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Private Minutia-based Fingerprint Mat
hingNeyire Deniz SarierMEF University,Department of Computer EngineeringIstanbul, Turkeysarierd�mef.edu.trAbstra
t. In this paper, we propose an e�
ient biometri
 authenti
a-tion proto
ol for �ngerprints parti
ularly suited for the minutia-basedrepresentation. The novelty of the proto
ol is that we integrate the moste�
ient (linear 
omplexity) private set interse
tion 
ardinality proto
olof Cristofaro et al. and a suitable helper data system for biometri
s in or-der to improve the a

ura
y of the system. We analyze the se
urity of ours
heme in the standard model based on well-exploited assumptions, 
on-sidering mali
ious parties, whi
h is essential to eliminate spe
i�
 atta
kson biometri
 authenti
ation s
hemes designed for semi-honest adversariesonly. Finally, the 
omplexity is 
ompared to the existing provably se
ures
hemes for �ngerprint mat
hing, whi
h shows that the new proposaloutperforms them both in semi-honest and mali
ious se
urity models.Keywords: Se
ure Remote Authenti
ation, Biometri
s, Set di�eren
e,Private Set Interse
tion, Standard model1 Introdu
tionOver the last de
ade, it has been shown that biometri
s have some advantagesin authenti
ation systems 
ompared to password-based systems, as passwords
an be easily lost, forgotten or 
ompromised using various atta
ks.However, biometri
s is sensitive data, thus, biometri
 data, either stored ona 
entral database or on a tamper-proof smart
ard, should be prote
ted using
ryptographi
 te
hniques. For instan
e, biometri
 
ryptosystems su
h as fuzzyextra
tors, fuzzy vault and bipartite biotokens are used for biometri
 key gen-eration, key binding and key release, respe
tively. Juels and Wattenberg [20℄introdu
e the fuzzy 
ommitment s
heme as a 
ryptographi
 primitive, whi
h isis appli
able for biometri
s that 
an be represented as an ordered set of fea-tures. However, biometri
s 
an be a�e
ted from two types of noise, i.e. whitenoise that represents the slight perturbation of ea
h feature and the repla
e-ment noise 
aused by the repla
ement of some features. Thus, Juels and Sudanhave developed the fuzzy vault [19℄, whi
h assumes that biometri
s 
onsists ofan unordered set of features and is designed for the set di�eren
e metri
. Spe
if-i
ally, fuzzy vault [19℄ is a key binding system that hides an en
oded se
retamong some 
ha� points, where the se
ret key is en
oded as the 
oe�
ients ofa polynomial that is evaluated at the biometri
 feature lo
ations su
h as �n-gerprint minutia 
oordinates. Implementation of fuzzy vault for �ngerprints are



given in [8℄ and [33, 32℄, where the latter two in
lude helper data 
onstru
tedfrom the high 
urvature points of the �ngerprint minutia, whi
h does not leakany information about the minutia lo
ations and used for easing the alignmentof the query �ngerprint to the original template.However, the implementation of biometri
 
ryptosystems 
ome along withvarious atta
ks that question the se
urity of them [28, 27℄. In fa
t, the �rst pa-per that 
onsiders provable se
urity in biometri
 remote authenti
ation is thework of Bringer et al. [6℄ that proposed a hybrid proto
ol distributing the serverside fun
tionality in order to deta
h the biometri
 data storage from the authen-ti
ation server. The 
ommon point of this work and the following papers designedfor se
urity against semi-honest adversaries -where se
urity is guaranteed if ea
hparty follows the proto
ol- is that they are all implemented for biometri
 datarepresented as a binary string su
h as Iris. Hen
e, they depend on the hammingdistan
e metri
 for the mat
hing operation of the veri�
ation proto
ol. For thisparti
ular metri
, an e�
ient fa
e-identi�
ation proto
ol between a 
lient C andserver S are des
ribed in [22℄ that is based on Se
ure Fun
tion Evaluation (SFE)-a spe
ial 
ase of Se
ure Multiparty Computation-. Within the same framework,biometri
 identi�
ation [3, 2℄ and authenti
ation [29℄ proto
ols are des
ribed foriris and �ngerprint (in parti
ular �nger
ode), all of whi
h are based on eu
lideandistan
e metri
.Finally, one should note that the most popular and widely used te
hniques in�ngerprint identi�
ation extra
t information about minutiae from a �ngerprintand store that information as a set of points in the two-dimensional plane asin fuzzy vault. Fingerprint mat
hing 
an also be performed using a di�erenttype of information extra
ted from �ngerprint image, i.e. FingerCode, that usestexture information from a �ngerprint s
an to form �ngerprint representation.Although FingerCodes are not as distin
tive as minutiae-based representations,[3, 2℄ des
ribe priva
y-preserving proto
ols for FingerCodes due to the e�
ientimplementation within the eu
lidean distan
e.2 Related WorkIt is quite surprising that despite the various papers on minutia-based biometri

ryptosystems [19, 8, 33, 32, 30, 31℄ designed for the set di�eren
e metri
, the onlypaper that des
ribes a private minutia-based �ngerprint authenti
ation proto
olbased on SFE and set di�eren
e metri
 is [12℄. In parti
ular, the authors of [12℄design an e�
ient minutia-based biometri
 authenti
ation s
heme for a 
lientserver ar
hite
ture based on the Private Set Interse
tion (PSI) proto
ol of [13℄that is se
ure against semi-honest parties in the standard model and mali
iousadversaries in the random ora
le model (ROM). This PSI proto
ol is basedon homomorphi
 en
ryption and polynomial interpolation and its 
omputation
omplexity is quadrati
, although the number of modular exponantiations 
anbe redu
ed to O(n log log m). Here, m denotes the size of the 
lient set and ndenotes the size of the server set with m ≈ n in the authenti
ation mode. Besides,[3, 29℄ des
ribe private minutia-based �ngerprint mat
hing using homomorphi




en
ryption for eu
lidean distan
e, the former 
onsidering semi-honest adversariesonly in a system based on garbled 
ir
uit evaluation. The latter is also based onpolynomial interpolation idea of [13℄ but it is mu
h more 
omplex 
ompared tothe original s
heme as it 
an be dedu
ed from the 
omputation 
omplexity thatis O(nmwh) for the semi-honest 
ase, where w and h denote the pixel sizes ofthe �ngerprint image.As one 
an noti
e, 
urrent minutia-based biometri
 authenti
ation s
hemes,whose se
urity is proven against semi-honest atta
kers are based on PSI, inparti
ular the 
ombination of homomorphi
 en
ryption and polynomial interpo-lation. A natural question is whether there exists more e�
ient 
onstru
tions ofPSI that is appli
able to input sets that 
an be represented as an unorderdedset of elements su
h as �ngerprint minutia. To answer this, we need to inversti-gate several te
hniques that realize PSI proto
ols su
h as Publi
-Key-Based PSI,Cir
uit-Based PSI, OT-Based PSI and Third Party-Based PSI as summerizedin [23℄. Spe
i�
ally, the �rst PSI proto
ol based on the Di�e-Hellman (DH) keyagreement s
heme was presented in [16℄ without any se
urity analysis. This pro-to
ol is based on the 
ommutative properties of the DH fun
tion and was usedfor private preferen
e mat
hing, whi
h allows two parties to verify if their pref-eren
es mat
h to some degree. The Di�e-Hellman-based proto
ol of [16℄, whi
hwas the �rst PSI proto
ol, is a
tually the most e�
ient w.r.t. 
ommuni
ation(when implemented using ellipti
-
urve 
rypto) [23℄. Therefore it is suitable forsettings with distant parties whi
h have limited 
onne
tivity. Lastly, it is possi-ble to in
orporate a relatively e�
ient zero-knowledge proof and authenti
atedinputs that ea
h party is following the proto
ol honestly, so that a
tive 
heatingby either party will be dete
ted. In this 
ontext, [10℄ extends the proto
ol of [16℄for mali
ious server and semi-honest 
lient by in
orporating zero-knowlege proofsand two additional 
ommuni
ation rounds and provides a simulation based proofin ROM in order to build a Private Set Interse
tion Cardinality (PSI-CA) proto-
ol. Similarly, [18℄ also extends the proto
ol of [16℄ so that se
urity is guaranteedfor mali
ious parties (both C and S) in ROM. The proto
ols in [10, 18℄ providelinear 
omplexity in the sizes of the two input sets, however the PSI proto
olin [18℄ 
annot be 
onverted to a PSI-CA s
heme due to its ROM based se
urityproof that reveals the 
ommon elements of the interse
tion set to one of theparties (C or S).2.1 Motivation and ContributionsWhen 
onfronted with the PSI problem, most novi
es 
ome up with a solutionwhere both parties apply a 
ryptographi
 hash fun
tion to their inputs andthen 
ompare the resulting hashes. Although this proto
ol is very e�
ient, it isinse
ure if the input domain is not large or does not have high entropy, sin
eone party 
ould easily run a brute for
e atta
k that applies the hash fun
tionto all items that are likely to be in the input set and 
ompare the results tothe re
eived hashes. This is exa
tly the 
ase for minutia based �ngerprint data.To avoid this atta
k, our solution is to in
orporate a mali
ious-se
ure PSI tobiometri
 authenti
ation.



First of all, when designing a se
ure biometri
 authenti
ation proto
ol, oneshould 
onsider three major points: The mat
hing should be performed pri-vately for both sides, namely, for the two parties, a 
lient C and a server Swho jointly 
ompute a fun
tion of their private inputs, the parties should onlylearn the output of the mat
hing and nothing else. Se
ondly, the proto
ol should
onsider both honest-but 
urious adversaries and mali
ious adversaries. This isrequired for a se
ure biometri
 system in order to prote
t against the atta
k of[1℄, whi
h regenarates the enrolled biometri
 image from a random template witha hill 
limbing atta
k, that depends on the mat
hing s
ore. However, a re
entpubli
ation [15℄ shows that with mali
ious behaviour against the 
ryptographi
identi�
ation proto
ol S
iFI [22℄ designed for the semi-honest adversaries, one
an re
onstru
t a full fa
e image with the help of 
omputer vision te
hniquesalthough S
iFI does not output any mat
hing s
ore. The atta
k relies on the fa
tthat a dishonest adversary is able to input ve
tors of any form, not just ve
torsthat are properly formatted [15℄. The atta
k learns the 
lient's fa
e 
ode bit-bybit through the output of ′match′ or ′nomatch′ de
ision. Thus, the new proto
olshould be designed in the mali
ious se
urity model so that neither learning themat
hing s
ore nor the a

ept/reje
t de
ision 
ould help a mali
ious party tolearn additional information about the private data of the other party in
lud-ing the 
ommon elements of the interse
tion set as in PSI s
hemes. Finally, theproto
ol should be pra
ti
al and e�
iently implementable with linear 
omplex-ity (in terms of 
omputation and 
ommuni
ation 
ost) and it should depend onwidely adopted representations of biometri
 data.With these goals in mind, we present a new minutia-based �ngerprint authen-ti
ation proto
ol for set di�eren
e metri
 between a 
lient and a server based onPSI te
hniques. In parti
ular, the only work within this framework is the workof [12℄, that depends on the PSI s
heme of [13℄.Spe
i�
ally, our proto
ol is inspired by the PSI-CA s
heme of [10℄ althoughour s
heme is de�ned on an ellipti
 
urve group that simpli�es the PSI-CA pro-to
ol of [10℄ slightly by removing the last step of the proto
ol (i.e. hashing), butmore importantly, the need for a random ora
le whi
h questions the se
urity ofthe systems when the ROM is repla
ed by a real hash fun
tion. In fa
t, 
ertainarti�
ial signature and en
ryption s
hemes are known whi
h are proven se
ure inthe ROM, but whi
h are trivially inse
ure when any real fun
tion is substitutedfor the random ora
le [7℄. This way, we also redu
e the 
ommuni
ation 
om-plexity sin
e the 
ommuni
ation overhead of [10℄ amounts to 2(m + 1) |p|-bitvalues with |p| = 1024 or |p| = 2048, whereas our proto
ol requires 2(m + 1)
|q|-bit values with |q| = 160 or |q| = 224. Thus, our s
heme is a s
alable ande�
ient proto
ol with linear 
omplexity and its se
urity relies on well exploited
ryptographi
 assumptions (DDH and l-DDHI) in the standard model. Besides,our proto
ol reveals neither the server nor the 
lient the elements of the inter-se
tion set S, but only the size of the interse
tion set d = |S| is learned by asingle party (C or S). Similar to the s
heme of [12℄, the 
omputation 
omplexityof [29℄ is also quadrati
, i.e. O(nmwh) for the semi-honest 
ase, where w and
h denote the pixel sizes of the �ngerprint image. Thus, our proposal is more



e�
ient 
ompared to the 
urrent private �ngerprint mat
hing s
hemes [12, 29℄that are based on Oblivious Polynomial Evaluation (OPE) of [13℄.Furthermore, we dis
uss the se
urity of our s
heme in mali
ious model inorder to prevent the atta
ks presented in [1, 15℄. Unfortunately, the PSI-CAs
heme of [10℄ 
an only a
hieve one-sided simulatibility in ROM, i.e. the s
hemeonly provides priva
y of the server against a semi-honest 
lient. Thus, we extendthe se
urity of our proto
ol so that both parties 
an be 
orrupted by a mali
iousadversary in standard model.To the best of our knowledge, the proposed s
heme is the �rst private minutia-based �ngerprint authenti
ation proto
ol for set di�eren
e metri
 that a
hieves
omplexities linear in the size of input sets, i.e. set of user's minutia that is se
urein the standard model both for semi-honest and mali
ious adversaries.3 Building Blo
ks3.1 Fingerprint dataThe approa
h that forms the basis for the biometri
 data representation of ours
heme is the Minutiae Fuzzy Vault Implementation of Uludag et al. [33, 32℄.Our system operates on the �ngerprint minutiae that are generally representedas (xi, yi, θi) triplets, denoting their row indi
es (xi), 
olumn indi
es (yi) andangle of the asso
iated ridge, respe
tively. Next, we 
on
atenate xi and yi 
o-ordinates of a minutia as [xi|yi℄ to arrive at the data unit bi for i ∈ [1, m]. Toa

ount for slight variations in minutiae data (due to �ngerprint distortions),raw minutiae data are �rst quantized. We require an alignment step where thequery minutiae templates are aligned to the registered template based on usingauxiliary alignment data aux, i.e. helper data derived from the orientation �eldof �ngerprints. Naturally, it is required that the helper data does not leak anyinformation about the minutiae-based �ngerprint template. Another approa
h
ould be the use of alignment-free features, i.e. features that do not depend onthe �nger's rotation or displa
ement. The reader is referred to [33, 32℄ for thedetails of this representation.3.2 Cryptographi
 toolsSin
e our system works in set di�eren
e metri
, we need to 
ompare/mat
haligned query template to the registered template in a private manner. In par-ti
ular, our proto
ol is inspired by the (reversed) PSI-CA s
heme of [10℄ thatenables two parties, i.e. a 
lient C whi
h has a set B′ = (b′1, ..., b
′
m) of size mand a server S whi
h has a set B = (b1, ..., bn) of size n to 
ompute the size ofthe interse
tion of their respe
tive sets without dis
losing anything about theirinputs in
luding the 
ommon elements of the interse
tion set. After the 
ompu-tation the server has obtained the size of the interse
tion d = |B ∩ B′| and the
lient has learnt nothing other than the a

ept/reje
t noti�
ation based on thesystem threshold t.



In short, PSI and PSI-CA 
an be a
hieved using OPE [13℄, Oblivious Pseudo-Random Fun
tions (OPRF) [17℄, Bloom �lters [11℄ and blind signatures [10℄,where the latter is the primitive we require in our proto
ol to a
hieve linear
omplexity. As di�erent from the s
heme of PSI-CA of [10℄ we eliminate the laststep of the proto
ol, namely hashing the result of the veri�
ation and 
omputingthe size of the interse
tion on these hashes. Besides, we swap the roles of theserver and the 
lient in [10℄, thus, the biometri
 server obtains a signature onits input without dis
losing it. This simpli�
ation is 
aused by des
ribing ourproto
ol on a suitably 
hosen ellipti
 
urve group where DDH (and l-DDHI)assumption holds, whereas PSI-CA of [10℄ works on groups where DDH (andOne-More-Gap-DH) assumption holds. Thus, the 
lient performs 2(m + 1) ex-ponentiations and server 
omputes (m + n) modular exponentiations modulo
p-bit prime with p = 1024 or p = 2048, whereas in our s
heme the same op-erations are performed modulo q-bit prime with q = 160 or q = 224. In [10℄,
ommuni
ation overhead amounts to 2(m + 1) p-bit values and n κ-bit values,where κ is a se
urity parameter of H′:{0.1}∗ → {0.1}κ. Sin
e, we eliminate H′and work on an ellipti
 
urve group, the 
ommuni
ation 
omplexity is redu
edfrom p-bit values to q-bit values. To provide 
lient and server priva
y againstmali
ious adversaries, we employ standard te
hniques of 
ryptography su
h aszero knowledge proof of knowledge (PoK).3.3 Se
urity ModelWe provide e�
ient biometri
 authenti
ation proto
ols with se
urity in the pres-en
e of both semi-honest and mali
ious adversaries. Here, the term adversaryrefers to insiders, i.e., proto
ol parti
ipants. Outside adversaries are not 
onsid-ered, sin
e their a
tions 
an be mitigated via standard network se
urity te
h-niques. Informally, we have the following goals for our proto
ols.Client Priva
y: No information is leaked about 
lient C biometri
s, ex
eptan upper bound on its size m and the mat
hing s
ore, i.e. the number of 
ommonelements between the biometri
 template registered at the server and the 
lient'sfresh template.Server Priva
y: C learns no information beyond an upper bound on thesize of his registered feature set n at the server and the a

ept/reje
t noti�
ation.Unlinkability: Neither party 
an determine if any two instan
es of the pro-to
ol are related, i.e., exe
uted on the same input by 
lient or server, unless this
an be inferred from the a
tual proto
ol output [10℄.Our �rst proto
ols for authenti
ation are presented in the semi-honest model,i.e. adversaries that are honest-but-
urious, who follow the proto
ols and try togain more information than they should on the other parties' inputs. An honest-but-
urious party is a party that follows the instru
tions of the proto
ol, butmay re
ord the 
ommuni
ations it re
eives and try to infer extra informationusing su
h re
ordings. In this 
ase, the traditional real-versus-ideal de�nitionis applied in the se
urity proof. Basi
ally, the proto
ol privately 
omputes afun
tion for an honest-but-
urious Client C (resp. Server S) if there exists aPPT algorithm SIM that is able to simulate the view of C (resp. S), given only



Client's (resp. Server's) (private and publi
) input and output. The randomvariable representing the view of Client (resp. Server) during an exe
ution of theproto
ol with Client's private input B′ = {b′i}, Server's private input B = {bi}is denoted here by V iewS(B, B′, P ) (resp. V iewC(B, B′, P )).De�nition 1. (Priva
y against Honest-but-
urious Adversaries).Let V iewS(B, B′) be a random variable representing server's view during exe
u-tion of PSI-CA with inputs B, B′, P . There exists a PPT algorithm SIM thatis able to simulate the view of Server (resp. Client), given only Server's (resp.Client's) respe
tive (private and publi
) input and output; i.e., ∀(B, B′, P ):
V iewS(B, B′, P )



≡ SIMS(B, P, |B ∩B′|))(resp. V iewC(B, B′, P )



≡ SIMC(B′, P ))The se
urity of our proto
ols relies on the following assumptions.De�nition 2. De
isional Di�e-Hellman (DDH). Let x, y, z

R
← Z

∗
q and g ∈ G bea random generator of the prime order group G. Given (g, gx, gy) distinguishingbetween the distributions (g, gx, gy, gxy) and (g, gx, gy, gz) is hard.De�nition 3. l-Di�e-Hellman inversion problem (l-DHI). Let l ∈ Z, z

R
← Z∗

qand g ∈ G as above. Given (g, gz, gz2

, ..., gzl

) 
omputing g
1

z is hard.De�nition 4. l-De
isional Di�e-Hellman inversion problem (l-DDHI). Let l ∈

Z, z
R
← Z∗

q , g ∈ G. Given (g, gz, gz2

, ..., gzl

, v) de
iding whether v = g
1

z is hard.In se
tion 7, we present our last proto
ol for authenti
ation in mali
ious model,where a mali
ious adversary uses any kind of strategy to learn information. Amali
ious party is a part that does not ne
essarily follow the instru
tions of theproto
ol. Finally, the number of minutiae used in the proto
ol, namely n and m,are 
onsidered to be publi
. If priva
y of the number of minutiae is required, Cand S 
an simply agree on a size (or two sizes) beforehand and then adjust thenumber of minutiae they use as input by either omitting a number of minutiaeor adding a number of 
ha� minutiae to their set.4 The new Proto
olAs a warm up, this se
tion presents our �rst 
onstru
tion in authenti
ation mode,se
ure in the presen
e of semi-honest adversaries in the ROM. An overview ofthe s
heme is given in Fig. 1. Although our s
heme integrates the PSI-CA of [10℄,its se
urity is based on a di�erent assumption. Besides, we work on a group Gimplemented using a group of points on a 
ertain ellipti
 
urve with generator gof prime order q and require a MaptoPoint hash fun
tion (modeled as a randomora
le) H: {0.1}∗ → G together with two random permutations P and P
′.The 
lient C registers his biometri
 features bi for i ∈ [1, n] at the server S asdes
ribed in se
tion 3.1 and stores the helper data aux publi
ly. For veri�
ation,



C presents his fresh biometri
s, aligns it with the help of aux, and obtains {b′i}for i ∈ [1, m]. Next, C makes an authenti
ation request and the server S repliesby masking the hashed biometri
 feature set items 
orresponding to the 
lient
C with a random exponent k ∈ Zq and sends resulting w′

is to C, whi
h blindlyexponentiates them with its own random value α ∈ Zq. Next, C shu�es these
v′is and sends to S the resulting u′

is together with the exponentiations of 
lient'sitems H(b′j)
′s to randomness α ∈ Zq as x′

js. Finally, S tries to mat
h these
x′

j values re
eived from C with the shu�ed ui values, stripped of the initialrandomness k ∈ Zq. S learns the set interse
tion 
ardinality (and nothing else)by 
ounting the number of su
h mat
hes and noti�es C based on the systemthreshold t with an a

ept/reje
t de
ision.

Fig. 1. Proto
ol in ROM: m ≈ nLemma 1. The proposed s
heme a
hieves 
lient priva
y against a semi-honestserver based on the l-DDHI assumption in the random ora
le model.Lemma 2. The proposed s
heme a
hieves server priva
y against a semi-honest
lient based on the DDH assumption in the random ora
le model.Due to page limitations, the proofs will appear in the full version of the paper.By designing the proto
ol for an ellipti
 
urve group G, we do not requirea se
ond hash fun
tion H′, hen
e our s
heme is less 
omplex 
ompared to [10℄,sin
e the elements of G are already 160 or 224-bits instead of 1024 or 2048-bitas in [10℄. Hen
e, the 
omparison performed over the H′ values as in [10℄, 
an beperformed on x′
js and y′

is dire
tly. Sin
e the proto
ol is designed for semi-honestadversaries, the atta
k of [1℄ does not work sin
e the parties are passive atta
kersand do follow the proto
ol spe
i�
ations. However, the distan
e/mat
hing s
ore



or a

ept/reje
t noti�
ation 
ould be useful for a mali
ious server for a brutefor
e atta
k against the priva
y of the 
lient or the opposite, namely, a mali
ious
lient trying to impersonate a user. In other words, this information is onlyhelpful as in the 
ase of mali
ious behaviour by one of the parties. However,to prevent mali
ious behaviour as presented in [1, 15℄, where the latter atta
kis able to break the se
ure fa
e identi�
ation s
heme S
iFI even if no mat
hings
ore or distan
e information is output by the proto
ol, one should extend these
urity of the new s
heme for mali
ious adversaries.5 Se
urity in Standard modelAs des
ribed above, our proto
ol requires one hash fun
tion that is assumed asa random ora
le. However, by slightly modifying the proto
ol, we are able toprove the se
urity of our s
heme in the standard model. In parti
ular, insteadof extra
ting the input set of ea
h party via the random ora
le queries as in[10℄, we use the Proof of Knowledge (PoK) to extra
t the randomness k used byea
h party and determine the input set as in [17, 18℄. Hen
e, we use the inputset of the semi-honest (resp. mali
ious) party dire
tly in the simulation dueto the extra
tion of sender's inputs given this randomness that is obtained byrunning the extra
tor algorithm for PoK with the semi-honest party to extra
t
k, su
h that it satis�es the 
ommitment gk sent by that semi-honest party. Asan example appli
ation, we 
an repla
e the hash fun
tion with the MapToPointhash fun
tion of [14, 4℄, we are able to prove the se
urity in the standard model.For instan
e, [14℄ relies on a variant of Dodis-Yampolskiy's Pseudo-RandomFun
tion (PRF) based on the Boneh-Boyen unpredi
table fun
tion [17℄. TheBoneh-Boyen fun
tion is fy(x) = g1/(y+x) where g ∈ G generates a group G ofprime order q, and y is a random element in Z∗

q . This fun
tion is unpredi
tableunder the 
omputational l-DHI assumption on G [17℄. Thus, the de
isional l-DHI assumption on group G implies that the Boneh-Boyen fun
tion is a PRF.Besides, the OPRF 
onstru
tion of [17℄ is also based on the Boneh-Boyen PRFwith the sole modi�
ation being a substitution of a prime-order group G with agroup whose order is a safe RSA modulus.Lemma 3. The proposed s
heme a
hieves 
lient priva
y against a semi-honestserver in the standard model.Proof. We show that server's view 
an be e�
iently simulated by a probabilis-ti
 polynomial time algorithm SIMS. The server's view in
ludes his inputs B,randomnesses he uses, and messages he re
eives. The server has inputs of theregistered feature set B = {bi} and randomness k ∈ Zq. We follow a similar proofte
hnique that is presented in [17℄. The simulator is 
onstru
ted as follows:1. Upon re
eiving gk, π1 and w1, ..., wn from the server, if the server su

eedsin the proof π1, then SIMS runs the extra
tor algorithm for π1 with theserver to extra
t k. Then when getting the randomness k from S, SIMS triesevery possible input in the range of the hash fun
tion -whi
h is identi
al to



Fig. 2. Proto
ol in standard model: m ≈ nthe Boneh-Boyen PRF- to re
onstru
t the set B as in OPRF proof of [17℄.This 
an be performed due to the fa
t that the domain of this hash/PRF ispolynomially-sized [17℄.2. SIMS pi
ks at random α ← Zq, 
omputes gα, 
omputes π2 and adds dis-tin
t pairs (H(bi), xi)=(hi, xi), where xi =H(bi)
α and bis (i.e. the set B)are 
omputed as in the previous step. SIMS 
omputes vi = wα

i and sends
P

′(v1, ..., vn) = (u1, ..., un) and (x1, ..., xm) to the server. Here, (x1, ..., xd)denotes the interse
tion of the 
lient and server's input set 
onstru
ted bysele
ting a random subset of xi =H(bi)
α values with size |d|. For the remain-ing m− d elements, the simulator padds the set with random values, i.e. cα

ifor i ∈ [d + 1, m].Server learns nothing either intera
ting with the real world 
lient or inter-a
ting with SIMS , therefore, the environment (distinguisher) D's views in thereal world and ideal world are indistinguishable. Now we show that this SIMSdoes a su

essful simulation. Consider the following series of games:1. In the �rst game, the publi
 parameters are generated as in the de�nition ofthe proto
ol, and then the adversary A intera
ts with the real world partyas de�ned above.2. In the se
ond game, the parameters are generated the same way, but now Aintera
ts with a SIM whi
h behaves as the real proto
ol for step 1, but thenbehaves as SIMS for step 2. The only di�eren
e then is that this simulatorpadds the set with random values, i.e. cα
i for i ∈ [d + 1, m] for the remaining

m − d elements. This di�ers from the �rst game only in that the elementsnot 
ommon with the set B and the simulated set B′ are randomly 
hosen in



order to simulate the fresh biometri
 reading of the 
lient biometri
s whi
h
annot be equal to the registered biometri
 set B totally due to the natureof biometri
s. Thus, this is indistinguishable from the �rst game by therandomness of these padded elements 
hosen from the underlying group.3. In the last game, the publi
 parameters are generated the same way, andthen adversary A intera
ts with SIMS. This di�ers from the se
ond gameonly in that SIMS extra
ts k from the proof, and uses this k to form theregistered biometri
 set of the authenti
ating 
lient at the server. Note thatif the proof is sound, then this set will be identi
al to that used in theprevious game. Thus this is indistinguishable from the previous game by theextra
tion property of the ZK proof system.Sin
e the �rst game is indistinguishable from the third, the probability that theadversary A 
an dete
t the simulation in ea
h game 
an di�er only negligibly.Thus, the simulation is su

essful.Lemma 4. The proposed s
heme a
hieves server priva
y against a semi-honest
lient in the standard model.Due to page limitations, the proof will appear in the full version of the paper.6 Use of multi-modal biometri
s for high-entropy inputsOne fa
tor limiting the se
urity of biometri
 
ryptosystems is the entropy of thebiometri
 feature data. To in
rease the entropy of biometri
 data and to a
hievehigher priva
y levels in biometri
 
ryptosystems, one 
ombines the informationof several biometri
 traits (e.g. �ngerprints with �nger vein, or fa
e with iris)or several instan
es of the same biometri
 trait, denoted as multi-biometri
ssystems. Compared to traditional (uni)biometri
 authenti
ation, multibiometri
systems o�er several advantages su
h as better re
ognition a

ura
y, in
reasedpopulation 
overage, greater se
urity, �exibility and user 
onvenien
e. For thesesystems, di�erent fusion approa
hes exist, and in [21℄, fusion at the feature levelis performed for both multi-modal and multi-instan
es that the key entropy inthe biometri
 
ryptosystem is in
reased to su�
ient levels required in se
urityappli
ations. In [26, 25, 24℄, another fusion at the feature level is des
ribed inthe 
ontext of biometri
 IBE in order to avoid the 
ollusion atta
ks inherent infuzzy IBE systems. Considering our biometri
 mat
hing system, one 
an follow asimilar strategy as des
ribed in [28℄. Spe
i�
ally, 2048 bits Iris
ode b has inherententropy of 249 bits. If we implement the Iris fuzzy 
ommitment s
heme of [5℄, we
an see this Iris 
ode as z = b⊕ c, where c is a 
odeword that is stored in formof H(c) as a helper data together with z. If we 
on
ataneted to ea
h biometri
feature (for instan
e �ngerprint minutia value) this c, ea
h of the biometri
 datahas enough input entropy for the hash fun
tion. To further in
rease the input-entropy, a 
lient password 
an be 
on
atanated to the biometri
 inputs, wherea randomly generated 8-
hara
ter password 
an have 52-bit entropy [21℄.



7 Se
urity in Mali
ious modelConsider a mali
ious 
lient (or an adversary trying to impersonate a user) thatimplements one of the atta
ks presented in [1, 15℄ against the biometri
 authen-ti
ation system. To prevent this, the se
urity should be guaranteed 
onsideringmali
ious behaviour of both parties. We note that the PSI-CA proto
ol of [10℄provides se
urity against semi-honest server and mali
ious 
lient, when the rolesof server and 
lient are swapped, namely the proto
ol provides one-sided simu-latibility in ROM.To upgrade our s
heme presented in Fig. 2 to mali
ious parties in the stan-dard model, we add one additional zero-knowledge proof π3 as in [10℄, where
π3= PoK {α|(∏m

i=1 wi)
α =

∏m
i=1 ui} sin
e a proof of logi
al and of n separatestatements wα

i = ui would reveal the relationship between ea
h index i of wiand 
orresponding index j of uj with wα
i = uj after permutation P

′ allow-ing the server to determine whi
h elements belong to the interse
tion, ratherthan just how many [10℄. We note that 
onsidering our proto
ol in a groupequipped with a bilinear map does not solve the problem sin
e the server 
an
he
k ê(wi, g
α) = ê(uj , g) for ea
h uj until he determines all the 
ommon ele-ments instead of just their 
ardinality.The 
ommitments gk, gα together with the proofs of knowledge allows thesimulator to extra
t the mali
ious party's input and may help to ensure thatthe inputs are 
onsistent and that the same values are used along the proto
ol.However, sin
e any logi
al and of n separate PoK as in the above sense wouldreveal the 
ommon elements themselves instead of just their total number, a
hallenge/response me
hanism similar to the one in [10℄ is needed to guaranteethat the same α is used on ea
h wi. An overview of the proto
ol is presented inFig. 3.Lemma 5. The proposed s
heme a
hieves 
lient priva
y against a mali
iousserver in the standard model.Sket
h of the Proof. A mali
ious server against a honest 
lient 
an behave arbi-trarly as in the following ways.

Case1: A mali
ious server 
an pi
k a random set of inputs instead of theregistered user information B or does not apply the same random exponent
k that is 
ommitted in wi = H(bi)

k and gk. To avoid this, one 
an in
ludea zero knowledge proof in order to prove the honest 
lient that the mali
iousserver knows the underlying registered biometri
 feature hashes and anotherzero knowledge proof to prove that the 
ommitted value in gk is 
onsistentlyused in all wis. However, as it is proven in [18℄, the server (i.e. the re
eiver ofthe PSI s
heme of [18℄) 
annot 
hange its input set B after sending the wissin
e the server's input set is 
ommitted in the �rst and only message he sendsregarding the biometri
 data. With this behaviour, the server does not gainany advantage sin
e the honest 
lient 
an dete
t the mali
ious behaviour fromthe authenti
ation result (i.e. a reje
t de
ision for a honest 
lient that shouldbe a

epted) as the mali
ious server 
annot 
ompute the mat
hing s
ore and



Fig. 3. Proto
ol in mali
ious model: m ≈ nreturns a random a

ept/reje
t noti�
ation or aborts the proto
ol without anynoti�
ation. We note that an a

ept de
ision of that server for a honest 
lient thatshould be authenti
ated remains undete
ted. Hen
e, to prove that the 
ommittedinput set of the server belongs to the parti
ular 
lient that tries to authenti
ate tothe system, authorization of server input must be enfor
ed. This 
an be a
hievedvia the signature of the sensor on the inputs of the server during the registrationphase of ea
h 
lient to the server, sin
e the sensor, whi
h 
aptures the biometri
data of ea
h 
lient is fully trusted in any biometri
 authenti
ation system [6℄. Anexample appli
ation in a di�erent 
ontext is presented in the Authorized PSI-CA s
heme of [10℄, whi
h we 
an integrate into our 
onstru
tion with the solemodi�
ation of substitution the prime-order group G with a group whose orderis a safe RSA modulus N . It is shown that prime-order groups also imply thatthe Boneh-Boyen fun
tion in a 
omposite-order group N remains a PRF underthe l-DDHI assumption on su
h groups (and hardness of fa
toring) and the samegeneri
-group argument whi
h motivated trust in the l-DDHI assumption on theprime-order groups 
arries to 
omposite-order groups as well [17℄. Hen
e, if weuse the MapToPoint hash fun
tion of [14℄ that is identi
al to the Boneh-BoyenPRF, we 
an integrate authorization of server inputs via the signatures of thetrusted sensor at the registration.
Case2: Hen
e, the only misbehaviour left for the mali
ious server is to abortwithout sending the �nal de
ision although it 
omputed the (
orre
t) mat
hings
ore. This 
an be eliminated by providing fairness via integrating an optimisti
fairness proto
ol, i.e. a semi-trusted o�ine third party arbiter. Fairness is out ofthe s
ope of this paper.



Lemma 6. The proposed s
heme a
hieves server priva
y against a mali
ious
lient in the standard model.Due to page limitations, the proofs will appear in the full version of the paper.8 ComparisonAs it is noted in [23℄, the Di�e-Hellman-based private mat
hing proto
ol of [16℄,whi
h was the �rst PSI proto
ol, is a
tually the most e�
ient w.r.t. 
ommuni
a-tion (when implemented using ellipti
-
urve 
rypto). Besides, the PSI s
heme of[18℄, PSI-CA s
heme of [10℄ and our s
heme are based on small variations of theproto
ol in [16℄, this proto
ol is suitable for settings with distant parties whi
hhave limited 
onne
tivity. To the best of our knowledge, the only s
hemes thatprovide private �ngerprint mat
hing proto
ols with a 
on
rete se
urity analysisbased on �ngerprint minutia representation are des
ribed in [3℄, [29℄,[12℄, wherethe latter 
onsiders set di�eren
e metri
, whereas the others implement the pro-to
ols for eu
lidean distan
e. All three of the proto
ols provide se
urity againstsemi-honest adversaries, although the s
heme of [29℄ in
ludes an extention ofhis semi-honest proto
ol for mali
ious adversaries without any se
urity analysis.Thus, the 
omparison is based on the proto
ols for semi-honest adversaries for
onsisten
y and we assume m ≈ n for the authenti
ation mode sin
e the totalnumber of minutia m registered at the server and 
aptured at the 
lient side nwill be 
lose to ea
h other as opposed to the identi�
ation mode as in [3℄.Table 1. Comparison of time 
omplexityComplexity Estimate, i.e. UnderlyingNumber of exponentiations MethodBlanton et al.∗ quadrati
 in m Homomorphi
 en
ryption[3℄ + m OT proto
ols and Garbled Cir
uitsShahandashti et al. [29℄ quadrati
 in m OPEFeng et al.† [12℄ quadrati
 in m OPEOur Constru
tion‡ linear in m PSI-CA
∗:in authenti
ation mode;
†: [13℄ redu
es the number of exponentiations to O(n log log m) using Horner's rule andhashing for bu
ket allo
ation; ‡ m ≈ n with 20 < m < 40;Therefore, our 
onstru
tion is the most e�
ient authenti
ation proto
ol forminutia-based �ngerprint authenti
ation based on PSI te
hniques, in parti
ularthe OPE of [13℄. In addition, our proto
ol is more e�
ient 
ompared to thegarbled 
ir
uit-based 
onstru
tion of [3℄, as it is shown in [9℄, the PSI and PSI-CA 
onstru
tions of [10℄ are more e�
ient 
ompared to garbled-
ir
uit based
onstru
tions. Finally, the only s
heme that 
onsiders mali
ious parties is [29℄(without any se
urity analysis). Similar to the 
omparison in the semi honest



model, our s
heme outperforms [29℄ also in mali
ious model due to the additionalPoKs at ea
h step of the proto
ol whi
h is already 
omplex enough for semi-honest model.9 Con
lusionIn this paper, we design an e�
ient biometri
 authenti
ation proto
ol for a
lient-server ar
hite
ture based on one of the most e�
ient PSI-CA te
hnique.Our s
heme is suitable for any type of biometri
s that 
an be represented asan unordered set of features similar to the 
onstru
tions of fuzzy vault. Weprovide the se
urity in standard model based on the well-exploited assumptionsand 
onsider mali
ious parties, whi
h is essential to eliminate spe
i�
 atta
kson biometri
 s
hemes. A future work 
ould be integration of fairness proto
ol toprevent a mali
ious abort of the server.Referen
es1. A. Adler. Vulnerabilities in biometri
 en
ryption systems. In AVBPA'05, pages1100�1109, 2005.2. M. Barni, T. Bian
hi, D. Catalano, M. Di Raimondo, R. Donida Labati, P. Failla,D. Fiore, R. Lazzeretti, V. Piuri, F. S
otti, and A. Piva. Priva
y-preserving �n-ger
ode authenti
ation. In MMSe
'10, pages 231�240. ACM, 2010.3. M. Blanton and P. Gasti. Se
ure and e�
ient proto
ols for iris and �ngerprintidenti�
ation. In ESORICS'11, volume 6879 of LNCS, pages 190�209. Springer,2011.4. D. Boneh and M. Franklin. Identity-based en
ryption from the weil pairing. InCRYPTO'01, volume 2139 of LNCS, pages 213�229. Springer, 2001.5. J. Bringer, H. Chabanne, G. Cohen, B. Kindarji, and G. Zemor. Optimal iris fuzzysket
hes. In BTAS'07, pages 1�6. IEEE, 2007.6. J. Bringer, H. Chabanne, M. Izaba
hène, D. Point
heval, Q. Tang, and S. Zimmer.An appli
ation of the goldwasser-mi
ali 
ryptosystem to biometri
 authenti
ation.In ACISP'07, volume 4586 of LNCS, pages 96�106. Springer, 2007.7. R. Canetti, O. Goldrei
h, and S. Halevi. The random ora
le methodology, revisited.J. ACM, 51(4):557�594, 2004.8. T. C. Clan
y, N. Kiyavash, and D. J. Lin. Se
ure smart
ard based �ngerprintauthenti
ation. In WBMA'03, pages 45�52. ACM, 2003.9. E. De Cristofaro and G. Tsudik. Experimenting with fast private set interse
tion.In Trust and Trustworthy Computing, volume 7344 of LNCS, pages 55�73. Springer,2012.10. E.D. Cristofaro, P. Gasti, and G. Tsudik. Fast and private 
omputation of 
ar-dinality of set interse
tion and union. In CANS'12, volume 7712 of LNCS, pages218�231. Springer, 2012.11. C. Dong, L. Chen, and Z. Wen. When private set interse
tion meets big data: ane�
ient and s
alable proto
ol. In ACMCCS'13, pages 789�800. ACM, 2013.12. Q. Feng, F. Su, and A. Cai. Priva
y-preserving authenti
ation using �ngerprint.IJICIC, 8(11):8001�8018, 2012.



13. M. J. Freedman, K. Nissim, and B. Pinkas. E�
ient private mat
hing and setinterse
tion. In EUROCRYPT'04, volume 3027 of LNCS, pages 1�19. Springer,2004.14. V. Goyal, A. O'Neill, and V. Rao. Correlated-input se
ure hash fun
tions. InTCC'11, volume 6597 of LNCS, pages 182�200. Springer, 2011.15. K. Grauman, M. Gerbush, A. Luong, and B. Waters. Re
onstru
ting a fragmentedfa
e from a 
ryptographi
 identi�
ation proto
ol. In WACV'13, pages 238�245.IEEE, 2013.16. B. A. Huberman, M. Franklin, and T. Hogg. Enhan
ing priva
y and trust inele
troni
 
ommunities. In Pro
eedings of the 1st ACM Conferen
e on Ele
troni
Commer
e, EC '99, pages 78�86. ACM, 1999.17. S. Jare
ki and X. Liu. E�
ient oblivious pseudorandom fun
tion with appli
ationsto adaptive ot and se
ure 
omputation of set interse
tion. In TCC'09, volume 5444of LNCS, pages 577�594. Springer, 2009.18. S. Jare
ki and X. Liu. Fast se
ure 
omputation of set interse
tion. In SCN'10,volume 6280 of LNCS, pages 418�435. Springer, 2010.19. A. Juels and M. Sudan. A fuzzy vault s
heme. Des. Codes Cryptography, 38(2):237�257, 2006.20. A. Juels and M. Wattenberg. A fuzzy 
ommitment s
heme. In ACM CCS'99,pages 28�36, 1999.21. S. Kanade, D. Petrovska-Dela
re'taz, and B. Dorizzi. Multi-biometri
s based 
ryp-tographi
 key regeneration s
heme. In Biometri
s: Theory, Appli
ations, and Sys-tems, 2009. BTAS '09. IEEE 3rd International Conferen
e on, pages 1�7, 2009.22. M. Osad
hy, B. Pinkas, A. Jarrous, and B. Moskovi
h. S
i� - a system for se
urefa
e identi�
ation. In IEEE Symposium on Se
urity and Priva
y, pages 239�254,2010.23. B. Pinkas, T. S
hneider, and M. Zohner. Faster private set interse
tion based onOT extension. In Usenix'04, pages 797�812. USENIX Asso
iation, 2014.24. N. D. Sarier. A New Biometri
 Identity Based En
ryption S
heme. In InternationalSymposium on Trusted Computing - TrustCom'08, pages 2061�2066. IEEE, 2008.25. N. D. Sarier. A new Biometri
 Identity Based En
ryption S
heme se
ure againstDoS atta
ks. Se
urity and Communi
ation Networks, 3(1):268�274, 2010.26. N. D. Sarier. Generi
 Constru
tions of Biometri
 Identity Based En
ryption Sys-tems. In WISTP'10, volume 6033 of LNCS, pages 90�105. Springer, 2010.27. N. D. Sarier. Se
urity Notions of Biometri
 Remote Authenti
ation Revisited. InSTM'11, volume 7170 of LNCS, pages 72�89. Springer, 2011.28. N. D. Sarier. Biometri
 Cryptosystems: Authenti
ation, En
ryption and Signaturefor Biometri
 Identities. PhD thesis, Bonn University, Germany, 2013.29. S. F. Shahandashti, R. Safavi-Naini, and P. Ogunbona. Private �ngerprint mat
h-ing. In ACISP'12, volume 7372 of LNCS, pages 426�433. Springer, 2012.30. B. Tams. Absolute �ngerprint pre-alignment in minutiae-based 
ryptosystems. InBIOSIG'13, pages 1�12. IEEE, 2013.31. B. Tams. Atta
ks and 
ountermeasures in �ngerprint based biometri
 
ryptosys-tems. CoRR, abs/1304.7386, 2013.32. U. Uludag and A. Jain. Se
uring �ngerprint template: Fuzzy vault with helperdata. In CVPRW'06. IEEE, 2006.33. U. Uludag, S. Pankanti, and A. K. Jain. Fuzzy vault for �ngerprints. In AVBPA'05,volume 3546 of LNCS, pages 310�319. Springer, 2005.


