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Abstract. In this paper a modified complete spline interpolation based
on reduced data is examined in the context of trajectory approximation.
Reduced data constitute an ordered collection of interpolation points
in arbitrary euclidean space, stripped from the corresponding interpola-
tion knots. The exponential parameterization (controlled by λ ∈ [0, 1])
compensates the above loss of information and provides specific scheme
to approximate the distribution of the missing knots. This approach is
commonly used in computer graphics or computer vision in curve mod-
eling and image segmentation or in biometrics for feature extraction.
The numerical verification of asymptotic orders α(λ) in trajectory esti-
mation by modified complete spline interpolation is performed here for
regular curves sampled more-or-less uniformly with the missing knots
parameterized according to exponential parameterization. Our approach
is equally applicable to either sparse or dense data. The numerical ex-
periments confirm a slow linear convergence orders α(λ) = 1 holding for
all λ ∈ [0, 1) and a quartic one α(1) = 4 once modified complete spline is
used. The paper closes with an example of medical image segmentation.

Keywords: Spline interpolation, curve approximation and modeling,
reduced data, biometrics and feature extraction, computer graphics and
vision, medical image processing.

1 Problem formulation

Let γ : [0, T ] → En be a smooth regular parametric curve, i.e. the curve with
γ̇(t) 6= 0 over t ∈ [0, T ] (here T <∞). Reduced data represent a sequence ofm+1
interpolation points Qm = {qi}mi=0 in arbitrary euclidean space En satisfying



qi = γ(ti) and qi+1 6= qi. The corresponding interpolation knots {ti}mi=0 fulfilling
t0 < . . . < ti < . . . < tm are assumed here to be unknown. Any data fitting
scheme γ̂ based on reduced data Qm is called non-parametric interpolation. In
order to construct γ̂ explicitly, first the knot estimates {t̂i}mi=0 ≈ {ti}mi=0 need
to be somehow guessed (here one naturally sets γ̂(t̂i) = qi). Upon selecting a
specific interpolation scheme γ̂ : [0, T̂ ] → En and the substitutes {t̂i}mi=0 of the
missing knots {ti}mi=0, the analysis yielding the order α in γ approximation by γ̂
needs to be carried out (for m→∞). The appropriate choice of {t̂i}mi=0 should
ensure convergence of the interpolant γ̂ to the unknown curve γ with possibly
fast order α.

We recall now a necessary background information (see e.g. [1]). In fact,
reduced data Qm = {γ(ti)}mi=0 are formed from the set of admissible samplings:

Definition 1. The interpolation knots {ti}mi=0 are called admissible if they sat-
isfy:

lim
m→∞

δm → 0+, where δm = max
1≤i≤m

{ti − ti−1 : i = 1, 2, . . . ,m}. (1)

In this paper a special subfamily of admissible samplings i.e. the so-called more-
or-less uniform samplings is considered (see also [3]):

Definition 2. The sampling {ti}mi=0 is more-or-less uniform if for some con-
stants 0 < Kl ≤ Ku and sufficiently large m the following holds:

Kl

m
≤ ti − ti−1 ≤

Ku

m
, (2)

for all i = 1, 2, . . . ,m. Alternatively, condition (2) can be replaced by the equiva-
lent inequality βδm ≤ ti+1−ti ≤ δm satisfied for some 0 < β ≤ 1 and sufficiently
large m.

Recall now the next definition (see e.g. [1] or [2]):

Definition 3. Consider a family {fδm , δm > 0} of functions fδm : [0, T ] → E.
We say that fδm is of order O(δαm) (denoted as fδm = O(δαm)), if there is a
constant K > 0 such that, for some δ̄ > 0 the inequality |fδm(t)| < Kδαm holds
for all δm ∈ (0, δ̄), uniformly over [0, T ]. In case of vector-valued functions Fδm :
[0, T ] → En by Fδm = O(δαm) it is understood that ‖Fδm‖ = O(δαm) (here ‖ · ‖
denotes a standard euclidean norm).

To examine the asymptotics in trajectory estimation (i.e. the coefficient α
from Def. 3) in case of classical parametric interpolation γ̃ : [0, T ]→ En, where
both qi = γ̃(ti) and {ti}mi=0 are given, one sets Fδm = γ − γ̃. On the other
hand, for non-parametric interpolation a slight adjustment in the last expression
for Fδm is required (see [1]). Indeed, the latter stems from the fact that both
domains [0, T ] of γ and [0, T̂ ] of γ̂ do not generically coincide (here T = tm and
T̂ = t̂m). Consequently, for the non-parametric interpolant γ̂ (given {t̂i}mi=0 are



somehow guessed) a reparameterization ψ : [0, T ]→ [0, T̂ ] is needed so that the
asymptotics

(γ̂ ◦ ψ)(t)− γ(t) = O(δαm) (3)

can be examined over a common domain [0, T ]. Noticeably, the reparametriza-
tion issue (given fixed γ̂ and {t̂i}mi=0) is essential to both theoretical and numer-
ical examination determining an intrinsic asymptotics built in (3). In addition,
preferably ψ should be a genuine reparameterization (i.e. ψ̇ > 0) e.g. if length of
γ is to be estimated by the length of γ̂. Evidently, on its own the construction
of the interpolant γ̂ does rely on explicit formula standing for ψ. Independently
from ψ, the derivation of any non-parametric interpolant γ̂ stipulates the appro-
priate choice of the estimates {t̂i}mi=0 mimicking the missing knots {ti}mi=0. In
doing so, recall now a definition of exponential parameterization (e.g. in [4]):

t̂λ0 = 0 and t̂λj = t̂λj−1 + ‖qj − qj−1‖λ, (4)

where j = 1, 2, . . . ,m and λ ∈ [0, 1]. If λ = 0 a blind guess yielding uniform
knots t̂0i = i follows. On the other hand, the case of λ = 1 results in a cumulative
chord parameterization t̂1i = t̂1j−1 + ‖qj − qj−1‖ (see [4] or [5]). From now on we
suppress the superscript notation with λ in (4), unless needed otherwise. The
term exponential parameterization stands for the determination of a discrete
set of knots {t̂i}mi=0 ≈ {ti}mi=0, whereas a similar term i.e. a reparameterization

represents a piecewise-smooth mapping ψ : [0, T ]→ [0, T̂ ].
Previous result [6] proved that for λ = 1 and for an arbitrary admissible

sampling (1) a Lagrange piecewise-quadratic(-cubic) γ̂r (r = 2, 3 - see e.g. [2])
interpolation combined with (4) yields αr(1) = r + 1. Hence for cumulative
chords the interpolant γ̂r (r = 2, 3) renders either cubic or quartic convergence
orders in trajectory estimation (see (3)). Interestingly, opposite to the parametric
interpolation γ̃r, the convergence orders in question do not necessarily increase
for r > 3 and λ = 1 - see [1] or [7]. In addition, a recent result by [8] (see also [9])
proves that γ̂2 combined with (4) and more-or-less uniformly sampled (2) reduced
data Qm yields α(1) = 3 and α(λ) = 1 for λ ∈ [0, 1). The latter demonstrates an
unexpected left-hand side discontinuity of α(λ) at λ = 1. Interestingly, such trend
continues once (4) is combined with piecewise-cubics γ̂3. Indeed the following
holds (see [10]):

Theorem 1. Suppose γ is a regular C4([0, T ]) curve in En sampled more-or-
less uniformly (2). Assume that {t̂λi }mi=0 are computed from Qm according to (4).

Then there exists a piecewise-cubic C∞ mapping ψ : [0, T ] → [0, T̂ ], such that
over [0, T ], we have for either λ ∈ [0, 1):

γ̂3 ◦ ψ − γ = O(δm) (5)

or for λ = 1 (and (1)):
γ̂3 ◦ ψ − γ = O(δ4m). (6)

Undesirably, the interpolants γ̂r (r = 2, 3), are generically non-smooth at
junction points, where both neighboring local quadratics (cubics) are glued to-
gether over two consecutive segments [ti, ti+r] and [ti+r, ti+2r] (with r = 2, 3). In



order to alleviate such deficiency, a modified C1 Hermite interpolation γ̂H3 based
on Qm, cumulative chords and general admissible samplings (1) is introduced
and examined in [11] or [12]. Here the unknown derivatives at all interpolation
points {qi}mi=0 are approximated with high accuracy via special procedure (see
[11]). This permits to obtain quartic order α(1) = 4 in trajectory estimation
once γ̂H3 and (1) are coupled together. Analogously to Th. 1, the latter extends
to all remaining λ ∈ [0, 1) (for samplings (2)) resulting in α(λ) = 1 (see [13]).
Recurrent left-hand side discontinuity in convergence order α(λ) at λ = 1 is here
manifested again.

For certain applications (e.g. approximation of curvature of γ, image segmen-
tation or other feature extraction in biometrics) the interpolant γ̂ should be at
least continuously twice differentiable. Such constraint is not generically fulfilled
by so-far discussed interpolants at any junction point. The remedy guaranteeing
C2 smoothness is met upon applying various hybrids of C2 cubic spline inter-
polants γ̂S3 (see [2]) based on Qm and (4). One of them (called complete cubic
spline γ̂C3 ) relies on the provision of initial and terminal velocities γ′(t0 = 0) = v0

and γ′(tm = T ) = vm usually not accompanying reduced data Qm. This special
case is discussed in [14] (also limited exclusively to λ = 1), where quartic order
α(1) = 4 for trajectory estimation by γ̂C3 is established.

In this paper we extend the latter (at least with the aid of numerical tests)
to twofold more general situation. Similarly to γ̂H3 , we estimate first both miss-
ing velocities γ′(t0) ≈ va0 and γ′(tm) ≈ vam. Next a modified complete spline
interpolant γ̂C3 based on Qm, va0 , vam and (4) is introduced for all λ ∈ [0, 1] - see
Section 2. The conjectured asymptotics reads as:

Theorem 2. Let γ be a regular C4([0, T ]) curve in En sampled more-or-less-
uniformly (4). Approximate (γ′(t0), γ′(T )) with va0 = γ̂′3(0) and vam = γ̂′3(T̂ ),
where γ̂3 defines a piecewise cubic based on Qm and (4) with λ ∈ [0, 1]. Assume
also that γ̂C3 : [0, T̂ ]→ En define a modified complete spline constructed on Qm,
estimated velocities (va0 ,v

a
m) and exponential parameterization (4). Then there

is a piecewise-C∞ mapping ψ : [0, T ] → [0, T̂ ] such that over [0, T ] we either
have for all λ ∈ [0, 1):

γ̂C3 ◦ ψ − γ = O(δm) (7)

or for λ = 1:
γ̂C3 ◦ ψ − γ = O(δ4m). (8)

In Section 3 the asymptotics from Th. 2 is numerically verified as sharp and
specific application of modified C2 complete spline γ̂C3 is given. In addition, we
compare our interpolant γ̂C3 against γ̂H3 . Finally, our paper concludes with hints
for possible extension of this work. Extra literature references concerning related
work and spin-off applications are also provided.

2 Modified Complete Spline on Reduced Data

A modified complete spline interpolant γ̂C3 based on reduced data Qm (see also
[2]) and exponential parameterization (4) is introduced below. This scheme ap-
plicable to both dense and sparse Qm falls into the following steps:



1. Calculate the estimates {t̂i}mi=0 of the missing knots {ti}mi=0 according to the
exponential parameterization (4) (with λ ∈ [0, 1]).

2. The so-called general C2 piecewise-cubic spline γ̂S3 interpolant (a sum-track
of cubics {γ̂S3,i}

m−1
i=0 - see [2]) fulfills the following constraints over each seg-

ment [t̂i, t̂i+1]:

γ̂S3,i(t̂i) = qi, γ̂S3,i(t̂i+1) = qi+1,

γ̂S
′

3,i(t̂i) = vi, γ̂S
′

3,i(t̂i+1) = vi+1, (9)

where v0, · · · ,vm represent the unknown slopes vi ∈ IRn. The internal ve-
locities {v1,v2, . . . ,vm−1} can be uniquely computed from C2 constraints
imposed on γ̂S3 at junction points {q1, . . . , qm−1} i.e. by enforcing:

γ̂S
′′

3,i−1(t̂i) = γ̂S
′′

3,i (t̂i), (10)

provided both v0 and vm are somehow computed (or a priori given). The
computational method to determine all slopes {vi}mi=0 (including initial and
terminal ones) is discussed in next.

3. Assuming temporarily the provision of all velocities {vi}mi=0, each cubic γ̂S3,i
over t̂ ∈ [t̂i, t̂i+1] reads as:

γ̂S3,i(t̂) = c1,i + c2,i(t̂− t̂i) + c3,i(t̂− t̂i)2 + c4,i(t̂− t̂i)3, (11)

where its respective coefficients (with ∆t̂i = t̂i+1 − t̂i) are equal to:

c1,i = qi, c2,i = vi,

c3,i =

qi+1−qi
∆t̂i

− vi

∆t̂i
− c4,i∆t̂i, c4,i =

vi + vi+1 − 2 qi+1−qi
∆t̂i

(∆t̂i)2
. (12)

If additionally vi = γ′(ti) are given then formulas (11) and (12) yield a well-
known C1 Hermite spline. However, the required velocities {v0,v1, . . . ,vm}
are not usually supplemented to Qm. A scheme for computing the corre-
sponding missing internal velocities {v1,v1, . . . ,vm−1} is recalled next (see
[2]). Following the latter a method of estimating {v0,vm} is given. It is
inspired by the approach adopted in [11].

4. Formulas (11) and (12) render γ̂S
′′

3,i (t̂i) = 2c3,i and γ̂S
′′

3,i−1(t̂i) = 2c3,i−1 +

6c4,i−1(t̂i − t̂i−1) which combined with (10) leads to the linear system:

vi−1∆t̂i + 2vi(∆t̂i−1 +∆t̂i) + vi+1∆t̂i−1 = bi, (13)

where

bi = 3

(
∆t̂i

qi − qi−1
∆t̂i−1

+∆t̂i−1
qi+1 − qi
∆t̂i

)
.

Assuming that the end-slopes v0 and vm are somehow given the system
(13) solves uniquely in {vi}m−1i=1 . The latter yields a C2 spline γ̂S3 (which fits



reduced data Qm) defined as a track-sum of {γ̂S3,i}
m−1
i=0 introduced in (11).

If extra conditions hold, i.e. γ′(t0) = v0 and γ′(T ) = vm then γ̂S3 is called a
complete cubic spline (denoted here as γ̂C3 ).

5. Since Qm are usually deprived from both initial and terminal velocities
{γ′(t0) = v0, γ

′(T ) = vm} a good estimate {va0 ,vam} is therefore required.
Of course, any choice of {va0 ,vam} renders a unique explicit formula for γ̂C3 .
This however is insufficient for our consideration. Indeed, still a proper esti-
mate of these two velocities is needed so that (7) and (8) follow. In doing so,
we invoke Lagrange cubic γ̂L3,0 : [0, t̂λ4 ]→ En (and γ̂L3,m−3 : [t̂λm−3, T̂ ]→ En),

satisfying γ̂L3,0(t̂λi ) = qi (and γ̂L3,m−3(t̂λm−3+i) = qm−3+i), with i = 0, 1, 2, 3 -

here the same λ ∈ [0, 1] is applied in the derivation of γ̂L3,0, γ̂L3,m−3 and γ̂C3 .

Set now for va0 = γ̂L
′

3,0(0) and for vam = γ̂L
′

3,m−3(T̂ ), respectively.

This completes a description of a modified C2 complete spline γ̂C3 based on
reduced data Qm and exponential parameterization (4).

However, to verify the asymptotics from (7) and (8) (either numerically
or theoretically) a candidate for a reparameterization ψ : [0, T ] → [0, T̂ ] is
still required, as justified in Section 1. In doing so, consider a C2 complete
spline ψ = ψC3 : [0, T ] → [0, T̂ ] satisfying the knots’ interpolation constraints
ψC3 (ti) = t̂i, where {t̂i}mi=0 are defined according to (4). In addition, the ini-

tial and terminal velocities of s0 = ψC
′

3 (0) and sm = ψC
′

3 (T ) are set simi-
larly to the construction from above. More specifically, define two Lagrange
cubics ψ3,0 : [0, ti+3] → [0, t̂λi+3] and ψ3,m−3 : [tm−3+i, T ] → [t̂λm−3+i, T̂ ] satisfy-

ing interpolation conditions ψ3,0(ti) = t̂λi and ψ3,m−3(tm−3+i) = t̂λm−3+i (with
i = 0, 1, 2, 3 and the same λ ∈ [0, 1] as for the construction of γ̂C3 ), respectively.
One sets here for s0 = ψC

′

3 (0) = ψ′3,0(0) and for sm = ψC
′

3 (T ) = ψ′3,m−3(T ).
We pass now to the experimental section of this paper which tests the asymp-

totics from Th. 2. As already indicated, a sole derivation of a modified C2 com-
plete spline γ̂C3 relies exclusively on reduced data Qm (either dense or sparse)
and (4). On the other hand, any numerical verification or theoretical proof of
the asymptotics α(λ) involved (e.g. from Th. 2), requires an extra introduction
of reparameterization ψ (proposed here as ψC3 ) as well as an admittance of suf-
ficiently densely more-or-less uniformly sampled points Qm. The latter enables
to assess a desired asymptotics controlling the decrease in difference γ̂3 ◦ψC3 −γ,
uniformly over [0, T ] (once m→∞).

3 Experiments

In this section, a numerical verification of the asymptotics α(λ) (and its sharp-
ness) claimed in Th. 2 is conducted. Recall that, given fixed λ ∈ [0, 1], by sharp-
ness we understand the existence of at least one curve γ ∈ C4(0, T ]) and one
special family of more-or-less uniform sampling (2) such that the asymptotics in
differences γ̂C3 ◦ ψC3 − γ (over [0, T ]) is not faster than predicted α(λ). A posi-
tive verification of (7) and (8) would point out again to a bizarre phenomenon.
Namely, the existence of the left-hand side discontinuity in α(λ) at λ = 1.



All tests for this paper are carried out in Mathematica 8.04 (see also [15])
and resort to two types of skew-symmetric more-or-less uniform samplings (2).
The first one selected (for ti ∈ [0, 1]) reads as:

ti =


i
m + 1

2m , for i = 4k + 1;

i
m −

1
2m , for i = 4k + 3;

i
m , for i even;

(14)

with Kl = (1/2) and Ku = 1 as introduced in (2). The second one is defined
according to:

ti =
i

m
+

(−1)i+1

3m
, (15)

with constants Kl = (1/2) and Ku = (5/3) from (2). For a given m, the error
Em, between γ and reparameterized modified complete spline γ̂C3 ◦ψC3 reads as:

Em = max
t∈[0,1]

‖(γ̂C3 ◦ ψC3 )(t)− γ(t)‖. (16)

The latter is computed over each sub-interval [ti, ti+1] (for i = 0, · · · ,m− 1) by
using Mathematica function - FindMaximum and then upon taking the maxi-
mal values from all segments’ optima. In order to approximate α(λ) we calculate
first Em for mmin ≤ m ≤ mmax, where mmin and mmax are sufficiently large
fixed constants. Then a linear regression yielding a function y(x) = ᾱ(λ)x + b
is applied to {(log(m),− log(Em))}mmax

mmin
. Mathematica built-in function Linear-

ModelFit extracts a coefficient ᾱ(λ) ≈ α(λ). A full justification of this procedure
to approximate α(λ) by ᾱ(λ) is given in [1]. Note also that since both (7) and
(8) have asymptotic character the constants mmin < mmax should be taken
as sufficiently large. On other hand, a potential negative impact of machine
rounding-off errors stipulates these two constants not to exceed big values. In
practice, the appropriate choices for mmin < mmax are adjusted each time dur-
ing the experimental phase. The tests conducted here employ three types of C∞

regular curves: a spiral γsp and a cubic γc both in E2 as well as a helix γh in E3.
They are sampled more-or-less uniformly according to either (14) or (15). For
comparison reasons we also test here the asymptotic orders αH(λ) in trajectory
estimation for modified C1 Hermite interpolant γ̂H3 examined in [11] and [12]
(here αH(1) = 4 and αH(λ) = 1 for λ ∈ [0, 1)). However, since the interpolant
γ̂H3 ∈ C1 (over Qm) it does not permit to approximate the curvature of γ at
interpolation points. However, the latter can be accomplished with the aid of γ̂C3
due it is higher order of smoothness (i.e. γ̂C3 ∈ C2 over t̂ ∈ [0, T̂ ]).

Example 1. Consider a regular planar spiral γsp : [0, 1]→ E2,

γsp(t) = ((0.2 + t) cos(π(1− t)), (0.2 + t) sin(π(1− t))) . (17)

Figure 1 (or Figure 2) contains the plots of γsp (or of γ̂C3 ) with λ = 0 sampled
(here m = 15) according to either (14) or (15).
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Fig. 1. A spiral γsp from (17) sampled along (dotted): a) (14) or b) (15), for m = 15.
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Fig. 2. A spiral γsp from (17) for: a) (14) b) (15) fitted by γ̂C
3 (here m = 15 and λ = 0).

The respective linear regression based estimates ᾱ(λ) ≈ α(λ) (for various
λ ∈ [0, 1]) are computed here for mmin = 60 ≤ m ≤ mmax = 120. The nu-
merical results contained in Table 1 confirm the sharpness of (7) and (8) for
λ ∈ {0.0, 0.1, 0.3, 0.5, 0.7} and yield marginally faster (though still consistent
with asymptotics from Th. (2)) α(λ) for λ ≈ 1. For comparison reasons, Table
1 contains also the corresponding numerical results established for estimating γ
with modified C1 Hermite interpolant γ̂H3 based on the same reduced data Qm
and exponential parameterization.

Table 1. Computed ᾱ(λ) ≈ α(λ) in (7) & (8) for γsp from (17) and various λ ∈ [0, 1].

λ 0.0 0.1 0.3 0.5 0.7 0.9 1.0

ᾱ(λ) for (14) 1.0067 1.0085 1.0134 1.0218 1.0409 1.1463 4.2537
ᾱ(λ) for (15) 1.0121 1.0128 1.0160 1.0248 1.0506 1.2099 3.9912
α(λ) in Th. 2 1.0 1.0 1.0 1.0 1.0 1.0 4.0
ᾱH(λ) for (14) 1.0070 1.0084 1.0129 1.0205 1.0371 1.1282 3.9192
ᾱH(λ) for (15) 1.0009 1.0023 1.0113 1.0484 1.0499 4.8304 4.0584

We pass now to the example with a helix having a trajectory in E3.

Example 2. Let γh : [0, 1]→ E3 be defined as

γh(t) = (1.5 cos(2πt), sin(2πt), 2πt/4). (18)

4 This research was supported in part by computing resources of ACC Cyfronet AGH.



Figure 3 (or Figure 4) illustrates the trajectories of γh (or of γ̂C3 ) for λ = 0.3
sampled according to either (14) or (15), with m = 15. As previously, a linear
regression estimating ᾱ(λ) ≈ α(λ) from Th. 2 is used here, for m ranging over
60 ≤ m ≤ 120 with various λ ∈ [0, 1]. The coefficients ᾱ(λ) (see Table 2)
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Fig. 3. A helix from (18) sampled along (dotted): a) (14) b) (15), for m = 15.
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Fig. 4. A helix γh from (18) for: a) (14) b) (15) fitted by γ̂C
3 (here m = 15 and λ = 0.3).

computed numerically all sharply coincide with those specified in (7) and (8).
Again, for comparison reasons, Table 2 presents the corresponding numerical
results derived for estimating γ with modified C1 Hermite interpolant γ̂H3 based
on the same reduced data Qm and exponential parameterization.

Finally, a planar cubic γc is tested.

Example 3. Let γc : [0, 1]→ E2 be defined as follows:

γc(t) = (πt, (πt+ 1)3(π + 1)−3). (19)

Figure 5 (or Figure 6) contains the plots of γc (or of γ̂C3 ) sampled along either (14)
or (15), with λ = 1 and m = 15. In order to compute ᾱ(λ) ≈ α(λ) estimating
the asymptotics from Th. 2 again a linear regression is used (as explained at
the beginning of this section) for 60 ≤ m ≤ 120 and varying λ ∈ [0, 1]. Table



Table 2. Computed ᾱ(λ) ≈ α(λ) in (7) & (8) for γh from (18) and various λ ∈ [0, 1].

λ 0.0 0.1 0.3 0.5 0.7 0.9 1.0

ᾱ(λ) for (14) 1.0000 1.0000 1.0002 1.0006 1.0009 1.0065 3.9949
ᾱ(λ) for (15) 1.0000 1.0000 1.0001 1.0005 1.0015 1.0127 3.9992
α(λ) in Th. 2 1.0 1.0 1.0 1.0 1.0 1.0 4.0
ᾱH(λ) for (14) 1,0000 1,0000 1.0002 1.0003 1.0008 1.0049 3.9833
ᾱH(λ) for (15) 1.0002 1.0001 1.0001 1.0026 1.0043 1.0317 3.9888
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Fig. 5. A cubic planar curve (19) sampled along (dotted): a) (14) b) (15), for m = 15.

3 enlists numerically computed estimates ᾱ(λ) ≈ α(λ) for various λ ∈ [0, 1]
and samplings (14) and (15). Evidently these numerical results re-emphasize
the sharpness of the asymptotics determined by (7) and (8), with marginally
faster case of α(1). Similarly to the previous examples, Table 3 contains also
the corresponding numerical results obtained for estimating γ with modified C1

Hermite interpolant γ̂H3 based on the same reduced data Qm and exponential
parameterization.

Table 3. Computed ᾱ(λ) ≈ α(λ) in (7) & (8) for γc from (19) and various λ ∈ [0, 1].

λ 0.0 0.1 0.3 0.5 0.7 0.9 1.0

ᾱ(λ) for (14) 1.0001 1.0001 1.0001 1.0002 1.0003 1.0011 4.1612
ᾱ(λ) for (15) 1.0001 1.0001 1.0002 1.0002 1.0003 1.0017 4.1196
α(λ) in Th. 2 1.0 1.0 1.0 1.0 1.0 1.0 4.0
ᾱH(λ) for (14) 1.0001 1.0001 1.0001 1.0002 1.0003 1.0010 4.2868
ᾱH(λ) for (15) 0.9999 1.0000 1.0001 1.0002 0.9998 0.9991 4.3044

The examples presented herein demonstrate the sharpness of (7) and (8)
resulting in a left-hand side discontinuity of α(λ) at λ = 1 which is consistent
with Th. 2. We close this section with an application of γ̂C3 to medical image
processing.

Example 4. A medical image of a kidney is shown in Figure 7. A segmentation of
an image of any human organ from its image background (e.g. from a digital im-
age) permits to focus on vital geometrical or other properties (like γ perimeter,
section internal area, average curvature) of the examined organ. This ultimately
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Fig. 6. A cubic from γc (19) for: a) (14) b) (15) fitted by γ̂C
3 (here m = 15 and λ = 1).

can be exploited in medical diagnosis and further treatment. Indeed, a physician
can mark m+1 selected consecutive points on the kidney’s boundary (represent-
ing the trajectory of the unknown curve γ). Such input points, positioned along
trajectory of γ, form the set of available interpolation points Qm. Naturally, the
corresponding knots {ti}mi=0 parameterizing Qm are here defaulted. A modified
complete spline γ̂C3 based on (4) and Qm can be applied now. The relevant points’
coordinates are determined here by using Get Coordinate Tool in Mathematica.
Figure 7 contains of a plot a modified complete spline γ̂C3 based on 67 marked
points (here as q0 = q67 we have 67 different points) with either λ = 0 or λ = 1
set in (4) - see Figure 7 a) or b), respectively. Note that the boundary of the
kidney forms a loop which re-translates e.g. into q0 = γ(0) = γ(T ) = qm. Con-
sequently the interpolant γ̂C3 is generically not smooth at a single point q0 = qm
unless v0 = vm, for which C1 class follows. This weakness can be removed e.g.
by taking the average of v0 and vm at both overlapping “ends” of the curve γ.
Finally, for comparison reasons, Fig. 8 a) or b) presents the trajectory of the cor-
responding modified Hermite interpolant γ̂H3 constructed on the same reduced
data Qm and exponential parameterization.

a) b)

Fig. 7. The shape of a kidney determined by γ̂C
3 with a) λ = 0 b) λ = 1, for m = 67.

4 Conclusion

The tests in Section 3 confirm the sharpness of the asymptotics from Th. 2
to approximate γ via modified complete spline γ̂C3 based on reduced data Qm,



a) b)

Fig. 8. The shape of a kidney determined by γ̂H
3 with a) λ = 0 b) λ = 1, for m = 67.

more-or-less uniform samplings (2) and exponential parameterization (4). A pos-
sible extension of this work includes e.g. an analytical proof of Th. 2 (including
investigation of asymptotic constants) or determination of sufficient conditions
imposed on samplings {ti}mi=0 to render ψC3 as a genuine piecewise-C∞ reparam-

eterization of [0, T ] into [0, T̂ ]. The investigation of the asymptotics in curvature
estimation by γ̂C3 is also an open problem. The case with λ = 1 offers the fastest
quartic asymptotics in trajectory estimation for γ̂C3 and (4). However, one can
also focus on enforcing specific geometrical properties or constraints by select-
ing the best γ̂C3 (depending on λ ∈ [0, 1] from (4)) to optimize newly adopted
criteria (criterion). This paper shows that if the speed of γ approximation is not
the main issue then a decisive factor in choosing optimal γ̂C3 should stem from
such extra requirement(s) as almost all γ̂C3 have an identical α(λ) for γ approx-
imation. Related work on ε-uniform samplings combined with (4) can be found
in [16]. More specific applications on interpolating (or approximating) reduced
data are provided e.g. in [4], [17], [18], [19] or [20]. Splines can also be used in
trajectory planning [21], finding algebraic and implicit curves [22] and [23] or
in bifurcating surfaces [24]. To supplement (4), there are also other parameter-
izations applied predominantly on sparse data (applicable also on dense Qm) -
see e.g. the so-called blending parameterization [25], monotonicity or convexity
preserving ones [4] or [26].

References

1. Kozera, R.: Curve modeling via interpolation based on multidimensional reduced
data. Studia Informatica 25(4B-61), 1–140 (2004).

2. de Boor, C.: A Practical Guide to Spline. Springer-Verlag, New York Heidelberg,
Berlin, (1985).

3. Noakes, L., Kozera, R.: More-or-less uniform samplings and length of curves. Quar-
terly of Applied Mathematics 61(3), 475–484 (2003).

4. Kvasov, B.I.: Methods of Shape-Preserving Spline Approximation. World Scientific,
Singapore, (2000).

5. Lee, E.T.Y: Choosing nodes in parametric curve interpolation. Computer-Aided
Design 21(6), 363–370 (1989).

6. Noakes, L., Kozera, R.: Cumulative chords piecewise-quadratics and piecewise-
cubics. In Geometric Properties of Incomplete Data, Eds. R. Klette, R. Kozera,



L. Noakes and J. Weickert, Computational Imaging and Vision Vol. 31, 59–75, Klu-
ver Academic Publishers, The Netherlands (2006)

7. Kozera, R.: Asymptotics for length and trajectory from cumulative chord piecewise-
quartics. Fundamenta Informaticae 61(3-4), 267–283 (2004).

8. Kozera, R., Noakes, L.: Piecewise-quadratics and exponential parameterization for
reduced data. Applied Mathematics and Computation 221, 620–638 (2013).

9. Kozera, R., Noakes, L., Szmielew, P.: Trajectory estimation for exponential pa-
rameterization and different samplings. Lecture Notes in Computer Science 8104,
430–441, Springer-Verlag (2013).

10. Kozera, R., Noakes, L., Wilko lazka, M.: Piecewise-cubics and exponential param-
eterization for reduced data. Submitted.

11. Kozera, R., Noakes, L.: C1 interpolation with cumulative chord cubics. Funda-
menta Informaticae 61(3-4), 285–301 (2004).

12. Kozera, R., Noakes, L. Szmielew, P.: Quartic orders and sharpness in trajectory
estimation for smooth cumulative chord cubics. Lecture Notes in Computer Science
8671, 9–16, Springer (2014).

13. Kozera, R., Noakes, L., Wilko lazka, M.: C1 interpolation with cumulative chord
cubics and exponential parameterization. Submitted.

14. Floater, M.S.: Chordal cubic spline interpolation is fourth order accurate. IMA
Journal of Numerical Analysis 26, 25–33 (2006).

15. Wolfram Mathematica 9, Documentation Center, URL link: refer-
ence.wolfram.com/mathematica/guide/Mathematica.html.

16. Noakes, L., Kozera, R., Klette, R.: Length estimation for curves with ε-uniform
samplings. In Digital Image Geometry, Eds. G. Bertrand, A. Imiya, and R. Klette,
Lecture Notes in Computer Science 2243, 339–351, Springer-Verlag, Berlin Heidel-
berg (2001).

17. Janik, M., Kozera, R., Kozio l, P.: Reduced data for curve modeling - applications in
graphics, computer vision and physics. Advances in Science and Technology 7(18),
28–35 (2013)

18. Piegl, L., Tiller, W.: The NURBS Book. Springer-Verlag, Berlin Heidelberg, New
York (1997).

19. Yan-Bin, J.: Interpolation by Spline Functions. Lecture Notes in Computer Science
477/577, Fall, Iowa State University (2014).

20. Jupp, D.L.P.: Approximation to data by splines with free knots. Journal on Nu-
merical Analysis, 15(2), 328–343 (1978).

21. Budzko, D.A., Prokopenya, A. N.: Symbolic-numerical methods for searching equi-
librium states in a restricted four-body problem. Programming and Computer Soft-
ware 39(2), 74–80 (2013).

22. Kozera, R.: Uniqueness in shape from shading revisited. Journal of Mathematical
Imaging and Vision 7(2), 123–138 (1997).

23. Taubin, G.: Estimation of planar and non-planar space curves defined by implicit
equations with applications to edge and range segmentation. IEEE Transactions in
Pattern Analysis and Machine Intelligence 13(11), 1115-1138 (1991).

24. Circularly symmetrical eikonal equations and non-uniqueness in computer vision.
Journal of Mathematical Analysis and Applications. 165, 192–215 (1992).
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