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Abstract. Time delay reconstruction for real systems is a widely ex-
plored area of nonlinear time series analysis. However, the majority of
related work relates only to univariate time series, while multivariate time
series data are common too. One such example is human gait kinematic
data. The main goal of this article is to present a method of nonlinear
analysis for kinematic time series. This nonlinear analysis is designed
for detection of chaotic behavior. The presented approach also allows for
the largest Lyapunov’s exponent estimation for kinematic time series.
This factor helps in judging the stability of the examined system and its
chaotic properties.
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1 Introduction

Multivariate time series data are common in real systems. Many of those systems
are results of the evolution of nonlinear systems dynamics. To assess the chaotic
origin of time series, time delay reconstruction of a phase space is required. This
step provides a view of the dynamics of the underlying system and allows the
estimation of other properties of the investigated system (e.g. Lyapunov’s largest
exponent or one of the fractal dimensions of the reconstructed attractor). Based
on the estimations of several parameters characterizing nonlinear processes, a
decision about chaotic origin of time series may be taken.

According to the embedding theorem ([27]), for recovering dynamics only
a univariate time series is needed, but often measurements of more than one
quantityes related to the same dynamical system are available. One such case
is the gait kinematic data for patients suffering from various diseases affecting
walking ability.

In related work, there is a large number of applications of embedding theorem
including univariate time series embedding ([24], [25], [28]), multivariate time
series embedding ([3], [10], [18]), modelling ([1], [9], [11]), chaos controll ([2], [5],
[22]), noise reduction ([4], [12], [19]) and signal classification ([26]).

The method presented in this paper is designed for a nonlinear analysis pro-
cedure for gait kinematics time series (Euler Angles or Quaternion) aimed at
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computing the Largest Lyapunov Exponent for reconstructed dynamics for the
purpose of identifying of deterministic chaos in gait kinematic data.

The presented method does not assume that investigated system is a deter-
ministic chaotic system in the first place. This empirical approach is aimed to
investigate the origin of the examined time series.

In this approach the Largest Lyapunov Exponent is also treated as a measure
of human locomotion stability. In this case stability is defined as the sensitivity
of a dynamic system to perturbations. This is a very popular factor in biomedical
applications ([7], [6]).

The second section describes gait kinematic data time series - a subject of fur-
ther investigations. It also includes information about conversion to quaternion’s
angle time series which allows for further efficient computations. The third sec-
tion includes information about methods used in a nonlinear analysis procedure.
The fourth section presents the numerical results. The conclusions are presented
in section five.

2 Gait Kinematics Data Time series

There are three kinds of parameterisation of orientation space. Euler angles
are good for human understanding of angular position. Matrices are able to do
the calculations. However, quaternions are computationally efficient whilst also
avoiding the singularities of Euler angles ([20]).

Quaternion parameterisation describes human motion which requires signifi-
cant amounts of information about rotational displacement of selected segments.
The method presented in this paper is designed for data captured from physical
systems. We assumed that, to make a proper estimate of finite-time Lyapunov
exponents experimentally, it is necessary to collect time series data captured
from a large number of consecutive strides of gait ([14]).

The data are recorded as time series formed by Euler Angles. It is the most
common parameterisation especially for biomedical applications.

s(n) = [β1(t0 + n∆t), β2(t0 + n∆t), β3(t0 + n∆t)] (1)

where s(n) is a n-th sample of Euler angles measured in interval time ∆t from
initial time t0 and β1, β2, β3 are Euler angles in a X-Y-Z sequence. Axes X, Y
and Z are defined as unit vectors:

X = (1, 0, 0),Y = (0, 1, 0),Z = (0, 0, 1) (2)

Due to the fact that an Euler Angles time series is a multivariate time series,
the following procedure was used to obtain better efficiency of computations.

Based on the assumption that axes X, Y and Z are unit vectors, rotation cod-
ing in Euler’s Angles and in quaternions are identical. We can define quaternions
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for each base rotation in a Euler sequence:

qx(β1) = cos(β1

2 ) +

−−−−−−−−−−→
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2
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(3)

Finally a quaternion equivalent to Euler angles representation can be calcu-
lated from three consecutive rotations described by the following quaternions:

qxyz(β1, β2, β3) = qx(β1)qy(β2)qz(β3) =
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(4)

Quaternion’s time series is formed by conversion of each value of a Euler’s
angles time series to unit quaternion

q(n) = qxyz(s(n)) = qxyz(β1(t0 + n∆t), β2(t0 + n∆t), β3(t0 + n∆t)) (5)

Based on the assumption that there is greater variability in the quaternion’s
angle than its axis, nonlinear analysis directed at identifying the presence of
deterministic chaos and local stability investigation is performed on the time
series formed by angles of quaternion q(n)

α(n) = 2arccos(real(q(t0 + n∆t))) (6)

3 Nonlinear analysis procedure for quaternion angle time

series

The nonlinear analysis procedure consists of two steps: time delay reconstruction
and the largest Lyapunov exponent estimation.

3.1 Time delay reconstruction

According to the Takens embedding theorem ([27]), its possible to reconstruct
the state trajectory from a single time series using the algorithm below:

y(n) = [s(n), s(n + T ), . . . , s(n + (d− 1))T ], (7)
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where T is a time delay and d is an embedding dimension, which estimates
a real dimension of the observed system. The main point of the state space
reconstruction method is T and d estimation. To estimate time delay T , the
average mutual information I has been used, while for the embedding dimension
the false nearest neighbor method ([1]).

The mutual information approach is based on information theory and trans-
formation of linear autocorrelation to non-linear systems. More precisely, this
method consists of 2-dimensional adaptive histogram ([9]).

Let’s assume that there are two nonlinear systems: A and B. The outputs
of these systems are denoted as a and b, while the values of these outputs are
represented by ai and bk. The mutual information factor describes how many
bits of bk could be predicted where ai is known.

IAB(ai, bk) = log2

(

PAB(ai, bk)

PA(ai)PB(bk)

)

, (8)

where PA(ai) is the probability that a = ai and PB(bk) is the probability that
b = bk and PAB(ai, bk) is the joint probability that a = ai and b = bk.

The average mutual information factor can be described by:

IAB(T ) =
∑

ai,bk

PAB(ai, bk)IAB(ai, bk). (9)

In order to use this method to assess the correlation between different samples
in the same time series, the Average mutual information factor is finally described
by the equation:

I(T ) =
∑N

n=1 P (S(n), S(n + T ))

log2

(

P (S(n),S(n+T ))
P (S(n))P (S(n+T ))

)

.
(10)

Fraser and Swinney ([9]) propose that Tm where the first minimum of I(T )
occurs as a useful selection of time lag Td. This selection guarantees that the
measurements are somewhat independent, but not statistically independent. In
case of absence of the average mutual information clear minimum, this criterion
needs to be replaced by choosing Td as the time for which the average mutual
information reaches four-fifths of its initial value:

I(Td)

I(0)
≈

4

5
. (11)

The false nearest neighbours method is based on determining an acceptable
minimum embedding dimension by looking at the behaviour of near neighbours
under changes in the embedding dimension from d to d+1. The most important
assumption is that all points in the attractor that are close in ℜm should be
also close in ℜm+1. The false nearest neighbour is a point that appears to be a
nearest neighbor because the embedding space is too small. When the number
of false nearest neighbors arising through projection is zero in dimension dE , the
attractor has been unfolded in this dimension ([17]).
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Assume that the dimension of space is d. The r-th nearest neighbor of y(n) is
denoted by yr(n). The distance between point y(n) and it’s r-th nearest neighbor
is a square of the Euclidean distance.

R2
d(n, r) =

d−1
∑

k=0

[x(n + kT ) − xr(n + kT )]
2

(12)

In going from dimension d to d+ 1 by time delay embedding new coordinate
x(n+Td) is added onto each delayed vectors y(n). The distance between points
before and after adding new coordinates is now compared. A point is designated
as a false neighbour when increase of distance is too large and the criteria below
are fulfilled.

[

R2
d+1(n, r) −R2

d(n, r)

R2
d(n, r)

]

1

2

=

∣

∣

∣

∣

x(n + Td) − xr(n + Td)

Rd(n, r)

∣

∣

∣

∣

> RTol (13)

where RTol is some threshold.
Authors of the method ([17]), in numerical investigations, proved that for

RTol ≥ 10 the false nearest neighbors are clearly identified.
An acceptable minimum embedding dimension is chosen by looking at the

percentage of false nearest neighbors during the addition of d + 1 components
to the delayed vectors. When the percentage of false nearest neighbors drops to
zero, a proper embedding dimension may be obtained.

3.2 The largest Lyapunov’s exponent

Lyapunov’s exponents examine the action of the dynamics defining the evolution
of trajectories. The largest Lyapunov exponent describes the mean divergence
between neighboring trajectories in the phase space by the following formula

d(t) = Deλ1t (14)

where D is the initial separation between neighboring points and λ1 is the largest
Lyapunov exponent. There are a few algorithms designed for the Largest Lya-
punov’s exponent estimation ([29], [23] and [16]). In this investigation Rosen-
stein’s algorithm was used.

The first stage of the Rosenstein algorithm is time delay reconstruction. Af-
ter reconstruction, for each point on the trajectory, the nearest neighbor xĵ is
found. This point minimizes the distance to the particular reference point, xj as
described below

dj(0) ≈ min
xĵ

∥

∥

∥
xj − xĵ

∥

∥

∥
(15)

where dj(0) is the initial distance from the j-th point to its nearest neighbor,
and ‖...‖ is the Euclidean norm.

From the definition of λ1 in eq. (14) authors ([23]) assumed the j-th pair of
nearest neighbors diverge approximately at a rate given by the largest Lyapunov
exponent.

dj(i) ≈ Dje
λ1(i∆t) (16)
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where Dj is the initial separation. We can take the logarithm of both sides eq.
(17)

ln(dj(i)) ≈ ln(Dj) + λ1(i∆t) (17)

Eq. (17) represents a set of approximately parallel lines (for j = 1,2,...,M), each
with a slope roughly proportional to λ1. The largest Lyapunov exponent is cal-
culated then by linear regression

y(i) =
1

∆t
〈ln(dj(i))〉 (18)

where 〈...〉 denotes the average over all values of j.

4 Numerical results

Fig. 1. Stages of the nonlinear analysis procedure: mutual information, percentage of
false nearest neighbors, logarithmic divergence reconstructed attractor
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The experiment involves the analysis of gait sequences which were recorded
in the Human Motion Laboratory (HML) of the Polish-Japanese Institute of
Information Technology by means of the Vicon Motion Kinematics Acquisition
and Analysis System ([21], [15] , [13], [8]).

Gait sequences were recorded in Euler angles. Six kinds of time series were
recorded - movements of femurs, tibias and feet (left and right). The Experi-
ment’s aim was the investigation of local (associated with body parts) chaotic
behaviour occurring in a human’s gait. There were six investigations associated
with movement of all the mentioned parts of the body’s skeleton.

Fig. 1 illustrates results of successive stages of the nonlinear analysis pro-
cedure for the left femur: a) mutual information, b) percentage of false nearest
neighbors, c) divergence, d) reconstructed attractor. Based on the above fig-
ure one can see that from the mutual information chart time delay embedding
T = 21 could be obtained when the first minimum of I(T ) occurs. From the
false nearest neighbours chart embedding dimension d = 4 is obtained when the
percentage of nearest neighbours drops to zero. From the linear regression of the
logarithmic divergence the largest Lyapunov exponent is estimated λ1 = 0.3157.

Table 1 includes results of the nonlinear analysis procedure for all mentioned
body parts. For each of them the time delay T , embedding dimension d and
the largest Lyapunov exponent have been estimated. For right foot and left
tibia negative LLEs values have been observed. It could be caused by too large
value of the estimated embedding dimension. However, negative value of the
largest Lyapunov exponent does not undermine the possible chaotic nature of
the investigated data. The positive value of the Largest Lyapunov exponent is
only one indicator of the presence of deterministic chaos. The others are fractal
structure of the reconstructed attractor or limited prediction of the investigated
system.

Body part Time delay Embedding dimension LLE

Left femur 21 4 0.3157

Right femur 20 4 0.0084

Left foot 15 4 0.0476

Right foot 16 5 −0.0206

Left tibia 33 7 −0.0450

Right tibia 23 5 0.1600

Table 1. Results from nonlinear analysis procedure for each body part
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5 Conclusion

In this article, six time series captured from a large number of consecutive strides
of gait were examined. Measurements came from three parts of the body: femur,
foot and tibia. For each time series time delay reconstruction and largest Lya-
punov’s exponent estimation has been carried out. Values of all of the computed
parameters for all examined time series are gathered in table 1.

Time delay embedding for time series has already been widely explored by
various contributors. However, most of the work in the published literature con-
cerns only scalar time series. In this paper the method for multivariate kine-
matic’s time series is presented. The results are promising for practical applica-
tions in human gait analysis.

Analyzing time delays estimated for these time series, it can be stated that
proper time delay is different for each time series. On the other hand all of
the values are in the range [15; 33]. Embedding dimension values are from the
range [4; 7]. However the most frequent values are 4 and 5. It is probable that
the embedding dimension value for left tibia is a numerical error. One factor to
consider is the averaging time delay and embedding dimension values in further
investigations.

Most of the largest Lyapunov’s exponents calculated values are positive. Due
to this fact human gait kinematics data exhibit the properties of chaotic behav-
ior. It could be also stated that during human locomotion, all mentioned body
parts are highly sensitive to initial conditions.

Acknowledgments. The author is grateful for the reviews, which certainly
helped raise the quality of the work. The author would like to acknowledge
the Polish-Japanese Institute of Information Technology for the gait sequences
recorded in the Human Motion Laboratory (HML).
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[13] Bartosz Jab loński. Application of quaternion scale space approach for mo-
tion processing. In Image Processing and Communications Challenges 3,
pages 141–148. Springer, 2011.

[14] Bartosz Jablonski. Quaternion dynamic time warping. Signal Processing,
IEEE Transactions on, 60(3):1174–1183, 2012.
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Mucha, and Konrad Wojciechowski. Quantifying chaotic behavior in tread-
mill walking. In Intelligent Information and Database Systems, pages 317–
326. Springer, 2015.



10 Chaotic properties of gait kinematic data

[16] H. Kantz. A robust method to estimate the maximal lyapunov exponent of
a time series. Physics Letters A, 185:77–87, 1994.

[17] Matthew B Kennel, Reggie Brown, and Henry DI Abarbanel. Determining
embedding dimension for phase-space reconstruction using a geometrical
construction. Physical review A, 45(6):3403, 1992.

[18] K Kocak, L Saylan, and J Eitzinger. Nonlinear prediction of near-surface
temperature via univariate and multivariate time series embedding. Eco-
logical Modelling, 173:1–7, 2004.

[19] Eric J Kostelich and Thomas Schreiber. Noise reduction in chaotic time-
series data: a survey of common methods. Physical Review E, 48(3):1752,
1993.

[20] Jack B Kuipers. Quaternions and rotation sequences, volume 66. Princeton
university press Princeton, 1999.

[21] Bogdan Kwolek, Tomasz Krzeszowski, and Konrad Wojciechowski. Real-
time multi-view human motion tracking using 3d model and latency toler-
ant parallel particle swarm optimization. In Computer Vision/Computer
Graphics Collaboration Techniques, pages 169–180. Springer, 2011.

[22] P. Parmananda. Controlling turbulence in coupled map lattice systems
using feedback techniques. Physical Review E, 56(1):239–244, 1997.

[23] Colins J. J. Rossenstein M. T. and de Luca C. J. A practical method for
calculating largest lyapunov exponents from small data sets. Physica D,
65:117–134, 1993.

[24] T. Sauer, J.A Yorke, and M. Casdagli. Embedology. Journal Of Statistical
Physics, 1991.

[25] J. Stark. Delay Embeddings for Forced Systems. I. Deterministic Forcing.
Journal of Nonlinear Science, New York, 1999.

[26] George Sugihara. Nonlinear forecasting for the classification of natural time
series. Philosophical Transactions of the Royal Society of London. Series
A: Physical and Engineering Sciences, 348(1688):477–495, 1994.

[27] F. Takens. Detecting strange attractors in turbulence. Springer-Verlag,
Berlin, 1981.

[28] H. Whitney. Differentiable manifolds. Ann.Math., 1936.
[29] A. Wolf, J.B. Swift, H.L. Swinney, and J.A Vastano. Determining lyapunov

exponents from a time series. Physica 16D, 16:285–317, 1985.


