
HAL Id: hal-01446598
https://inria.hal.science/hal-01446598

Submitted on 26 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Incremental Realization of Safety Requirements:
Non-determinism vs. Modularity

Ali Ebnenasir

To cite this version:
Ali Ebnenasir. Incremental Realization of Safety Requirements: Non-determinism vs. Modularity. 6th
Fundamentals of Software Engineering (FSEN), Apr 2015, Tehran, Iran. pp.159-175, �10.1007/978-3-
319-24644-4_11�. �hal-01446598�

https://inria.hal.science/hal-01446598
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Incremental Realization of Safety Requirements:
Non-Determinism vs. Modularity?

Ali Ebnenasir

Department of Computer Science
Michigan Technological University, Houghton MI 49931, U.S.A.

aebnenas@mtu.edu

Abstract. This paper investigates the impact of non-determinism and
modularity on the complexity of incremental incorporation of safety re-
quirements while preserving liveness (a.k.a. the problem of incremental
synthesis). Previous work shows that realizing safety in non-deterministic
programs under limited observability is an NP-complete problem (in the
state space of the program), where limited observability imposes read
restrictions on program components with respect to the local state of
other components. In this paper, we present a surprising result that syn-
thesizing safety remains an NP-complete problem even for deterministic
programs! The results of this paper imply that non-determinism is not
the source of the hardness of synthesizing safety in concurrent programs;
instead, limited observability has a major impact on the complexity of
realizing safety. We also provide a roadmap for future research on ex-
ploiting the benefits of modularization while keeping the complexity of
incremental synthesis manageable.

Keywords: Program Synthesis, Safety Specifications, Non-
Determinism, Modularity

1 Introduction

Understanding the complexity of realizing new (safety/liveness) properties is of
paramount importance since today’s systems often have to adapt to new re-
quirements while preserving some existing functionalities. Safety stipulates that
nothing bad ever happens (e.g., at most one process/thread accesses shared re-
sources at any moment), and liveness states that something good will eventually
occur (e.g., each process eventually gets access to shared resources). New re-
quirements are raised due to changes in platform, environmental faults, design
flaws, new user requirements (e.g., non-functional concerns), porting, etc. Thus,
it is important to enhance our understanding of what complicates behavioral
changes. Towards this end, this paper investigates the complexity of redesigning
finite-state programs towards capturing new safety requirements while preserv-
ing liveness, called the problem of incremental synthesis.

? This work was sponsored in part by the National Science Foundation grant CCF-
1116546.

2 Ali Ebnenasir

Several approaches exist for capturing safety most of which lack a thorough
complexity analysis. For example, aspect-oriented approaches [5, 17, 16, 10, 13,
6] provide a method for capturing and verifying cross-cutting functionalities.
Control-theoretic techniques [25, 12] realize new safety requirements by gener-
ating controllers that implement safety in different components of a system.
Techniques based on transformation automata [24] enforce safety and/or se-
curity policies. Our previous work [7, 3] shows that incremental synthesis for
non-deterministic programs can be done in polynomial time (in the size of pro-
gram state space) if we consider unlimited observability, where program com-
ponents/processes can atomically read the state of other processes. Nonethe-
less, the authors of [4] demonstrate that incremental synthesis of safety in non-
deterministic programs under limited observability is NP-complete (in the size of
the program state space). Limited observability imposes restrictions on processes
with regard to reading the state of other processes. Vechev et al. [27] present
an exponential algorithm for synthesizing synchronization mechanisms under
limited observability, but they provide no results on the general case hardness
of synthesizing synchronization mechanisms. Now, the open questions are: What
role do non-determinism and observability/modularization play in the complexity
of incremental synthesis? Is incremental synthesis of safety easier for determin-
istic programs?

In this paper, we prove that non-determinism is not the major source of the
complexity of incremental synthesis; rather it is modularization constraints that
complicate the incremental synthesis of safety properties. We consider Alpern
and Schneider’s [1] definition of safety/liveness properties, where a property is a
set of sequences of states. Their definition of a safety property P can be repre-
sented as a set of finite sequences that cannot be extended to be in P, which we
call them bad sequences. We also investigate a special case of safety properties
that can be specified as a set of Bad Transitions (BT) (introduced in [18]). The
BT model is more general than the usual notion of Bad States (BS) in that every
transition reaching a bad state is considered to be a bad transition, whereas not
every bad transition reaches a bad state [20]. Previous work [7, 3] shows that in-
cremental synthesis of safety (for deterministic and non-deterministic programs)
can be done in polynomial time (in the size of the state space) under unlimited
observability. Nonetheless, we show that under limited observability the general
case complexity of synthesizing safety in deterministic programs increases to
NP-complete! Our results imply that limited observability has a major impact
on the complexity of incremental synthesis of safety (see Figure 1) regardless of
non-determinism/determinism. While modularity is a powerful design concept,
design for change [22] is also an important goal. To achieve this goal, research
should be focused on identifying the kind of modularization techniques that
facilitate incremental synthesis.

Organization. Section 2 presents preliminary concepts. Section 3 formulates
the problem of incremental synthesis of safety. Section 4 shows that the general
case complexity of incremental synthesis of safety in deterministic programs
increases to NP-complete if we assume limited observability. Finally, in Section
5, we make concluding remarks and present a roadmap for future research.

Title Suppressed Due to Excessive Length 3

Unlimited Observability Limited Observability

Deterministic Programs P NP-complete∗

Non-Deterministic Programs P NP-complete

Fig. 1. The impact of non-determinism and limited observability on the complexity of
incremental synthesis (∗ depicts the contribution of this paper).

2 Preliminaries
In this section, we present formal definitions of finite-state programs, program
components1, computations and safety specifications. The definition of specifi-
cation is adapted from Alpern and Schneider [1]. We use a read/write model
from [2, 19].
Programs. A program p = 〈Vp, Cp, Ip,Fp〉 is a tuple of a finite set Vp of variables
and a finite set Cp of computing components C1, · · · , Ck, where k ≥ 1. Each
variable vi ∈ Vp, for 1 ≤ i ≤ N , has a finite non-empty domain Di. A state s
of p is a valuation 〈d1, d2, · · · , dN 〉 of program variables 〈v1, v2, · · · , vN 〉, where
di ∈ Di. Ip denotes a finite set of initial states, and Fp represents a finite set of
accepting/final states. For a variable v and a state s, v(s) denotes the value of
v in s. The state space Sp is the set of all possible states of p and |Sp| denotes
the size of Sp. A state predicate is a subset of Sp. A transition is an ordered pair
(s, s′), where s and s′ are program states. A component Cj is a triple 〈δj , rj , wj〉,
where 1 ≤ j ≤ k and δj ⊆ Sp × Sp denotes the set of transitions of Cj . We
shall define rj and wj below. The set of transitions of a program p, denoted δp,

is the union of the sets of transitions of its components; i.e., δp =
⋃k

j=1 δj . A
program p is non-deterministic iff (if and only if) the transition function δp is
defined as Sp → 2Sp . A deterministic program is a special case where from each
state there is at most one outgoing transition. That is, the set δp defines a partial
(transition) function from Sp to Sp. Thus, given a state s ∈ Sp, δp returns at
most one state s′ ∈ Sp. This is a property that each δj inherits from δp.
Notation. For simplicity, we shall misuse p and δp interchangeably.
Read/Write Model. In order to model the access rights of each component Cj

(1 ≤ j ≤ k) with respect to program variables, we define a set of variables that Cj

is allowed to read, denoted rj , and a set of variables that Cj can write, denoted
wj . Notice that, if a variable v of some component Ci is read/written through the
interface of Ci, then v is considered readable/writable for the component that
invokes the interface of Ci. We assume that wj ⊆ rj ; i.e., a component cannot
blindly write a variable it cannot read. The write restrictions of a component
Cj identify a set of transitions {(s, s′) | ∃v : v /∈ wj : v(s) 6= v(s′)} that δj
excludes, where v denotes a variable. For example, consider a program pr with
two components C1 and C2 and two binary variables v1 and v2. The component
C1 (respectively, C2) can read and write the variable v1 (respectively, v2), but it

1 The term component can capture objects in object-oriented program,
threads/processes in concurrent programming, nodes of network protocols,
etc.

4 Ali Ebnenasir

cannot read (or write) v2 (respectively, v1). Let 〈v1, v2〉 denote the state of the
program pr. A transition t1, represented as (〈0, 0〉, 〈1, 1〉), does not belong to C1

because v2 /∈ w1 and the value of v2 is being updated. For similar reasons, t1
does not belong to C2 either.

The effect of read restrictions is that, during the synthesis of safety, δj of
a component Cj includes (respectively, excludes) a transition t iff a group of
transitions associated with t is included (respectively, excluded) in δj [19, 2].
In the aforementioned example, consider the transition t2 as (〈0, 0〉, 〈1, 0〉). If
C1 includes only t2, then the execution of t2 can be interpreted as the atomic
execution of the following if statement: ‘if (v1 = 0)∧ (v2 = 0) then v1 := 1’; i.e.,
C1 needs to read v2. Including both transitions (〈0, 0〉, 〈1, 0〉) and (〈0, 1〉, 〈1, 1〉)
makes the value of v2 irrelevant, thereby eliminating the need for reading v2 by
C1. Thus, the component C1 must either include or exclude both transitions as
a group. Formally, a component Cj can include a transition (s, s′) if and only if
Cj also includes any transition (sg, s

′
g) such that for all variables v ∈ rj , we have

v(s) = v(sg) and v(s′) = v(s′g), and for all variables u /∈ rj , we have u(s) = u(s′)
and u(sg) = u(s′g).

Computations. A computation of a program p = 〈Vp, Cp, Ip,Fp〉 is a sequence
of states σ =� s0, s1, · · · �, where each transition (si, si+1) in σ (i ≥ 0) belongs
to some component Cj , 1 ≤ j ≤ k, i.e., Cj executes the transition (si, si+1), and
σ is maximal. That is, either σ is infinite, or if σ is finite and terminates in a
state sf , then there is no component of p that executes a transition (sf , s) for
any state s. A computation prefix of p is a finite sequence σ =� s0, s1, · · · , sm �
of states in which every transition (si, si+1), for 0 ≤ i < m, is executed by some
component Cj , 1 ≤ j ≤ k.

Properties and Specifications. Intuitively, a safety property/requirement
states that nothing bad ever happens. Formally, we follow Alpern and Schnei-
der [1] in defining a property as a set of sequences of states. A safety property P
can be represented by a set of finite sequences of states, denoted B, that cannot be
extended to be in P. Each sequence in B represents a scenario of the occurrence
of something bad. For example, a safety property of a program with an integer
variable x could stipulate that an increment of x must not immediately be fol-
lowed by a decrement in the value of x. Such a safety property can be represented
by a set of bad sequences of three states (i.e., two immediate transitions; one
that increments x and the subsequent one that decrements x). In this paper,
a liveness property states that something good eventually happens, including
good things that occur infinitely often. Formally, a liveness property, denoted L,
is a set of sequences of states, where each sequence in L either terminates in a
state belonging to a state predicate F (representing the good thing that should
happen), or infinitely often visits some states in F . This notion of liveness is
sufficiently general to capture stutter-invariant Linear Temporal Logic (LTL)
[8] properties [11, 23]. Following Alpern and Schneider [1], we define a specifi-
cation, denoted spec, as a set of safety and liveness properties. A computation
σ =� s0, s1, · · · � of a program p = 〈Vp, Cp, Ip,Fp〉 satisfies a specification spec
from Ip iff (1) s0 ∈ Ip, (2) no sequence of the safety of spec, denoted B, appears

Title Suppressed Due to Excessive Length 5

in σ, and (3) if σ terminates in a state sf , then sf ∈ Fp; otherwise, some states
in Fp are reached infinitely often in σ. A program p satisfies its specification
spec from Ip iff all computations of p satisfy spec from any state in Ip. Given
a finite computation σ =� s0, s1, · · · , sd �, if no program component executes
from sd and sd /∈ Fp, then σ is a deadlocked computation and sd is a deadlock
state. A computation σ =� s0, s1, · · · � of p is a non-progress computation iff σ
does not infinitely often reach some state in Fp nor does it terminate in a state
in Fp. A deadlocked computation is an instance of a non-progress computation.
Another example is the case where a computation of p includes a cycle in which
no state belongs to Fp, called a non-progress cycle. If a computation σ includes
a sequence in B, then σ is a safety-violating computation. A computation σ of
p violates spec from a state s0 iff σ starts at s0 and σ is either a non-progress
computation or a safety-violating computation. A program p violates spec from
Ip iff there exists a computation of p that violates spec from some state s0 in
Ip.
Notation. Whenever it is clear from the context, we abbreviate ‘p satisfies spec
from Ip’ as ‘p satisfies spec’.
Bad Transitions (BT) model. Consider a special case in which safety speci-
fications are modeled as a set of finite sequences of length 2; i.e., a sequence has
only two states. That is, the safety specification rules out a set of transitions
that must not appear in program computations, called bad transitions [18]. For
instance, the safety specification of a program with an integer variable x may
stipulate that x can be decremented only if its value is positive. Consider a state
s0, where x(s0) = −2. State s0 can be reached either by incrementing x from s1,
where x(s1) = −3, or by decrementing x from s2, where x(s2) = −1. Observe
that the transition (s2, s0) is a bad transition, whereas (s1, s0) is not. In this
model, reaching s0 does not necessarily violate safety and it depends on how
s0 is reached. Such a model of safety specification is a restricted version of the
general model of safety specifications presented by Alpern and Schneider [1],
but it is more general than the usual model of bad states often specified in the
literature in terms of the always operator (or invariance properties) in temporal
logic [8].

Remark. We investigate incremental synthesis under “no fairness”.

3 Problem Statement
In this section, we formally define the problem of incremental synthesis of safety.
Let p = 〈Vp, Cp, Ip,Fp〉 be a program that satisfies a specification spec. Moreover,
let B denote the safety of spec, and Bnew represent a new safety property (e.g.,
data race-freedom) that p does not satisfy. Our goal is to redesign p to a program
pr = 〈V r

p , Crp , Irp ,Fr
p 〉, such that pr satisfies B ∧ Bnew and the liveness of spec

from Irp . For simplicity, during such redesign, we do not expand the state space
of p; i.e., no new variables are added to Vp. Thus, we have V r

p = Vp and Srp = Sp.
Since pr must still satisfy spec from all states in Ip, we should preserve all initial
states of p. Thus, we require that Ip = Irp . We state the problem as follows:

6 Ali Ebnenasir

Problem 1. Incremental Synthesis of Safety

– Input: A program p = 〈Vp, Cp, Ip,Fp〉 with its specification spec, its set
of safety properties B, a new safety property Bnew and a set of read/write
restrictions for all components in Cp.
• Input Assumptions: The program p satisfies spec from Ip, but p may not

satisfy Bnew from Ip.
– Output: A redesigned program pr = 〈V r

p , Crp , Irp ,Fr
p 〉.

– Constraints:
1. V r

p = Vp (i.e., Srp = Sp)
2. Irp = Ip
3. Fr

p ⊆ Fp and Fr
p 6= ∅

4. The number of components and the read/write restrictions of each com-
ponent in Cp remain the same in Crp , but δj of each component Cj may
change in Crp

5. δpr
6= ∅, and pr satisfies B ∧ Bnew from Ip

6. Starting from any initial state s0 ∈ Ip, the revised program pr satisfies
its liveness specifications.

We now define the decision problem of incremental synthesis in the BT model.

Problem 2. Decision Problem of Incremental Synthesis

– Instance: A program p = 〈Vp, Cp, Ip,Fp〉 with its specification spec, its set
of safety properties B, a new safety property Bnew and a set of read/write
restrictions for all components in Cp, where B and Bnew are specified in the
BT model of safety.

– Question: Does there exist a program pr = 〈V r
p , Crp , Irp ,Fr

p 〉 that meets the
constraints of Problem 1?

Significance of Problem 1. Several activities (e.g., debugging, porting, compo-
sition) during software development are instances of Problem 1. A few examples
are as follows:

– Debugging: Consider the debugging of concurrent programs for data races
between multiple threads. That is, multiple threads access shared data where
at least one of them performs a write operation. Data race-freedom is a safety
property whereas ensuring that each thread eventually gains access to the
shared data (i.e., makes progress) is a liveness property. Eliminating data
races while preserving the progress of each thread is a clear example of
synthesizing safety [27].

– Porting: Consider a scenario in which a distributed application designed to
be deployed on a traditional wireless network is considered for deployment
on a wireless sensor network. The sensor nodes have a power-saving mode in
which a node automatically turns off its radio (i.e., sleep mode) if no network
activities are detected for a specific time interval. To port an existing wireless
application to this new platform, one has to revise the application considering
the sleep mode. That is, some of the activities would be forbidden in the sleep
mode (e.g., sending messages). This is an additional safety constraint that
should be met while preserving all other safety/liveness properties.

Title Suppressed Due to Excessive Length 7

– Composition and incremental development: While in this paper we
investigate Problem 1 in the same state space (i.e., no new variables are
added while synthesizing safety), we will investigate the synthesis of safety
under more relaxed conditions where the redesigned program may include
new variables. Such a generalized formulation of Problem 1 captures soft-
ware composition. Several approaches in software engineering (e.g. aspect-
oriented programming [15]) rely on incremental design of software where
modules/components that implement features/aspects are incrementally
composed with an existing base system [15, 14, 26, 16]. Moreover, there are
numerous applications where software behaviors should evolve by composing
plug-in components (e.g., Mozilla extensions) or by integrating mobile code
(e.g., Java applets, composable proxy filters [21]). While some researchers
have investigated type safety of compositions [26], dynamic safety properties
of compositions are also of paramount importance.

4 Hardness of Incremental Synthesis
In this section, we illustrate that the general case complexity of synthesizing
safety in deterministic programs increases significantly if program components
have limited observability with respect to the state of other components. The
intuition behind our complexity result lies in the difficulty of redesigning program
computations towards capturing a new safety property while preserving liveness.
Consider a computation σ =� s0, · · · , si−1, si, · · · �, where i > 0, in a program
p and a new safety property Bnew that forbids the execution of the transition
t = (si−1, si); i.e., t must not be executed in the redesigned program. As such,
we have to remove t. If si−1 /∈ Fp, then σ becomes a deadlocked computation.
To resolve the deadlock state si−1, we systematically synthesize a new sequence
of states σr =� s′0, · · · , s′k �, for k ≥ 0, that is inserted between si−1 and
si to satisfy Bnew (i.e., avoid executing t). Note that while a direct transition
from si−1 to si violates Bnew, there may be another sequence of states that can
be traversed from si−1 to si without violating Bnew. The same argument holds
about building a computation prefix between any predecessor of si−1 and any
successor of si; there is nothing particular about si−1 and si.

Additionally, the synthesized sequence σr must not preclude the reachability
of the accepting states in σ. To meet this requirement, no transition (s, s′) in σr
should be grouped with a transition (sg, s

′
g) such that sg is reachable in some

computation of pr and the execution of the transition (sg, s
′
g) causes one of the

following problems: (1) s′g is a deadlock state, (2) (sg, s
′
g) is a safety-violating

transition that must not be executed, and (3) s′g is a predecessor state of sg
in σ, thereby creating a non-progress cycle2. To ensure that the above cases
do not occur, we should examine (i) all transitions selected to be in σr, (ii)
all transitions used to connect σr to si−1 and si along with their associated
transition groups, and (iii) the transitions of other computations. Intuitively,
this leads to exploring an exponential number of possible combinations of the

2 If s′g is a successor of sg in σ or is reachable in a different computation, then sg
should not have any other outgoing transition due to the determinism constraints.

8 Ali Ebnenasir

safe transitions (and their transition groups) that can potentially be selected to
be in σr. With this intuition, we prove that synthesizing safety in deterministic
programs in the BT model of safety under limited observability is NP-complete
(using a reduction from the 3-SAT problem [9]).

Problem 3. The 3-SAT Decision Problem
- Instance: A set of propositional variables, x1, x2, ..., xn, and a Boolean

formula Φ = C1 ∧C2 ∧ ...∧Cm, where m,n > 1 and each clause Cj (1 ≤ j ≤ m)
is a disjunction of exactly three literals. Wlog, we assume that the literals xi
and ¬xi do not simultaneously appear in the same clause (1 ≤ i ≤ n).

- Question: Does there exist an assignment of truth values to x1, x2, ..., xn
such that Φ is satisfiable?

In Subsection 4.1, we present a polynomial mapping from an arbitrary in-
stance of 3-SAT to an instance of Problem 2. In Subsection 4.2, we illustrate that
the instance of 3-SAT is satisfiable iff safety can be synthesized in the instance
of Problem 2.

4.1 Polynomial Mapping from 3-SAT

In this section, we illustrate how for each instance of 3-SAT, we create an in-
stance of Problem 2, which includes a program p = 〈Vp, Cp, Ip,Fp〉, and its safety
specification B and the new safety property Bnew that should be captured by the
redesigned program. We build the instance of Problem 2 by considering states
and transitions corresponding to each propositional variable and each clause in
the instance of 3-SAT.
States and transitions. Corresponding to each propositional variable xi,
where 1 ≤ i ≤ n, we consider the states ai, a

′
i, bi, b

′
i, ci, c

′
i and di

(as illustrated in Figure 2). We also include an additional state an+1.
For each variable xi, the instance of Problem 2 includes the transi-
tions (ai, di), (ai, bi), (bi, ai), (ai, b

′
i), (bi, ci), (bi, c

′
i), (b

′
i, c
′
i), (c

′
i, b
′
i), (ci, a

′
i), (c

′
i, a
′
i)

and (di, a
′
i).

Corresponding to each clause Cr = xi ∨ ¬xj ∨ xk, where 1 ≤ r ≤ m and
1 ≤ i, j, k ≤ n, program p includes 8 states zr, zri, z

′
ri, zrj , z

′
rj , zrk, z

′
rk and z′r,

and 7 transitions (zr, zri), (zri, z
′
ri), (z

′
ri, zrj), (zrj , z

′
rj), (z

′
rj , zrk), (zrk, z

′
rk) and

(z′rk, z
′
r) depicted in Figure 3. Notice that the transitions in Figures 2 and 3

belong to different program components, which we shall explain later.
Input program. The input program p includes the transitions (ai, di) and
(di, a

′
i), for 1 ≤ i ≤ n and the transitions (an, an+1) and (an+1, a1) (see Figure

4). Starting from a1, the input program p executes transitions (ai, di), (di, a
′
i)

and (a′i, ai+1), where 1 ≤ i ≤ n. From an+1, the program returns to a1.
Initial and final states. The states a1 and zr (1 ≤ r ≤ m) are initial states,
and an+1 is an accepting/final state. Moreover, the states zri, zrj , zrk and z′r are
accepting states, where 1 ≤ r ≤ m and 1 ≤ i, j, k ≤ n. Starting from a1, the final
state an+1 is infinitely often reached. Further, if the program starts at zr then it
will halt in the accepting state z′r. Since all transitions (ai, di), (di, a

′
i), (a

′
i, ai+1)

and (an+1, a1) satisfy B, the program p satisfies its safety and liveness specifica-
tions from a1. In summary, we have

Title Suppressed Due to Excessive Length 9

Fig. 2. The set of states and safe transitions corresponding to each propositional vari-
able xi in the instance of 3-SAT. Each state is annotated with the values assigned to
program variables in that state.

Fig. 3. States and transitions considered in the instance of Problem 2 corresponding
to each clause Cr = xi ∨ ¬xj ∨ xk along with the values of variables.

– Ip = {a1} ∪ {zr|1 ≤ r ≤ m}
– Fp = {an+1} ∪ {zri, zrj , zrk, z′r| for each clause Cr = xi ∨ ¬xj ∨ xk in Φ,

where (1 ≤ r ≤ m) ∧ (1 ≤ i, j, k ≤ n)}

Safety specifications. The safety specification B rules out any transition other
than the transitions in Figures 2 and 3. Notice that while these transitions are
permitted by the safety specification B, the input program p does not necessarily
include all of them. The new safety property Bnew rules out the transitions
(ai, di) and (z′rk, z

′
r), where 1 ≤ i, k ≤ n and 1 ≤ r ≤ m. Thus, in the revised

version of the instance of Problem 2, denoted pr, these transitions must not be
executed.
Program variables. The instance of Problem 2, denoted p, has four variables
e, f, g and h. We denote a program state by 〈e, f, g, h〉. Figure 2 illustrates the
values of variables in the states included corresponding to each variable xi. Figure
3 presents the values of variables in the states included corresponding to each
clause Cr = xi ∨ ¬xj ∨ xk. As such, the domains of the variables are as follows:

– The variable e has the domain {0, · · · , n} ∪ {m+ n+ 1, · · · , 2m+ n}.

10 Ali Ebnenasir

Fig. 4. States and transitions considered in the instance of Problem 2 corresponding
to each propositional variable xi.

– The domain of variable f is equal to {0, 1}.
– The variable g has a domain of {0, · · · , n+ 1}.
– The domain of the variable h is {0, 1} ∪ {m+ n+ 1, · · · , 2m+ n}.

Program components. The program p includes seven components C1-C7

whose transitions have been depicted in Figure 5. The read and write restrictions
of each component are as follows:

– The first component C1 includes the transitions (ai, di) and (ai, bi), for all
1 ≤ i ≤ n (see Figures 2 and 5). The set of readable variables of C1, denoted
r1, is equal to {e, f, g, h} and its set of writable variables is w1 = {f, g, h}.

– The set of transitions (ai, b
′
i) and (a′i, ai+1) comprises the component C2

(see the arrow with a crossed line on it in Figures 2 and 5). We have r2 =
{e, f, g, h} and w2 = {e, g, h}.

– The component C3 includes the transitions (bi, ci) for 1 ≤ i ≤ n (see the ar-
row with two parallel lines on it in Figures 2 and 5). We have r3 = {e, f, g, h}
and w3 = {e, h}.

– The fourth component, denoted C4, includes transitions (b′i, c
′
i) for 1 ≤ i ≤ n,

r4 = {e, f, g, h} and w4 = {f, g} (see the arrow with three parallel lines on
it in Figures 2 and 5).

– For component C5, we have r5 = w5 = {e, f, g}; i.e., C5 cannot read h.
The component C5 includes transition (ci, a

′
i), which is grouped with (c′i, b

′
i)

and (zqi, z
′
qi), due to inability of reading h, where (zqi, z

′
qi) corresponds to a

clause Cq in which the literal ¬xi appears (see the dashed arrow (zrj , z
′
rj) in

Figure 3). Notice that in these three transitions, the values of the readable
variables e, f and g are the same in the source states (and in the destination
states) and the value of h does not change during these transitions because
it is not readable for C5.

– The sixth component C6 can read/write r6 = w6 = {f, g, h}, but cannot read
e. Its set of transitions includes (c′i, a

′
i), (bi, ai) and (zri, z

′
ri) (see Figures

2 and 3) that are grouped due to inability of reading e, where (zri, z
′
ri)

corresponds to a clause Cr in which the literal xi appears.
– The component C7 can read and write all variables and its set of transitions

includes (di, a
′
i), (an+1, a1), (bi, c

′
i) and (c′i, ci) for 1 ≤ i ≤ n. Moreover,

for each clause Cr = xi ∨ ¬xj ∨ xk, where 1 ≤ r ≤ m and 1 ≤ i, j, k ≤ n,
component C7 includes the following transitions: (zr, zri), (z

′
ri, zrj), (z

′
rj , zrk)

and (z′rk, z
′
r) (see Figure 3).

Title Suppressed Due to Excessive Length 11

Fig. 5. Program components, their read/write restrictions and the annotation of their
transitions.

Theorem 1. The complexity of the mapping is polynomial. (Proof is straight-
forward; hence omitted.)

4.2 Correctness of Reduction

In this section, we show that the instance of 3-SAT is satisfiable iff the instance
of Problem 2 (created by the mapping in Section 4.1) can be redesigned to meet
the safety properties B and Bnew while preserving its liveness.

Lemma 1. If the instance of 3-SAT is satisfiable, then the instance of Problem
2, denoted p, can be redesigned to another program pr for the safety property
Bnew such that pr meets the requirements of Problem 1.

Proof. If the 3-SAT instance is satisfiable, then there must exist a value as-
signment to the propositional variables x1, · · · , xn such that all clauses Cr, for
1 ≤ r ≤ m, evaluate to true. Corresponding to the value assignment to a variable
xi, for 1 ≤ i ≤ n, we include a set of transitions in the redesigned program as
follows:

– If xi is assigned true, then we include transitions (ai, bi), (bi, ci), (ci, a
′
i). Thus

the computation prefix � ai, bi, ci, a
′
i, ai+1 � is synthesized between ai and

ai+1. Since we have included the transition (ci, a
′
i), and transition (ci, a

′
i) is

grouped with (zqi, z
′
qi), where 1 ≤ q ≤ m for any clause Cq in which ¬xi

appears, we must include (zqi, z
′
qi) as well (see the dashed arrow (zrj , z

′
rj) in

Figure 3).
– If xi is assigned false, then we include transitions (ai, b

′
i), (b

′
i, c
′
i), (c

′
i, a
′
i),

thereby synthesizing the computation prefix � ai, b
′
i, c
′
i, a
′
i, ai+1 � between

ai and ai+1. Due to the inability of reading e, including the transition (c′i, a
′
i)

12 Ali Ebnenasir

results in the inclusion of the transitions (zli, z
′
li), where 1 ≤ l ≤ m, for any

clause Cl in which xi appears (see the dotted arrows (zri, z
′
ri) and (zrk, z

′
rk)

in Figure 3).
– For each clause Cr = xi ∨ ¬xj ∨ xk, the transition (zri, z

′
ri) (respectively,

(zrk, z
′
rk)) is included iff xi (respectively, xk) is assigned false. The transition

(zrj , z
′
rj) is included iff xj is assigned true.

Figure 6 depicts a partial structure of a redesigned program for the value
assignment x1 = false, x2 = true and x3 = true in an example clause C5 =
x1 ∨ ¬x2 ∨ x3. Note that the bad transition (z′53, z

′
5) is not reached because

x3 = true and the transition (z53, z
′
53) is excluded.

Fig. 6. A partial structure of the redesigned program corresponding to the value assign-
ment x1 = false, x2 = true and x3 = true for an example clause C5 = x1 ∨ ¬x2 ∨ x3.

Now, we illustrate that the redesigned program in fact meets the requirements
of Problem 1. The state space remains obviously the same as no new variables
have been introduced; i.e., Vp = Vr

p . During the selection of transitions based on
value assignment to propositional variables, we do not remove any initial states.
Thus, we have Ip = Irp .
Satisfying safety properties. Since the new safety property rules out transi-
tions (ai, di) and (z′rk, z

′
r), we have to ensure that the redesigned program does

not execute them. From ai, the program either transitions to bi or to b′i. Thus,
safety is not violated from ai. Moreover, since all clauses are satisfied, at least
one literal in each clause Cr = xi ∨ ¬xj ∨ xk must be true. Thus, at least one
of the three transitions (zri, z

′
ri), (zrj , z

′
rj) or (zrk, z

′
rk) is excluded, thereby pre-

venting the reachability of z′rk; i.e., the safety-violating transition (z′rk, z
′
r) will

not be executed.
Reachability of accepting states (satisfying liveness specifications).
While the accepting state z′r is no longer reachable, the redesigned program halts
in one of the accepting state zri, zrj or zrk. Moreover, the accepting state an+1

is reached infinitely often due to the way we have synthesized the sequences of

Title Suppressed Due to Excessive Length 13

states� ai, bi, ci, a
′
i, ai+1 � or� ai, b

′
i, c
′
i, a
′
i, ai+1 � between ai and ai+1. That

is, (non-)terminating computations remains (non-)terminating. Thus, starting
from any initial state, some accepting states will be visited infinitely often; i.e.,
Fr

p ⊆ Fp. Therefore, if the instance of 3-SAT is satisfiable, then there exists a
redesigned program for the instance of Problem 2 that satisfies the requirements
of Problem 1.

Lemma 2. If there exists a redesigned version of the instance of Problem 2 that
meets the requirements of Problem 1, then the instance of 3-SAT is satisfiable.

Proof. Let pr be a redesigned version of the instance of Problem 2 that meets
all the requirements of Problem 1. As such, the set of initial states Irp must be
equal to the set {a1} ∪ {zr|1 ≤ r ≤ m}. Starting from a1, pr must execute a
safe transition. Otherwise, we reach a contradiction; i.e., either a1 is a deadlock
state or the transition (a1, d1), which violates the new safety specification is
executed. Thus, pr either includes (a1, b1) or (a1, b

′
1), but not both (because pr

is a deterministic program). If pr includes (a1, b1), then we set x1 to true in the
3-SAT formula. If pr includes (a1, b

′
1), then we set x1 to false.

We assign truth values to each xi, for 1 ≤ i ≤ n, depending on the presence
of (ai, bi) or (ai, b

′
i) at state ai (similar to the way we assign a value to x1).

Such a value assignment strategy results in a unique truth-value assigned to
each variable xi. If pr includes (ai, bi), then, from bi, pr includes either (bi, ci)
or (bi, c

′
i) (see Figure 2), but not both (because of determinism). If pr includes

(bi, c
′
i), then, from c′i, pr must include either (c′i, ci) or (c′i, a

′
i). If pr includes

(c′i, a
′
i), then it must include (bi, ai) since these two transitions are grouped due

to inability of C6 in reading e. As such, the two transitions (ai, bi) and (bi, ai)
make a non-progress cycle in pr (see Figure 2), which is unacceptable as it
violates liveness. Now, we show that, from c′i, pr cannot include (c′i, ci) either. If
pr includes (c′i, ci), then it must include (ci, a

′
i), which is grouped with (c′i, b

′
i) due

to inability of C5 in reading h (see Figure 2). Thus, pr may reach b′i from c′i and
deadlock in b′i. Thus, if pr includes (ai, bi) from ai, then it must include (bi, ci)
and (ci, a

′
i). In case where pr includes (ai, b

′
i) from ai, the transition (b′i, c

′
i) must

also be included; otherwise pr deadlocks in b′i (Figure 2). From c′i, pr cannot
include (c′i, ci) because it has to include (ci, a

′
i) that is grouped with (c′i, b

′
i),

which creates a non-progress cycle. Thus, pr must include (c′i, a
′
i) from c′i.

We also illustrate that each clause in the 3-SAT formula evaluates to true.
Consider a clause Cr = xi∨¬xj ∨xk. Starting from the initial state zr, the tran-
sition (zr, zri) must be present in pr; otherwise zr is a deadlock state. Moreover,
from zr, the safety-violating transition (z′rk, z

′
r) must not be executed. Thus,

at least one of the transitions (zri, z
′
ri), (z

′
ri, zrj), (zrj , z

′
rj), (z

′
rj , zrk) or (zrk, z

′
rk)

(see Figure 3) must be excluded in pr. However, if one of the transitions (zr, zri),
(z′ri, zrj), (z

′
rj , zrk) or (z′rk, z

′
r) is excluded, then a reachable deadlock state could

be created as their source states are not accepting states. Thus, if either z′ri or
z′rj is reached from zr, then the corresponding transition (z′ri, zrj) or (z′rj , zrk)
must be present in pr. Hence, at least one of the transitions (zri, z

′
ri), (zrj , z

′
rj)

or (zrk, z
′
rk) must be excluded in pr; i.e., at least one literal in Cr must be true,

thereby satisfying Cr.

14 Ali Ebnenasir

Theorem 2. Synthesizing safety (under limited observability) in deterministic
programs in the BT model of safety specifications is NP-hard in |Sp|. (Proof
follows from Lemmas 1 and 2.)

Theorem 3. Synthesizing safety (under limited observability) in deterministic
programs in the BT model of safety specifications is NP-complete (in |Sp|).

Proof. The proof of NP-hardness follows from Theorem 2. The proof of mem-
bership in NP is straightforward; given a revised program one can verify the
constraints of Problem 1 (in the BT model) in polynomial time.

Theorem 4. Synthesizing safety (under limited observability) in deterministic
programs in the Bad State (BS) model of safety specifications is also NP-complete
(in |Sp|).

Proof. The proof of NP-hardness works for the case where the safety specification
rules out the reachability of states di and z′r in the instance of Problem 2. The
proof of NP membership is straightforward.

5 Conclusions and Future Work

This paper investigates the problem of capturing new safety require-
ments/properties while preserving existing safety and liveness properties, called
the problem of incremental synthesis. Previous work [7, 3] shows that incremen-
tal synthesis for non-deterministic programs can be done in polynomial time
(in the size of program state space) under unlimited observability. Moreover,
it is known [4] that the complexity of incremental synthesis of safety for non-
deterministic programs would increase to NP-complete under limited observ-
ability. In this paper, we illustrated that even for deterministic programs the
complexity of incremental synthesis of safety is NP-complete (in program state
space). Our NP-hardness proof illustrates that the read inabilities of each com-
ponent with respect to the local state of other components is a major cause
of complexity. Such read inabilities are mainly created because of encapsula-
tion/modularization of functionalities at early stages of design. On one hand,
encapsulation/modularity enables designers to create good abstractions while
capturing different functionalities. On the other hand, encapsulation exacerbates
the complexity of behavioral changes [22] when new crosscutting requirements
have to be realized across the components of an existing program. To facilitate
change while reaping the benefits of modularization in design, we will extend
the work presented in this paper in the following directions:

– Sound polynomial-time heuristics. We will concentrate on devising
polynomial-time heuristics that reduce the complexity of synthesizing safety
at the expense of completeness. That is, if heuristics succeed in generat-
ing a redesigned program, then the generated program will capture the new
safety property while preserving liveness. However, such heuristics may fail
to generate a redesigned program while one exists.

Title Suppressed Due to Excessive Length 15

– Sufficient conditions. We will identify conditions under which safety can
be synthesized in polynomial time. Specifically, we would like to address
the following questions: (i) What kinds of inter-component topologies (i.e.,
read/write restrictions) should a program have such that a new safety re-
quirement can be captured in it efficiently? (ii) For which types of programs
and safety specifications the complexity of synthesizing safety is polynomial?

– Backtracking. We will implement a backtracking algorithm for synthesizing
safety under limited observability. While we showed that it is unlikely that
safety can efficiently be synthesized under limited observability, in many
practical contexts the worst case exponential complexity may not be ex-
perienced. Thus, we expect that a backtracking algorithm can explore the
entire state space in a reasonable amount of time. Moreover, we will imple-
ment a parallel version of the backtracking algorithm that will benefit from
randomization for search diversification.

– An extensible software framework. We will develop a framework that pro-
vides automated assistance in synthesizing safety. Such a framework will
include a repository of reusable heuristics that facilitate the synthesis of
safety in an automated fashion. Two categories of users can benefit from our
extensible framework, namely, (1) developers of heuristics who will focus on
designing new heuristics and integrating them into our framework, and (2)
mainstream programmers who will use the built-in heuristics to capture new
safety properties in programs.

References

1. B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters,
21:181–185, 1985.

2. P. Attie and A. Emerson. Synthesis of concurrent programs for an atomic
read/write model of computation. ACM Transactions on Programming Languages
and Systems (TOPLAS), 23(2), March 2001. An extended abstract appeared at
the ACM Symposium on Principles of Distributed Computing - 1996.

3. B. Bonakdarpour, A. Ebnenasir, and S. S. Kulkarni. Complexity results in revising
UNITY programs. ACM Transactions on Autonomous and Adaptive Systems,
4(1):1–28, 2009.

4. B. Bonakdarpour and S. S. Kulkarni. Revising distributed UNITY programs is
NP-complete. In Proceedings of the 12th International Conference On Principles
Of DIstributed Systems (OPODIS), pages 408–427, 2008.

5. T. Colcombet and P. Fradet. Enforcing trace properties by program transforma-
tion. In POPL’00: Proceedings of the 27th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 54–66, 2000.

6. S. D. Djoko, R. Douence, and P. Fradet. Aspects preserving properties. In ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Ma-
nipulation (PEPM), pages 135–145, 2008.

7. A. Ebnenasir, S. S. Kulkarni, and B. Bonakdarpour. Revising UNITY programs:
Possibilities and limitations. In International Conference on Principles of Dis-
tributed Systems (OPODIS), pages 275–290, 2005.

8. E. A. Emerson. Handbook of Theoretical Computer Science, volume B, chapter 16:
Temporal and Modal Logics, pages 995–1067. Elsevier Science Publishers B. V.,
1990.

16 Ali Ebnenasir

9. M. Garey and D. Johnson. Computers and Interactability: A guide to the theory
of NP-completeness. W.H. Freeman and Company, 1979.

10. M. Goldman and S. Katz. Maven: Modular aspect verification. In 13th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), pages 308–322, 2007.

11. H. Hansen, W. Penczek, and A. Valmari. Stuttering-insensitive automata for on-
the-fly detection of livelock properties. Electronic Notes in Theoretical Computer
Science, 66(2):178–193, 2002.

12. M. V. Iordache, J. O. Moody, and P. J. Antsaklis. Synthesis of deadlock prevention
supervisors using Petri Nets. IEEE Transactions on Robotics and Automation,
18(1):59–68, 2002.

13. R. Khatchadourian, J. Dovland, and N. Soundarajan. Enforcing behavioral con-
straints in evolving aspect-oriented programs. In Proceedings of the 7th workshop
on Foundations of aspect-oriented languages (FOAL), pages 19–28, 2008.

14. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In ECOOP, pages 220–242, 1997.

15. G. Kiczales and J. D. Rivieres. The Art of the Metaobject Protocol. MIT Press,
Cambridge, MA, USA, 1991.

16. S. Krishnamurthi and K. Fisler. Foundations of incremental aspect model-checking.
ACM Transactions on Software Engineering and Methodology (TOSEM), 16(2):7,
2007.

17. S. Krishnamurthi, K. Fisler, and M. Greenberg. Verifying aspect advice modularly.
ACM SIGSOFT Software Engineering Notes, 29(6):137–146, 2004.

18. S. S. Kulkarni. Component-based design of fault-tolerance. PhD thesis, Ohio State
University, OH, USA, 1999.

19. S. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. In
Proceedings of the 6th International Symposium on Formal Techniques in Real-
Time and Fault-Tolerant Systems, pages 82–93, 2000.

20. S. S. Kulkarni and A. Ebnenasir. The effect of the safety specification model on the
complexity of adding masking fault-tolerance. IEEE Transaction on Dependable
and Secure Computing, 2(4):348–355, 2005.

21. P. K. McKinley, U. I. Padmanabhan, N. Ancha, and S. M. Sadjadi. Composable
proxy services to support collaboration on the mobile internet. IEEE Transactions
on Computers, 52(6):713–726, 2003.

22. D. L. Parnas. Designing software for ease of extension and contraction. IEEE
Transactions on Software Engineering, 5(2):128–138, 1979.

23. A.-E. B. Salem, A. Duret-Lutz, and F. Kordon. Model checking using generalized
testing automata. Transactions on Petri Nets and Other Models of Concurrency,
6:94–122, 2012.

24. D. Smith. Requirement enforcement by transformation automata. In Sixth Work-
shop on Foundations of Aspect-Oriented Languages (FOAL), pages 5–15, 2007.

25. R. S. Sreenivas. On the existence of supervisory policies that enforce liveness in
discrete-event dynamic systems modeled by controlled Petri Nets. IEEE Transac-
tions on Automatic Control, 42(7):928–945, 1997.

26. S. Thaker, D. S. Batory, D. Kitchin, and W. R. Cook. Safe composition of product
lines. In 6th International Conference on Generative Programming and Component
Engineering (GPCE), pages 95–104, 2007.

27. M. Vechev, E. Yahav, and G. Yorsh. Inferring synchronization under limited ob-
servability. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 139–154. Springer, 2009.

