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Abstract. The paper deals with the Self Organizing Maps (SOM). The
SOM is a standard tool for clustering and visualization of high-dimensional
data. The learning phase of SOM is time-consuming especially for large
datasets. There are two main bottleneck in the learning phase of SOM:
finding of a winner of competitive learning process and updating of neu-
rons’ weights. The paper is focused on the second problem. There are
two extremal update strategies. Using the first strategy, all necessary up-
dates are done immediately after processing one input vector. The other
extremal choice is used in Batch SOM — updates are processed at the
end of whole epoch. In this paper we study update strategies between
these two extremal strategies. Learning of the SOM with delay updates
are proposed in the paper. Proposed strategies are also experimentally
evaluated.

Keywords: self organizing maps, high-dimensional dataset, high per-
formance computing

1 Introduction

Recently, the issue of high-dimensional data clustering has arisen together with
the development of information and communication technologies which support
growing opportunities to process large data collections. High-dimensional data
collections are commonly available in areas like medicine, biology, information
retrieval, web analysis, social network analysis, image processing, financial trans-
action analysis and many others.

Two main challenges should be solved to process high-dimensional data col-
lections. One of the problems is the fast growth of computational complexity
with respect to growing data dimensionality. The second one is specific simi-
larity measurement in a high-dimensional space. Beyer et al. presented in [1]
that for the expected distance any point in a high-dimensional space, computed
by the Euclidean distance to the closest and to the farthest point, shrinks with
growing dimensionality. These two reasons reduce the effectiveness of clustering
algorithms on the above-mentioned high-dimensional data collections in many
actual applications.



The paper is organized as follows. In Sect. 2 we will describe one Self Or-
ganizing Maps. Section 3 describes parallel design of SOM learning algorithm.
Modification of weights’ update process is given in Sect. 4. Some experimental
results are presented in Sect. 5. The paper is summarized and conslusions are
made in Sect. 6.

2 Self Organizing Maps

Self Organizing Maps (SOMs), also known as Kohonen maps, were proposed
by Teuvo Kohonen in 1982 [3]. SOM consists of two layers of neurons: an input
layer that receives and transmits the input information, and an output layer, that
represents the output characteristics. The output layer is commonly organized
as a two-dimensional rectangular grid of nodes, where each node corresponds to
one neuron. Both layers are feed-forward connected. Each neuron in the input
layer is connected to each neuron in the output layer. A real number, weight,
is assigned to each of these connections. i.e. weights of all connections for given
neuron form weight vector. SOM is a kind of artificial neural network that is
trained by unsupervised learning. Learning of the SOM is competitive process,
in which neurons compete for the right to respond to a training sample. The
winner of the competition is called Best Matching Unit (BMU).

Using SOM, the input space of training samples can be represented in a
lower-dimensional (often two-dimensional) space [4], called a map. Such a model
is efficient in structure visualization due to its feature of topological preservation
using a neighbourhood function.
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Fig. 1. Basic Schema of SOM

3 Parallel SOM Learning Algorithm

A network partitioning is the most suitable implementation of the parallelization
of an SOM learning algorithm. Network partitioning is an implementation of the



learning algorithm, where the neural network is partitioned among the processes.
Network partitioning has been implemented by several authors [2,9]. The parallel
implementation proposed in this work is derived from the standard sequential
SOM learning algorithm.

After analysing the serial SOM learning algorithm we have identified the two
most processor time-consuming areas. These parts were selected as candidates
for the possible parallelization. The selected areas were:

Finding BMU - this part of SOM learning can be significantly accelerated
by dividing the SOM output layer into smaller pieces. Each piece is then
assigned to an individual computation process. The calculation of Euclidean
distance among the individual input vector and all the weight vectors to
find BMU in a given part of the SOM output layer is the crucial point of
this part of SOM learning. Each process finds its own, partial, BMU in its
part of the SOM output layer. Each partial BMU is then compared with
other BMUs obtained by other processes. Information about the BMU of
the whole network is then transmitted to all the processes to perform the
updates of the BMU neighbourhood.

Weight actualization — Weight vectors of neurons in the BMU neighbourhood
are updated in this phase. The updating process can also be performed using
parallel processing. Each process can effectively detect whether or not some
of its neurons belong to BMU neighbourhood. If so, the selected neurons are
updated.

A detailed description of our approach to the parallelization process is de-
scribed in Fig. 2.
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Fig. 2. Improved Parallel SOM Algorithm



Before any implementation of an experimental application began, we had to
decide how the parallelization would be done. Initially, we supposed that the
most effective approach is to divide the SOM into several parts or blocks, where
each block is assigned to the individual computational process. For example,
let’s suppose that an SOM with neurons N = 20 in the output layer is given.
The output layer is formed as a rectangular grid with number of rows N, = 4
and number of columns N, = 5. Then the output layer of the SOM is divided
into 3 continuous blocks which are associated with three processes®.

To remove the unbalanced load, the approach to the parallelization process
has been modified. The division of the SOM output layer was changed from a
block load to a cyclic one. The individual neurons were assigned to the processes
in a cyclic manner. A nearly uniform distribution of the output layer’s neurons
among processes is the main advantage of this kind of parallelization. The uni-
form distribution of the neurons plays an important role in weight actualization
because there is a strong assumption that neurons in the BMU neighbourhood
will belong to different processes. An example of a cyclic division of the SOM
output layer with a dimension of 4 x 5 neurons can be seen in Fig. 3, where each
neuron is labeled with a color of assigned process. A more detailed description of
parallelization can be found in our previous papers (including a full notation)]6,
8].

Q Q Q Q

Q Q Q
Q Q Q

Q Q Q Q

Fig. 3. Cyclic Division

4 Delay actualization

In this modification of the SOM algorithm we focused on the area called finding
BMU. Only in the parallel version is it necessary to find the global BMU from the
local BMUs in each iteration and here are two areas, by which we will discuss:

1. To find the global BMU we must transfer a lot of data between processes.

3 If there is no possibility of dividing the output layer into a block with the same
number of neurons, some blocks have one extra neuron



2. This waiting mode (blocking communication), where other processes and
threads awaiting the outcome, will decrease the efficiency of parallel compu-
tation.

The method described below is based on information that with the same
amount of data it is effective to send data all at once instead of sending in
portions. Both problems mentioned above are solved this way. The proof about
transfer data is in Table 1, where 1 to 64 processes are used and transferred 50
thousand and 500 thousand numbers of all processes on a single process, but in
one case we send all of these numbers together and in the second case separately
- at one time two numbers together. For clarity, the number of data that are
transfer from individual processes is always the same. Only the total number of
data that are finally placed on the target process is changing. For example, if
we have 6 processes and 50k numbers, so we have on the target process saved
6 x 50k numbers. From these results it is possible to see that the final times for
both amounts (50k and 500k) and for sending data together are the very similar.

For data transmission, the MPI functions Gather[2] are used and the pro-
cesses are running on separate computing nodes, which are connected by the
Infiniband network.

Table 1. Comparison of data transmission

Time [sec]
50k 500k
Processes
Separate data Together data Separate data Together data
1 0.0199089 0.0000188 0.197716 0.000154018
2 0.146948 0.030802 2.06079 0.031806
4 0.316004 0.062149 3.14302 0.0727129
8 0.487644 0.142774 5.09625 0.153242
16 0.67049 0.304665 6.58546 0.30529
32 0.785121 0.627432 8.63451 0.633787
64 0.959224 1.26573 9.81402 1.25528

The second point, which we mentioned above, concerns the utilization of in-
dividual processes or threads (both parallelization operate on the same principle,
see previous article [6]). As we mentioned earlier we divide the SOM algorithm
into two parts: The first part concerns the search for the BMU (the fast part)
and the second part concerns updating weight (time-consuming part). The de-
lay occurs in the situation where some processes (threads) must update more
neurons than the other processes (threads), an example can be seen in Fig. 4.
Where the process number two must update three neurons, but other processes
must update only two neurons. If the update does not occur after each iteration,
but only after a certain time, it is possible to reduce the impact of blocking



communication. Individual processes will not have to wait for other processes
and utilization processes should be uniform. It is because of two reasons:

1. A BMU is usually different with each iteration and therefore neurons which
must be updated are different.

2. The number of neurons to be updated decreases, but at the beginning of
the algorithm 1/4 of all neurons are updated. An important factor that
affects the distribution is training data and unfortunately this cannot be
anticipated.

Fig. 4. Example of actualization area

According to the above examples our goal is aggregate data which are trans-
mitted and we propose the following approach to update the weights:

The base is the parallel solution which we described in Sect. 3, where at the
beginning limit of delay — L is set for how many local BMU can be kept in the
local memory in each process. Each processes find the local BMU and save the
result in the local memory. If the limit is not reached, it is necessary to read
the new input vector and find a new local BMU. If the limit is reached all local
BMUs are moved to a process with rank 0, which finds a global BMU for each
iteration and then sends results to all processes. After this step each process
gradually updates the weights.

We worked with three variants of the above described algorithm:

1. Constant delay (Cons) — Size of L is the same throughout the calculation.

2. Decreasing delay (Dec) — Size of L is decreasing by ¢ at the start of each
epoch to 1.



3. Increasing delay (Inc) — The value of how many local BMUs can be kept in
the local memory is set at 1 and increases by ¢ at the end of the each epoch
until it reaches L.

For a complete description of the algorithm is to be noted that ¢ is applied
at the end of each epoch (only for variants Dec and Inc). Setting the value of
¢, for variants Dec and Inc largely depends on the number of input vectors M.
Therefore we are working with a percentage of M. It is used for settings L and (.
In the chapter experiments we attempted to show how much influence the value
of ¢ is. For example: L = 10% of M, ¢ = 0.1% of M.

Here it is necessary to briefly recall the behaviour of the neural network
SOM. Over time, the number of updated neurons is changing — decreases. At
the beginning, most of the neurons are updated but at the end only the few
neurons or only one neuron are. If variant Dec is used, delay gradually decreases
by ¢ and also the number of neurons that must be updated. In variant Inc it
is the opposite, by the number of updated neurons still decreases but the delay
increases.

5 Experiments

We will describe different datasets and we will provide experiments with bigger
and smaller limit of delay — L. The mean quantization error (MQE) is used
to compare the quality of the neural network method which it is described in

paper [5].

5.1 Experimental Datasets and Hardware

Weblogs Dataset A Weblogs dataset was used to test learning algorithm ef-
fectiveness on high dimensional datasets. The Weblogs dataset contained web
logs from an Apache server. The dataset contained records of two months worth
of requested activities (HTTP requests) from the NASA Kennedy Space Center
WWW server in Florida*. Standard data preprocessing methods were applied to
the obtained dataset. The records from search engines and spiders were removed,
and only the web site browsing option was left (without download of pictures
and icons, stylesheets, scripts etc.). The final dataset (input vector space) had
a dimension of 90,060 and consisted of 54,961 input vectors. For a detailed de-
scription, see our previous work [7], where web site community behaviour has
been analyzed.

On the base of this dataset 15,560 user profiles were extracted and the number
of profile attributes is 28,894 (this number corresponds to the dimension of input
space) for the final dataset.

* This collection can be downloaded from http://ita.ee.lbl.gov/html/contrib/NASA-
HTTP.html.



Experimental Hardware The experiments were performed on a Linux HPC
cluster, named Anselm, with 209 computing nodes, where each node had 16
processors with 64 GB of memory.The processors in the nodes were Intel Sandy
Bridge E5-2665. Compute network is InfiniBand QDR, fully non-blocking, fat-
tree. Detailed information about hardware can be found on the website of Anselm
HPC cluster®.

In this section we describe experiments which are based on delay actualiza-
tions. For the experiment, we examine the quality of the resulting neural net-
works and the time that is required for calculation. The type of parallelization
of SOM is a combination of MPI and OpenMP.

5.2 First Part of the Experiment

The first part of the experiments was oriented towards an examinination of the
quality of neural networks which depends on the size of the delay. The dataset
used is Weblogs. All the experiments in this section were carried out for 1000
epochs; the random initial values of neuron weights in the first epoch were always
set to the same values. The tests were performed for SOM with rectangular shape
— 400 x 400 neurons. All three variants shown in section 4, are tested. If variants
Inc or Dec are used, then the steps ¢ are as follows 0.1%, 0.01%, 0.005%. MQE
errors are presented for limit of delays L equal 5%, 10% and 20% in Table 2.
Step size does not affect the variant Cons. Therefore, this method has only one
value instead of three in the above table.

Table 2. MQE depends to limit of delay actualization

Steps MQE
(%] Delay L = 5% Delay L = 10% Delay L = 20%
0
Inc Dec Cons Inc Dec Cons Inc Dec Cons

0.100 1.71474 0.54016 1.71477 1.7792 0.55492 1.77917 1.79262 0.56304 1.87535
0.010 1.66801 0.55741 1.71477 1.68754 1.10173 1.77917 1.69227 1.68584 1.87535
0.005 1.66795 1.08419 1.71477 1.67759 1.67199 1.77917 1.68192 1.69745 1.87535

5.3 Second Part of the Experiment

The second part of the experiments were oriented towards scalability. As in the
previous test, experiments are carried out on three types of delays (increasing,
decreasing and constant). The parallel version of the learning algorithm was
run using 16, 32, 64, 128, 256, 512, and 1024 cores respectively. The achieved
computing time is presented in the Table 3 for step ¢ = 0.1%, in Table 4 for

® https:/ /support.itdi.cz/docs/anselm-cluster-documentation /hardware-overview



step ¢ = 0.01%, in Table 5 for step ¢ = 0.005%. In the above tables the variant
Cons is presented (it is not affected by the step — all three tables contains same
values), the reason is comparison resulting times. For comparison, the standard
SOM algorithm (without any delay) takes 32:10:30 computing time and MQE is
0.4825.

Table 3. Scalability of delay actualization — step ¢ = 0.1%

Cores Computing Time [hh:mm:ss]
Delay L = 5% Delay L = 10% Delay L = 20%
Inc Dec Cons Inc Dec Cons Inc Dec Cons

16 12:24:19 27:04:58 12:13:49 12:17:21 23:47:34 11:53:06 12:11:46 18:35:00 11:47:09
32 5:11:19 13:11:54 5:05:59 5:10:21 11:30:02 5:00:52 5:32:45 8:41:41 5:04:13
64 1:45:20 6:13:49 1:42:12 1:43:16 5:14:24 1:38:14 1:51:56 3:43:40 1:39:23
128 0:45:11 3:15:36 0:43:53 0:43:37 2:44:05 0:41:10 0:47:00 1:53:40 0:40:44
256  0:24:08 1:57:26 0:23:18 0:22:57 1:38:43 0:21:13 0:23:43 1:10:33 0:20:50
512 0:15:53 1:24:03 0:15:21 0:14:34 1:11:20 0:13:18 0:15:53 0:53:07 0:12:59
1024 0:17:34 1:25:12 0:16:54 0:15:36 1:17:37 0:14:23 0:17:25 1:03:08 0:14:05

Table 4. Scalability of delay actualization — step ¢ = 0.01%

Cores Computing Time [hh:mm:ss]
Delay L = 5% Delay L = 10% Delay L = 20%
Inc Dec Cons Inc Dec Cons Inc Dec Cons

16 13:54:21 14:19:45 12:13:49 13:18:46 13:04:25 11:53:06 13:20:08 12:21:52 11:47:09
32 5:28:27 6:17:04 5:05:59 5:36:31 5:29:52 5:00:52 6:03:48 5:36:57 5:04:13
64 1:54:03 2:20:04 1:42:12 1:57:10 1:57:31 1:38:14 2:12:01 1:57:21 1:39:23
128 0:49:31 1:10:31 0:43:53 0:50:53 0:53:14 0:41:10 0:59:19 0:50:42 0:40:44
256  0:24:29 0:43:56 0:23:18 0:24:48 0:29:53 0:21:13 0:29:52 0:24:51 0:20:50
512 0:15:42 0:35:07 0:15:21 0:15:57 0:21:29 0:13:18 0:19:33 0:16:00 0:12:59
1024 0:17:21 0:46:27 0:16:54 0:16:36 0:25:57 0:14:23 0:21:34 0:16:50 0:14:05

Conclusion of Delay Experiments In this section an evaluation of the above
described experiments can be found. The reason this evaluation is discussed in a
separate part is that the overall evaluation of effectiveness can not only be based
on individual results. It is necessary to focus on a combination of outcomes for
finding the optimal solution.

From the first experiment, which was focused on the quality of the final
neural network, we can deduce the following conclusions:



Table 5. Scalability of delay actualization — step ¢ = 0.005%

Cores Computing Time [hh:mm:ss]
Delay L = 5% Delay L = 10% Delay L = 20%
Inc Dec Cons Inc Dec Cons Inc Dec Cons

16 13:09:47 13:01:33 12:13:49 14:09:51 12:24:42 11:53:06 14:09:44 12:11:29 11:47:09
32 6:03:58 5:31:41 5:05:59 6:03:42 5:14:13 5:00:52 6:00:06 5:10:09 5:04:13
64 2:12:38 1:53:28 1:42:12 2:12:17 1:47:21 1:38:14 2:10:08 1:42:41 1:39:23
128 0:59:15 0:53:32 0:43:53 0:59:27 0:44:41 0:41:10 0:57:51 0:42:06 0:40:44
256 0:31:50 0:28:44 0:23:18 0:30:36 0:23:02 0:21:13 0:28:24 0:21:46 0:20:50
512 0:21:17 0:19:46 0:15:21 0:20:01 0:14:46 0:13:18 0:17:56 0:13:46 0:12:59
1024 0:22:38 0:22:14 0:16:54 0:21:46 0:16:07 0:14:23 00:19:04 0:14:06 0:14:05

1. As we expected, with the increasing size of the local memory, the overall
quality of the neural networks is deteriorating. This behavior is evident in
all three types of delays.

2. The variant Cons was in all three cases the worst.

3. According to these results, the variants Inc and Dec fundamentally differ
from each other. When we use the variant Dec, the subsequent decrease of
the value of the delay deteriorates the quality of the neural networks, but
when we use the variant Inc, the quality of the neural network improves; it
is not a significant change in the same way as in the Dec.

The second experiment was focused on the scalability and the time consump-
tion of the above variants. We describe the results of the experiments as follows:

1. Even though the variant Cons is independent of the value steps ( it still
achieves the fastest computing time.

2. When the variant Cons and the variant Inc are used, the time difference
between the delay (5%, 10% and 20%) is only a small percent - almost neg-
ligible. However, the variant Dec reaches time differences of up to 60%.

3. When 16 cores are used and step ¢ = 0.1% so the variant Inc is much faster
(more than twice) than the variant Dec. Again, using 16 cores and at step
¢ = 0.01% times are in both the above variants almost comparable. How-
ever, when step ¢ = 0.005% is used, the variant Dec is slightly faster than
the variant Inc.

If we look only at the individual results according to the first experiment,
the overall best results are obtained with the variant Dec (delay L = 5% and
step ¢ = 0.1%) and the worst results are obtained with the variant Cons. The



second experiment shows that the variant Cons is the fastest and the variation
Inc is minimally affected by the delay amount. After comparing all the achieved
results and the required time to calculate them, we have identified as the best
variant Dec (delay L = 5% and step ¢ = 0.01%) with computing time 0:35:07
and MQE 0.55741.

An example of limit values achieved for delay L = 5% is possible to see in
Fig. 5 where we can see the methods Inc and Dec with step ¢ = 0.1%,0.01%
and 0.005%. The step ¢ value has a major impact on the overall result, because
it determines the time when the above method reaches the maximum permitted
delay or vice versa, when they reach the minimum delay.
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Fig. 5. Example of achievement delay 5%

6 Conclusion

The experiments have shown the possibility of speeding up the computation
of actualizing the weights while maintaining the sufficient quality of the final
neural network. Speeding up the calculation of the SOM algorithm is based on
updating the weights after several (delay L) input vectors. It is similar to Batch
SOM, which updates the weights after one epoch. The actualization process for
variant Dec calculates the values of the weight roughly at the beginning and
the next calculation in this variant leads to a more accurate calculation of the
weights using the decreasing value of the delay. Overall, the best results are
achieved for the variant Dec with the smallest test delay (L = 5%) and a mean
step (¢ = 0.01%). This variant is quickly approaching the standard SOM with
weight actualization after each input vector. With the initial actualization for
the smallest test number of delays, this variant Dec is faster than the standard
SOM (Dec for cores = 16, L = 5%, ¢ = 0.01% takes 14:19:45 and the standard



SOM for 16 cores takes 32:10:30). Further acceleration is due to the massive
parallelization, when the best time is achieved for 512 cores (0:35:07). Even
faster is the variant with ¢ = 0.005%, but the MQE of this variant is twice as
big and therefore less accurate.
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