, with message passing being required only
between the producer and remote partitions. So each prime number is produced
and written in shared memory just once. The comparison of actor based and
PDPU based implementations of prime sieve is shown in Figure 4. While both
algorithms scale, PDPU based implementation outperforms the actor based one.
However it is not because of theoretical analysis we have mentioned in Section
4.2, but because of practical overheads in ABS-API for receiving the messages
containing data. In other words, when the producer is not the bottleneck, in
opposite to example 1, then both programs performances are limited to the
computations done in actors and processes. In this example, they behave the
same, though there is some constant difference in performance. In contrast, if
we consider just producers overheads and disregard other parts of programs, the
PDPU based implementation significantly outperforms since the same reason
mentioned in Section 4.2.

5 Discussion: Integrating PDPU with Actor Model

In previous sections, we introduced PDPU as a high abstraction level object
that is orthogonal to both Java Threads and the actor model. PDPU enhances
the Java language to obtain parallelism in processing data via encapsulating
synchronization. In other words, it is simpler to implement a parallel data pro-
cessing algorithm using PDPU than using Java Threads, and the programmer
does not need to face synchronization issues, race conditions and so forth. We
have also shown how PDPU outperforms actor based implementations and what
is the reason behind it through the examples in section 4. In this section, we
explain how PDPU concept is integrated with actor model in such a way that
the extended actor model exploits the strength points of both concepts.



12 Keyvan Azadbakht, Vlad Serbanescu, and Frank de Boer

16 T T T

T
Actor-based Implementation ——
1a L *T\ PDPU-based Implementation
\
12 \ -
\
g 10 \ 4
= \
g [
Y 8r ~ B
: =
— [l \ -
[
‘\\\
4 \\\ -
e —
2 D
0 L I I I
o 1 2 4 8 16

Number of processes

Fig. 4. The comparison between the behavior of Actor based and PDPU based imple-
mentations of Sieve of Eratosthenes. The target number for sieving is 10°

Although it is achieved novel advantages in the area of actor model and asyn-
chronous message passing, there are some downsides in practice e.g. the overhead
of composing, sending and receiving messages and dealing with obtaining future
results when their number is large. Sometimes the overhead is because of the
nature of broadcasting mechanism — that is — broadcasting the same message
to several actors which has both computation overhead, because of redundant
repetitive actions for broadcasting message, and memory overhead, because of
redundant queuing the same message by several actors. On the other hand, the
actor model [7] provides the actor notion which is an entity with high abstraction
level that leads to eliminating design and implementation complexities caused
by the nature of parallel computation and programming. However, there can be
higher abstract constructs or design patterns that still follow the actor concept
and eliminate or lessen these cumbersome and confusing details in some specific
circumstances.

This section puts forward the idea of a new abstract programming language
construct, which is called Active Group in order to benefit from both actor
based implementation and PDPU features. The general idea is that we have one
actor-like component in a higher level abstraction. This component consists of
one queue of runnable messages and one processing part which processes the
messages. At lower abstraction level, similar to PDPU, the processing part con-
tains multiple processes, i.e. actors, receiving messages. Instead of data elements
in PDPU, here we will have runnable messages in the shared memory. You can
see a simple scheme of Active Group in Figure 5. However we ignore some of its
details, e.g. how actors have access to the shared queue. Here we briefly address
some of these details as the main features of Active Groups. We use the same
terminology as the definition of PDPU:



Introducing Parallel Data Processing Units 13

Ko

msg(3)
Producer —

"so(3)

msg(3)
4’

(2)Bsw
(TBsw

o
7 \))(\ /
007 Z lawnsuo) Kx\e/

&,

(S)

U,
Sy

Fig. 5. Active Group (right side) and its extended actor based counterpart (left side)

Proactive or reactive actors: The actor can proactively fetch one message
from shared memory or wait for the next element to be prepared. In contrast,
it may passively receive the message through an independent scheduler in the
group, and process it. Thus the values for this feature are Proactive and Re-
active. In the former case, there is no need for each individual actor to have a
message queue.

Different scheduling policies: One of the advantages of the active group
is to apply different scheduling policies. Data is usually received in a particular
order, but if the policy is not FIFO, the group may process them in other or-
ders. To this aim, data can be reordered based on, say, Priority or Content.
Furthermore, if actors are not proactive, they are supposed to be managed as
computation resources by schedulers. They may be selected as the target actor
based on different policies like Round Robin.

Different ways of using the shared memory: In some applications of
active groups, each message in the shared memory will be fetched by one actor
and processed by it. So, in that case, the message is removed from shared memory
(e.g. a queue of HTTP requests, each of which will be enough to be processed
by one server). This type of shared memory is technically a queue. However, in
some other applications, the message is used by all actors. In that case, the data
is read from the shared memory but it is not removed since it will be used by
others (e.g. in section 4.3, the messages containing prime numbers that are used
by actors in concurrent version of sieve of Eratosthenes).

There can be several distinct versions of active group, each of which have
different feature values. If we refer to the above-mentioned issues as customizable
features of active group, then the ideal active group definition provides the user
with all these features to be customizable with existing values. To reach this
aim, there can be different ways:



14 Keyvan Azadbakht, Vlad Serbanescu, and Frank de Boer

1. Parameterizing the active group construct so that the user can initialize

appropriate feature values.

Using polymorphism to refine the abstract active group.

3. Having distinct types of active groups so that their definition illustrates their
features values.

N

6 Conclusion and Future Works

In this paper we proposed a coarser granular object, i.e. Parallel Data Processing
Unit, which contains both computation and memory, and encapsulates efforts
for synchronization issues to make parallel programming easier for programmers.
Through case studies and complexity analysis, we have shown how it overcomes
one of the drawbacks of actor model and significantly improves performance.

Reasoning about multi-threaded Java programs is notoriously hard (see [9])
because of its fine-grained interleaving. In contrast PDPUs allow for a com-
positional proof method along the lines of the proof method for monitors as
introduced in [10]. Given an appropriate assertion language for describing the
internal data structures of a PDPU such a proof method is based on the spec-
ification of these data structures by means of an invariant. The external proof
obligations for the invariant are specified in terms of the implementations of the
”add” and the "read” operation, given a precondition of the caller specifying the
input parameter in case of an ”add” operation. The internal proof obligations
of the invariant are specified in terms of the implementations of the processes
which involves the implementations of the "retrieve” and ”write” operations.

We then put forward the idea of integrating this novel approach with the
actor model by bridging the gap between their conceptual differences. To this
aim, we have generalized PDPU as a new concept, called Active Group, which is
based on actor model. It will make it possible for a broader types of problems to
be implemented in Active Groups. As future work, we aim to extend the syntax
and the operational semantics of ABS language [4] to have the new construct,
namely Active Group, and also extend the ABS-API so that it contains support
for defining and using Active Groups.

7 Acknowledgements

Partly funded by the EU project FP7-610582 ENVISAGE: Engineering Virtu-
alized Services (http://www.envisage-project.eu). Partly funded by the EU
project FP7-612985 UPSCALE: From Inherent Concurrency to Massive Paral-
lelism through Type-based Optimizations (http://www.upscale-project.eu).
This work was carried out on the Dutch national e-infrastructure with the sup-
port of SURF Foundation.

References

1. Pop, Florin, and Maria Potop-Butucaru. ” Adaptive Resource Management and
Scheduling for Cloud Computing.”



Introducing Parallel Data Processing Units 15

2. Serbanescu, Vlad, et al. " Towards Type-Based Optimizations in Distributed Appli-
cations Using ABS and JAVA 8.” Adaptive Resource Management and Scheduling
for Cloud Computing. Springer International Publishing, 2014. 103-112.

3. Nobakht, Behrooz, et al. "Programming and deployment of active objects with
application-level scheduling.” Proceedings of the 27th Annual ACM Symposium on
Applied Computing. ACM, 2012.

4. Johnsen, Einar Broch, et al. ”ABS: A core language for abstract behavioral specifi-
cation.” Formal Methods for Components and Objects. Springer Berlin Heidelberg,
2012.

5. Nobakht, Behrooz, and Frank S. de Boer. ”"Programming with actors in Java 8.”
Leveraging Applications of Formal Methods, Verification and Validation. Specialized
Techniques and Applications. Springer Berlin Heidelberg, 2014. 37-53.

6. Bokhari, Shahid H. ”Multiprocessing the sieve of Eratosthenes.” Computer 20.4
(1987): 50-58.

7. Nobakht, Behrooz, and Frank S. de Boer. ”Programming with actors in Java 8.”
Leveraging Applications of Formal Methods, Verification and Validation. Specialized
Techniques and Applications. Springer Berlin Heidelberg, 2014. 37-53.

8. SurfSara https://surfsara.nl/

9. brahm, Erika, et al. ”An assertion-based proof system for multithreaded Java.”
Theoretical Computer Science 331.2 (2005): 251-290.

10. Hoare, Charles Antony Richard. ”Monitors: An operating system structuring con-
cept.” Communications of the ACM 17.10 (1974): 549-557.

11. Andrews, Gregory R. Concurrent programming: principles and practice. Benjam-
in/Cummings Publishing Company, 1991.

12. Li, S., et al. ” Analysis of the producer-consumer problem.” Journal of Large-Scale
Archetypes, vol. 0 (2002): 72-92.

13. Lea, Doug. ”"The java. util. concurrent synchronizer framework.” Science of Com-
puter Programming 58.3 (2005): 293-309.

14. Oaks, Scott, and Henry Wong. Java threads. ” O’Reilly Media, Inc.”, 1999.

15. http://docs.oracle.com/javase/7/docs/api/overview-summary.html

16. Gropp, William, Ewing Lusk, and Anthony Skjellum. Using MPI: portable parallel
programming with the message-passing interface. Vol. 1. MIT press, 1999.

17. Pop, Antoniu, and Albert Cohen. ”OpenStream: Expressiveness and data-flow
compilation of OpenMP streaming programs.” ACM Transactions on Architecture
and Code Optimization (TACO) 9.4 (2013): 53.

18. Briggs, Emil, et al. "DFT-Based Electronic Structure Calculations on Hybrid and
Massively Parallel Computer Architectures.” Bulletin of the American Physical So-
ciety (2014).

19. Asai, Ryo, and Andrey Vladimirov. ”Intel Cilk Plus for Complex Parallel Al-
gorithms:” Enormous Fast Fourier Transform” (EFFT) Library.” arXiv preprint
arXiv:1409.5757 (2014).

20. Rabenseifner, Rolf, Georg Hager, and Gabriele Jost. ”Hybrid MPI/OpenMP par-
allel programming on clusters of multi-core SMP nodes.” Parallel, Distributed and
Network-based Processing, 2009 17th Euromicro International Conference on. IEEE,
2009.

21. Dagum, Leonardo, and Ramesh Menon. ”OpenMP: an industry standard API for
shared-memory programming.” Computational Science & Engineering, IEEE 5.1
(1998): 46-55.

22. Gravvanis, G. A., et al. ” A note on parallel finite difference approximate inverse
preconditioning on multicore systems using POSIX threads.” International Journal
of Computational Methods 10.05 (2013).



16 Keyvan Azadbakht, Vlad Serbanescu, and Frank de Boer

23. Mueller, Frank. "A Library Implementation of POSIX Threads under UNIX.”
USENIX Winter. 1993.

24. Snyder, Lawrence. A taxonomy of synchronous parallel machines. WASHINGTON
UNIV SEATTLE DEPT OF COMPUTER SCIENCE, 1988.

25. Johnson, Eric E. ”Completing an MIMD multiprocessor taxonomy.” ACM
SIGARCH Computer Architecture News 16.3 (1988): 44-47.

26. UPSCALE European Project, http://www.upscale-project.eu/

27. Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences.
J. Mol. Biol. 147, 195-197 (1981)

28. May, P., Ehrlich, H.C., Steinke, T.: ZIB Structure Prediction Pipeline: Composing
a Complex Biological Workflow through Web Services. In: Nagel, W.E., Walter,
W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 1148-1158. Springer,
Heidelberg (2006)

29. Foster, 1., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, San Francisco (1999)

30. Czajkowski, K., Fitzgerald, S., Foster, 1., Kesselman, C.: Grid Information Services
for Distributed Resource Sharing. In: 10th IEEE International Symposium on High
Performance Distributed Computing, pp. 181-184. IEEE Press, New York (2001)

31. Foster, 1., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: an Open
Grid Services Architecture for Distributed Systems Integration. Technical report,
Global Grid Forum (2002)

32. Gelernter, David, and Nicholas Carriero. ”Coordination languages and their sig-
nificance.” Communications of the ACM 35.2 (1992): 96.

33. National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov



