
HAL Id: hal-01444460
https://inria.hal.science/hal-01444460

Submitted on 24 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Verification of ArchiMate Behavioral Elements by
Model Checking

Piotr Szwed

To cite this version:
Piotr Szwed. Verification of ArchiMate Behavioral Elements by Model Checking. 14th Computer
Information Systems and Industrial Management (CISIM), Sep 2015, Warsaw, Poland. pp.132-144,
�10.1007/978-3-319-24369-6_11�. �hal-01444460�

https://inria.hal.science/hal-01444460
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Verification of ArchiMate behavioral elements
by model checking

Piotr Szwed

AGH University of Science and Technology
pszwed@agh.edu.pl

Abstract. In this paper we investigate the problem of verification of
business processes specified with ArchiMate language. The proposed so-
lution employs model checking techniques. As a verification platform the
state of the art symbolic model checker NuSMV is used. We describe a
method of fully automated translation of behavioral elements embedded
in ArchiMate models into a representation in NuSMV language, which
is then submitted to verification with respect to requirements expressed
in CTL. The requirements specification can be entered by user, but we
also propose to derive some of them automatically, based on analysis of
control flows within business processes. The solution was implemented
as a plugin to Archi, a popular ArchiMate modeling tool. Application of
the method is presented on an example of a small business process.

Keywords: formal verification, model checking, business process, Archi-
Mate, NuSMV

1 Introduction

In this paper we investigate an application of model checking techniques to
automated verification of behavioral description embedded within ArchiMate
models. ArchiMate is a lightweight language providing a uniform representa-
tion of enterprise architecture [?]. The language comprises elements of various
types, however, constructs allowing to model behavior can be found only in the
Business layer. They include events, processes (also understood as activities),
interactions, collaborations and several types of junctions. Therefore, the veri-
fication of ArchiMate behavioral elements falls into a wide domain of business
process verification [?].

Business models can comprise a large number of processes. For clarity reasons
they are often depicted in form of several views, that cover only selected parts
of the model. In consequence, behaviors embedded in the model are distributed
among the views, what often makes them difficult to track. Although modeling
tools offer support for local syntax checking, e.g. correct use of links between
elements of the graphical language, some structural errors remain undetected,
especially those resulting from incorrect use of synchronization mechanisms [?].
Partial analysis of model behavior can be performed by simulation techniques,

2

however, only application of formal methods can give unequivocal answer that
the verified model exhibits desired properties.

Formal system verification can by done either by deductive reasoning or
model checking [?]. Deductive reasoning consists in formulating theorems speci-
fying desired system properties and proving or falsifying them using manual or
automated techniques. The advantage of deductive reasoning methods is their
ability to verify systems with infinite domains (number of states). However, they
give very little information on causes, if the verified property does not hold.

Model checking allows to verify a concurrent system modeled as a finite state
transition graph against a set of specifications expressed in a propositional tem-
poral logic. It employs efficient internal representations and quick search proce-
dures to determine automatically, whether the specifications are satisfied along
the computational paths. Moreover, if a specification is not met, the procedure
delivers a counterexample that can be used to analyze the source of the error.
The main problem faced by model checking is the state explosion [?]. At the very
beginning only small examples could have been processed. A significant progress
in this technique was achieved with application of ordered binary decision dia-
grams (OBBD) [?] allowing to model systems consisting of millions of states and
transitions.

Although formal tools reached state of the art, they are not commonly used
in engineering practice. According to Huuck [?] three factors decide on successful
application of formal tools: they should be simple to use, the time spent on model
preparation and verification should be comparable with other user activities,
and, finally, a tool should provide a real value, i.e. deliver information that was
previously not available.

The goal of our work was to develop a software tool that fully automatically
translates behavioral elements of a business model expressed in ArchiMate lan-
guage to a corresponding finite-state graph required by a model checker. We were
also attracted by an idea of deriving automatically requirements specifications
based on control flows within business processes.

As a verification platform the state of the art symbolic model checker NuSMV
[?] is used. NuSMV allows to enter a model being a set of communicating finite
state machines (FSM) and automatically check its properties specified as Com-
putational Tree Logic (CTL) or Linear Temporal Logic (LTL) formulas. For a
given temporal logic formula F , NuSMV provides the answer that F is satisfied
by the model or it delivers a counterexample falsifying it.

The concept of verification system is presented in Fig. 1. The business model
is defined within Archi [?], a well known ArchiMate modeling tool. We have
developed an Archi plugin that extracts a subgraph of ArchiMate behavioral
elements and transforms it into NuSMV model descriptions.

As a specification language CTL is used. Basically, a specification of system
properties is entered by a user. This is a manual task, that requires a certain
insight into the business process, as well a knowledge of mapping of its elements
onto NuSMV model. However, a part of the specification is generated automat-
ically by an analysis of the process structure.

3

ArchiMate
Model

NuSMV model

CTL
specification

Verification
results

User

Archi To
NuSMV
plugin

Archi NuSMV

Fig. 1. The concept of the verification system

The paper is organized as follows: next Section 2 discusses various approaches
to data verification of business models. It is followed by Section 3, which presents
ArchiMate language. In Section 4 the translation procedure is described. Appli-
cation of the presented approach to a business process verification is presented
in Section 5. Section 6 provides concluding remarks.

2 Related works

Application of formal methods to verification of business processes was surveyed
by Morimoto [?]. Author distinguished three prevalent approaches: based on
automata, Petri nets and process algebras. The first approach consists in trans-
lating the process description into a set of communicating automata (state ma-
chines) and performing model checking with such tools, as SPIN or UPPAAL In
analysis of Petri net models basically simulation techniques are used, especially
in case of more expressive colored Petri nets.

Model checking has an established position in verification of business pro-
cesses. I was applied in [?] to BPMN models extended with temporal and re-
source constraints. In [?] verification of of e-business processes was achieved
by translation to CSP language and checking refinement between two specifica-
tions. In [?] authors implemented a system that translates BPEL specification
into NuSMV language and then allows to check properties defined as CTL formu-
las. Three types of correctness properties were analyzed: invariants, properties
of final states and temporal relations between activities. The first two can be
classified as safeness, the last as the liveness property. Similarly, in work by Fu
et al. [?] CTL was applied to the verification of e-services and workflows with
both bounded and unbounded number of process instances. Work [?] discusses
verification of data-centric business processes. The correctness problem was ex-
pressed in the LTL-FO, an extension to the Linear Temporal Logic, in which
propositions were replaced by First Order statements about data objects.

In our previous works [?,?] we proposed a method for verification of Archi-
Mate behavioral specifications based on deductive reasoning. The described ap-
proach consisted in transforming ArchiMate model into a set of LTL formulas,
then extending it with formulas defining desired system properties and formally
proving them using semantic tableaux method.

4

NuSMV [?] is a state of the art model checker that has been succesfully
used for various verification tasks including formal protocol analysis [?], verifi-
cation of requirements specification [?] or planning tasks [?]. The package uses
a special language (named also NuSMV) to define the verified model as a set
of linked finite state machines, as well as its specification in form of temporal
logic formulas. The model submitted to the verification tool must be manually
coded in NuSMV language or generated from another language amenable to
state transition system, e.g a state charts [?] or reachability graphs of Petri nets
[?].

3 Archimate

ArchiMate [?] is a contemporary, open and independent language intended for
description of enterprise architectures. It comprises five main modeling layers
shortly characterized below. The Business layer includes business processes and
objects, functions, events, roles and services. The Application layer contains com-
ponents, interfaces, application services and data objects. The Technology layer
gathers such elements as artifacts, nodes, software, devices, communication chan-
nels and networks. Elements of the Motivation layer allow to express business
drivers, goals, requirements and principles. Finally, Implementation&Migration
layer contains such elements, as work package, deliverable and gap.

ArchiMate allows to present an architecture in the form of views which,
depending on the needs, can include only items in one layer or can show vertical
relations between layers, e.g.: a relationship between a business process and a
function of the component software.

ArchiMate was built in opposition to UML [?], which can be seen as a collec-
tion of unrelated diagrams, and Business Process Modeling Notation BPMN [?]
which covers mainly behavioral aspect of enterprise architecture. The definition
of a language has been accompanied by an assumption, that in order to build an
expressive business model, it is necessary to use the relationships between com-
pletely different areas, starting from business motivation to business processes,
services and infrastructure.

Archimate provides a small set of constructs that can be used to model behav-
ior. It includes Business Processes, Functions, Interactions, Events and various
connectors (Junctions), which can be attributed with a logical operator specify-
ing, how inputs should be combined or output produced. According to language
specification casual or temporal relationships between behavioral elements are
expressed with use of triggering relation. On the other hand, Archimate models
frequently use composition and aggregation relations, e.g. to show that a process
is built from smaller behavioral elements (subprocesses or functions).

Although the set of behavioral elements seems to be very limited when com-
pared with BPMN [?], after adopting a certain modeling convention its expres-
siveness can be similar [?]. An advantage of the language is that in allows to
comprise in a single model a broad context of business processes including roles,

5

services, processed business objects and elements of lower layers responsible for
implementation and deployment.

4 Model generation

This section discusses language patterns that can be used to model ArchiMate
elements in NuSMV, as well as details of the translation procedure.

4.1 ArchiMate model

The internal structure of an Archimate model constitutes a graph of nodes linked
by directed edges. Both nodes and edges are attributed with information indicat-
ing a type of element or relation. Generating NuSMV code describing behavioral
aspects of Archimate model we focus on components of the Business layer : pro-
cesses (interactions, functions), events and various junctions.

It should be noted that Archimate behavioral constructs have no precisely
defined semantics. In fact, translation from Archimate specification to NuSMV
assigns a semantics, which, although arbitrarily selected, follows a certain intu-
ition, e.g. how to interpret an activity or an event.

Definition 1 (Archimate model). ArchiMate model AM is a tuple
〈V,E,C,R, v, e〉, where V is a set of vertices, E ⊂ V ×V is a set of edges, C is a
set of ArchiMate element types, R is a set of relations, vt : V → C is a function
that assigns element types to graph vertices et : E → R assigns relation types to
edges.

As we focus on business layer elements that are used to specify behavior, it is
assumed that C ={Process, Function, Interaction, Event,Junction, AndJunction,
OrJunction, Other} and R ={triggering,association,composition, other}.

4.2 NuSMV model

The basic structural unit in NuSMV language is module understood as a set of
variables and statements that assign to them initial values and define a transition
relation. Depending on the module definition, we may distinguish input variables
corresponding to stimuli, internal state variables and output variables (actions).

Definition of a module introduces a new type that can be instantiated. Hence,
it is possible to declare a variable of a module type and bind it during declaration
resembling a constructor call to a number of input variables.Subsequent variables
definitions may reference outputs of other modules instances as their inputs. This
allows to define a system of communicating state machines of desired complex-
ity, which propagates input stimuli to its components causing subsequent state
changes and generation of output signals. Typically, the model integration is
achieved within the special main module, however, it can be distributed among
lower level modules, which are referenced from main.

After an analysis of components used to describe ArchiMate processes the
following basic modules were identified and implemented:

6

– atomicProcessn: n-ary atomic process has exactly one input, one primary
output and n additional outputs, which can be activated if one of n excep-
tions occurs. The exception should be modeled in ArchiMate as an event
linked with the process by an association relation.

– event: has only one input and one output (a boolean flag). Multiple recipients
may use this flag as trigger.

– andFork: used to model AndJunction in Archmate. The module construc-
tion is analogous to event.

– andJoinn: n-ary andJoin produces output signal, if all n inputs are set to
TRUE.

– xorForkn: n-ary xor-fork have one input and n outputs. Upon module acti-
vation, only one from outputs will be triggered.

– xorJoinn: n-ary xor-join has n inputs and sets the output flag if any of them
is set. Moreover it tracks the number of inputs, e.g. if two from n inputs are
activated, the output flag will be set twice.

Fig. 2 shows the state diagram of the module atomicProcess1. The number
1 indicates the number of additional outputs activated as a result of exception
occurrence. The process is activated by the input signal trigger. Upon signal
arrival it makes the state transition from idle to started. Then a choice can
be made between the states finished and interrrupted1. Synchronously, the cor-
responding output variable is set: either outflag or exccptflag1 to TRUE. The
output variable, whichever is set, will be cleared during the transition to idle
state.

idle started

finished

interrupted1

[trigger]

[]/outflag=TRUE

[]/excptflag1=TRUE

[]/outflag=FALSE

[]/excptflag1=FALSE

atomicProcess1

trigger

outflag

excptflag1

Fig. 2. State machine modeling an atomic process

The NuSMV code for the module is given in Fig. 3. It should be mentioned,
that n exceptional outputs, we generate module atomicProcess n with states
interrupted1,. . . , interrruptedn and n output flags exceptflag1,. . . , exceptflagn.

4.3 Generation procedure

The generation procedure consists of the following stages:

1. Refactoring. With relation to the numbers of inputs and outputs, it is ex-
pected that elements fall into one of two classes: 1 : m (one input and m

7

MODULE atomicProcess1(trigger)
VAR

state : {idle,started,finished,interrupted1};
outflag : boolean;
excptflag1 : boolean;

ASSIGN
init(state) := idle;
next(state) :=

case
state = idle & trigger: {started};
state = started : {finished,interrupted1};
state = finished & !outflag : idle;
state = interrupted1 & !excptflag1 : idle;
TRUE : state;

esac;
init(outflag) := FALSE;
next(outflag) :=

case
state = finished : TRUE;
state = idle : FALSE;
TRUE : outflag;

esac;
init(excptflag1) := FALSE;
next(excptflag1) :=

case
state = interrupted1 : TRUE;
state = idle : FALSE;
TRUE : excptflag1;

esac;
SPEC

AG (trigger = TRUE -> AF (outflag = TRUE | excptflag1 = TRUE))

Fig. 3. NuSMV code of the module atomicProcess1 (the number 1 indicates number
of exceptional outputs)

outputs) or n : 1 (m inputs and one output). Hence elements with the arity
n : m are replaced by two two elements: the first is an appropriate xorJoin
or andJoin of arity n : 1. The second is an atomic process, event or fork of
arity 1 : n.

2. Assigning representation. For each element, based on its type and numbers
of inputs/outputs, an appropriate NuSMV module type is selected and con-
figured. Only required modules are generated. E.g. if the specification uses
only processes with one and three exceptional outputs, only modules defining
atomicProcess1() and atomicProcess3() will be generated.

3. Main module generation. This step comprises declaration of variables and
linking them. For roots (modules without inputs) appropriate initial vari-
ables and transitions are added as well.

4. Specification generation. The implemented procedure analyses the graph of
elements and generates CTL specifications. See Section 4.5.

4.4 Small example

We will discuss the effects of the generation procedure on a small process example
presented in Fig. 4. The whole process is activated upon occurrence of the event
Start. Then the subprocess P1 is launched. If P1 terminates correctly, the event
Stop is produced. However, P1 execution can be interrupted by the event Excpt,
which triggers the subprocess P2. After finishing P2 a decision is made, whether
the whole process should terminate (abort) or P1 should be launched once again
(retry).

8

Start P1

P2Excpt

Stop

abort

retry

MODULE main
VAR

Excpt : event(P1.excptflag1);
P1 : atomicProcess1(Junction.output);
P2 : atomicProcess(Excpt.outflag);
Start : event(Start_trigger);
Stop : event(Junction_Before_Stop.output);
Junction : orJoin(Start.outflag,Or_Junction.outflag2);
Or_Junction : orFork(P2.outflag);
Junction_Before_Stop : orJoin(Or_Junction.outflag1,P1.outflag);
Start_trigger : boolean;

ASSIGN
init(Start_trigger) := FALSE;
next(Start_trigger) := {FALSE,TRUE};

Fig. 4. Sample ArchiMate specification and corresponding NuSMV main module code

The generated NuSMV code for the main module is presented in Fig. 4
below the ArchiMate diagram. It can be noticed, that variables definition are
unordered and the code contains forward references, e.g. the output variable
P1.excptflag1 is referenced before P1 definition. The event Stop has two inputs.
As the result of model refactoring an OrJunction (variable Junction Before Stop)
was introduced into the model. For the event Start constituting a root element,
the boolean variable Start trigger with corresponding transition was added.

4.5 Generation of specification

As a specification language we use CTL, which allows to formulate properties
applying to a tree of computations (paths) starting from a given state. As the
tree defines a set imaginable futures, CTL is called the branching time logic.
CTL formulas are combinations of two types of operators path quantifiers and
linear-time operators. The path quantifiers are: A (for every path in a tree) and
E (there exists a path in a tree). Temporal operators include: G (Gp means that
p holds true globally in the future) and F (F p means that p holds true sometime
in the future).

Typically a specification formally describing requirements is entered by a
user. However, we tried to derive some liveness requirements based on control
flows within ArchiMate model (see Definition 1). The implemented procedure
generating a set of specifications comprises the following steps:

1. Build a set of paths Π = {πi} within the Archimate model,
2. Restrict elements in πi to events only (elements from the set Evt)
3. Build a partial mapping R : Evt→ 2Evt

4. Generate the specification for each pair (ei, R(ei)) in R

In the first step (1) a depth-first search starting from roots (ArchiMate
elements having no predecessors) is performed. It returns a set of paths Π =

9

{πi} comprising ArchiMate elements linked by control flow relation. For a path
πi = (eib, . . . , eie), its last element eie is either a final element in the model
(without successors) or a branching element (already present in πi). The set of
obtained paths reflects only topological relations within the process model. The
procedure does not attempt to interpret the model according to any behavioral
semantics. This is left to the verification tool.

In the step (2) the paths from Π are restricted to ArchiMate elements being
events. We decided to focus in requirements specification on elements of Event
type, because in business process definitions they are typically used to mark
important process states (e.g. initial, final and intermediate events).

In the next step (3) a partial mapping R : Evt→ 2Evt is built. The mapping
R assigns all (potentially) reachable events to first events appearing in paths
from Π

Finally, in the step (4) for each event e ∈ domR, a pair (e,R(e)) is converted
into a set of specifications taking the form of (1), where G = {AG,EG}, F =
{AF,EF} and O = {

∨
,
∧
}.

G((f → F(O
li∈R(f)

li))) (1)

For the process presented in Fig. 4 an example of generated CTL specifica-
tion is: AG (Start.outflag -> EF (Stop.outflag | Excpt.outflag)). It is
equivalent to the statement: for every path, starting with Start event, it is pos-
sible to reach a state, where Stop or Excpt events occur. This requirement is
obviously true. Another generated specification: AG(Start.outflag -> AF(

Stop.outflag & Excpt.outflag)) is false, as justified by a counterexample
path comprising 14 elements produced by NuSMV.

5 Business process example

In this section we present a more realistic example of ArchiMate specification
describing a process of selling a product (a service) to a client. The process is
divided into two stages: preparation presented in Fig. 5 and finalization (Fig. 6)
separated by the event Contract Prepared. The finalization phase is far more
complex. During execution of the Acceptance subprocess two events: Timeout
and Rejection may occur and in consequence loop back the whole process to a
previous stage. Contract signing by both parties, as well as Implementation and
Signed contract scanning are placed between ArchiMate AndJunctions (forks
and synchronization joins.)

Based on this specification the NuSMV model was generated. During refac-
toring phase second AndJoin in Fig. 6 was split into two (serving as join and
fork). Another join was added before the interaction Terms negotiation. The
main module of NuSMV comprised 22 finite state machines, whereas the flat-
tened model consisted of 47 state variables. Considering their ranges, the whole
state space comprised 39 · 237 · 5 = 1.35 · 1016 states, whereas the number of

10

Start Prepare

Contract

Scan

Proposal

Contract

Prepared

Sales

Client

Present

Product

Terms

Nego�a�on

Contract

Fig. 5. Preparation stage

Contract

Prepared

Acceptance

Signing by

Client

Signing by

Sales

Implementa	on

Stop

Timeout

Rejec	on Terms

Nego	a	on

Client

Sales

IT Backoffice

Contract

Reminder

Scan Signed

Contract

Fig. 6. Finalization stage

reachable states calculated by NuSMV based on the internal OBDD representa-
tion was equal to 7.039 · 107. The transition relation was total, i.e. no deadlocks
were present.

Examples of automatically generated specifications based on control flow are:

1. AG(Start.outflag ->

AF(Stop.outflag | Timeout.outflag | Rejection.outflag))

2. AG(Start.outflag ->

AF(Stop.outflag & Timeout.outflag & Rejection.outflag))

The first was checked to be true, whereas the second, as expected, occurred
false. The path constituting a counterexample for the second specification com-
prised 42 states.

An example of a user-defined CTL specification equivalent to the statement
that all contracts signed by a client are finally scanned is:
AG (Signing by Client.outflag ->(AF Scan Signed Contract.outflag)).
NuSMV reported is as true.

For the presented example verification of one CTL specification took about 43
seconds. However, after applying dynamic variable ordering this time decreased
to 6.64 sec. We may conclude that although the state explosion is alleviated
in NuSMV by employing internal OBDD representation, it seems that it still
remains a problem. Hence, dedicated model generation techniques focusing on
keeping models compact, e.g. generating partial models, should be employed.

11

6 Conclusions

This paper investigates the problem of automatic verification of behavioral spec-
ification embedded within ArchiMate models. We were motivated by an idea of
developing a solution tightly integrated with Archi modeling tool that would
allow to extract behavioral elements from an ArchiMate specification, then fully
automatically translate it into a model in NuSMV language and finally verify
it with the NuSMV model checker. Requirements specification in form of CTL
formulas can be entered by user, but the implemented tool is capable of gen-
erating specifications based on analysis of control flows. We discuss methods of
model transformation applied in the implemented software: language patterns
used to model atomic processes and other elements, as well as rules for translat-
ing them into NuSMV modules. Finally, application of the method is presented
on an example of a business process.

An issue that requires closer investigation is the time efficiency of the veri-
fication process. Surprisingly, papers discussed in Section 2, which claim to use
the NuSMV model checker, do not provide evaluation data on complexity of ver-
ified processes and verification times. On the other hand, sample specifications
distributed with NuSMV are built manually and optimized. The main factor
influencing memory usage is the ordering of OBDD variables used in internal
representation. Many NuSMV models are distributed with files defining order-
ing, which was determined by performing a separate optimization task.

ArchiMate is primarily a modeling language. It does not define semantics of
behavioral elements. Application of certain modeling patterns and methods of
translating them to a NuSMV language is an arbitrary decision related to as-
sumed semantics. Probably, several options and alternatives controlled by pro-
gram parameters should be considered.

References

1. Anderson, B., Hansen, J.V., Lowry, P., Summers, S.: Model checking for e-business
control and assurance. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on 35(3), 445–450 (2005)

2. Beauvoir, P.: Archi, archimate modelling tool (2015),
http://www.archimatetool.com/, [Online; accessed March 2015]

3. Bertoli, P., Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Mbp: a model based
planner. In: Proc. of the IJCAI01 Workshop on Planning under Uncertainty and
Incomplete Information (2001)

4. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys (CSUR) 24(3), 293–318 (1992)

5. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model
checking. In: Computer Aided Verification. pp. 359–364. Springer (2002)

6. Clarke, E., Heinle, W.: Modular translation of statecharts to smv. Tech. rep., Cite-
seer (2000)

7. Clarke, E.M., Grumberg, O., Hiraishi, H., Jha, S., Long, D.E., McMillan, K.L.,
Ness, L.A.: Verification of the futurebus+ cache coherence protocol. Formal Meth-
ods in System Design 6(2), 217–232 (1995)

12

8. Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking and the state
explosion problem. In: Tools for Practical Software Verification, pp. 1–30. Springer
(2012)

9. Clarke, E.M., Wing, J.M.: Formal methods: State of the art and future directions.
ACM Computing Surveys (CSUR) 28(4), 626–643 (1996)

10. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-
centric business processes. In: Proceedings of the 12th International Conference
on Database Theory. pp. 252–267. ACM (2009)

11. Fu, X., Bultan, T., Su, J.: Formal verification of e-services and workflows. In: Web
Services, E-Business, and the Semantic Web, pp. 188–202. Springer (2002)

12. Fuxman, A., Pistore, M., Mylopoulos, J., Traverso, P.: Model checking early re-
quirements specifications in tropos. In: Requirements Engineering, 2001. Proceed-
ings. Fifth IEEE International Symposium on. pp. 174–181. IEEE (2001)

13. Huuck, R.: Formal verification, engineering and business value. In: Olveczky, P.C.,
Artho, C. (eds.) Proceedings First International Workshop on Formal Techniques
for Safety-Critical Systems, Kyoto, Japan, November 12, 2012. Electronic Pro-
ceedings in Theoretical Computer Science, vol. 105, pp. 1–4. Open Publishing
Association (2012)

14. Klimek, R., Szwed, P.: Verification of ArchiMate process specifications based on
deductive temporal reasoning. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M.
(eds.) Proceedings of the 2013 Federated Conference on Computer Science and In-
formation Systems, Kraków, Poland, September 8-11, 2013. pp. 1103–1110 (2013),
http://fedcsis.org/2013/

15. Klimek, R., Szwed, P., Jedrusik, S.: Application of deductive reasoning to the
verification of ArchiMate behavioral elements. Informatyka Ekonomiczna 29, 76–
97 (2013)

16. Mongiello, M., Castelluccia, D.: Modelling and verification of BPEL busi-
ness processes. In: Model-Based Development of Computer-Based Systems
and Model-Based Methodologies for Pervasive and Embedded Software, 2006.
MBD/MOMPES 2006. Fourth and Third International Workshop on. pp. 5–pp.
IEEE (2006)

17. Morimoto, S.: A survey of formal verification for business process modeling. In:
Proceedings of the 8th international conference on Computational Science, Part
II. pp. 514–522. ICCS ’08, Springer-Verlag, Berlin, Heidelberg (2008)

18. OMG: Business Process Model and Notation (BPMN) version 2.0. Tech. rep., OMG
(January 2011), http://www.omg.org/spec/BPMN/2.0

19. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference
Manual, The (2nd Edition). Pearson Higher Education (2004)

20. Szpyrka, M., Biernacka, A., Biernacki, J.: Methods of translation of Petri nets to
NuSMV language. In: Popova-Zeugmann, L. (ed.) Proceedings of the 23th Interna-
tional Workshop on Concurrency, Specification and Programming, Chemnitz, Ger-
many, September 29 - October 1, 2014. CEUR Workshop Proceedings, vol. 1269,
pp. 245–256. CEUR-WS.org (2014), http://ceur-ws.org/Vol-1269/paper245.pdf

21. Szwed, P., Chmiel, W., Jedrusik, S., Kadluczka, P.: Business processes
in a distributed surveillance system integrated through workflow. Au-
tomatyka/Automatics 17(1), 127–139 (2013)

22. The Open Group: Open Group Standard. Archimate 2.1 Specificattion. Van Haren
Publishing, Zaltbommel (2013)

23. Watahiki, K., Ishikawa, F., Hiraishi, K.: Formal verification of business processes
with temporal and resource constraints. In: Systems, Man, and Cybernetics (SMC),
2011 IEEE International Conference on. pp. 1173–1180. IEEE (2011)

