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Abstract. In this paper, we propose an efficient biometric authentica-
tion protocol for fingerprints particularly suited for the minutia-based
representation. The novelty of the protocol is that we integrate the most
efficient (linear complexity) private set intersection cardinality protocol
of Cristofaro et al. and a suitable helper data system for biometrics in or-
der to improve the accuracy of the system. We analyze the security of our
scheme in the standard model based on well-exploited assumptions, con-
sidering malicious parties, which is essential to eliminate specific attacks
on biometric authentication schemes designed for semi-honest adversaries
only. Finally, the complexity is compared to the existing provably secure
schemes for fingerprint matching, which shows that the new proposal
outperforms them both in semi-honest and malicious security models.
Keywords: Secure Remote Authentication, Biometrics, Set difference,
Private Set Intersection, Standard model

1 Introduction

Over the last decade, it has been shown that biometrics have some advantages
in authentication systems compared to password-based systems, as passwords
can be easily lost, forgotten or compromised using various attacks.

However, biometrics is sensitive data, thus, biometric data, either stored on
a central database or on a tamper-proof smartcard, should be protected using
cryptographic techniques. For instance, biometric cryptosystems such as fuzzy
extractors, fuzzy vault and bipartite biotokens are used for biometric key gen-
eration, key binding and key release, respectively. Juels and Wattenberg [20]
introduce the fuzzy commitment scheme as a cryptographic primitive, which is
is applicable for biometrics that can be represented as an ordered set of fea-
tures. However, biometrics can be affected from two types of noise, i.e. white
noise that represents the slight perturbation of each feature and the replace-
ment noise caused by the replacement of some features. Thus, Juels and Sudan
have developed the fuzzy vault [19], which assumes that biometrics consists of
an unordered set of features and is designed for the set difference metric. Specif-
ically, fuzzy vault [19] is a key binding system that hides an encoded secret
among some chaff points, where the secret key is encoded as the coefficients of
a polynomial that is evaluated at the biometric feature locations such as fin-
gerprint minutia coordinates. Implementation of fuzzy vault for fingerprints are



given in [8] and [33, 32], where the latter two include helper data constructed
from the high curvature points of the fingerprint minutia, which does not leak
any information about the minutia locations and used for easing the alignment
of the query fingerprint to the original template.

However, the implementation of biometric cryptosystems come along with
various attacks that question the security of them [28,27]. In fact, the first pa-
per that considers provable security in biometric remote authentication is the
work of Bringer et al. [6] that proposed a hybrid protocol distributing the server
side functionality in order to detach the biometric data storage from the authen-
tication server. The common point of this work and the following papers designed
for security against semi-honest adversaries -where security is guaranteed if each
party follows the protocol- is that they are all implemented for biometric data
represented as a binary string such as Iris. Hence, they depend on the hamming
distance metric for the matching operation of the verification protocol. For this
particular metric, an efficient face-identification protocol between a client C' and
server S are described in [22] that is based on Secure Function Evaluation (SFE)
-a special case of Secure Multiparty Computation-. Within the same framework,
biometric identification [3,2] and authentication [29] protocols are described for
iris and fingerprint (in particular fingercode), all of which are based on euclidean
distance metric.

Finally, one should note that the most popular and widely used techniques in
fingerprint identification extract information about minutiae from a fingerprint
and store that information as a set of points in the two-dimensional plane as
in fuzzy vault. Fingerprint matching can also be performed using a different
type of information extracted from fingerprint image, i.e. FingerCode, that uses
texture information from a fingerprint scan to form fingerprint representation.
Although FingerCodes are not as distinctive as minutiae-based representations,
[3, 2] describe privacy-preserving protocols for FingerCodes due to the efficient
implementation within the euclidean distance.

2 Related Work

It is quite surprising that despite the various papers on minutia-based biometric
cryptosystems [19, 8, 33, 32, 30, 31] designed for the set difference metric, the only
paper that describes a private minutia-based fingerprint authentication protocol
based on SFE and set difference metric is [12]. In particular, the authors of [12]
design an efficient minutia-based biometric authentication scheme for a client
server architecture based on the Private Set Intersection (PSI) protocol of [13]
that is secure against semi-honest parties in the standard model and malicious
adversaries in the random oracle model (ROM). This PSI protocol is based
on homomorphic encryption and polynomial interpolation and its computation
complexity is quadratic, although the number of modular exponantiations can
be reduced to O(n log log m). Here, m denotes the size of the client set and n
denotes the size of the server set with m = n in the authentication mode. Besides,
[3,29] describe private minutia-based fingerprint matching using homomorphic



encryption for euclidean distance, the former considering semi-honest adversaries
only in a system based on garbled circuit evaluation. The latter is also based on
polynomial interpolation idea of [13] but it is much more complex compared to
the original scheme as it can be deduced from the computation complexity that
is O(nmwh) for the semi-honest case, where w and h denote the pixel sizes of
the fingerprint image.

As one can notice, current minutia-based biometric authentication schemes,
whose security is proven against semi-honest attackers are based on PSI in
particular the combination of homomorphic encryption and polynomial interpo-
lation. A natural question is whether there exists more efficient constructions of
PSI that is applicable to input sets that can be represented as an unorderded
set of elements such as fingerprint minutia. To answer this, we need to inversti-
gate several techniques that realize PSI protocols such as Public-Key-Based PSI,
Circuit-Based PSI, OT-Based PSI and Third Party-Based PSI as summerized
in [23]. Specifically, the first PSI protocol based on the Diffie-Hellman (DH) key
agreement scheme was presented in [16] without any security analysis. This pro-
tocol is based on the commutative properties of the DH function and was used
for private preference matching, which allows two parties to verify if their pref-
erences match to some degree. The Diffie-Hellman-based protocol of [16], which
was the first PSI protocol, is actually the most efficient w.r.t. communication
(when implemented using elliptic-curve crypto) [23]. Therefore it is suitable for
settings with distant parties which have limited connectivity. Lastly, it is possi-
ble to incorporate a relatively efficient zero-knowledge proof and authenticated
inputs that each party is following the protocol honestly, so that active cheating
by either party will be detected. In this context, [10] extends the protocol of [16]
for malicious server and semi-honest client by incorporating zero-knowlege proofs
and two additional communication rounds and provides a simulation based proof
in ROM in order to build a Private Set Intersection Cardinality (PSI-CA) proto-
col. Similarly, [18] also extends the protocol of [16] so that security is guaranteed
for malicious parties (both C' and S) in ROM. The protocols in [10, 18] provide
linear complexity in the sizes of the two input sets, however the PSI protocol
in [18] cannot be converted to a PSI-CA scheme due to its ROM based security
proof that reveals the common elements of the intersection set to one of the
parties (C or S).

2.1 Motivation and Contributions

When confronted with the PSI problem, most novices come up with a solution
where both parties apply a cryptographic hash function to their inputs and
then compare the resulting hashes. Although this protocol is very efficient, it is
insecure if the input domain is not large or does not have high entropy, since
one party could easily run a brute force attack that applies the hash function
to all items that are likely to be in the input set and compare the results to
the received hashes. This is exactly the case for minutia based fingerprint data.
To avoid this attack, our solution is to incorporate a malicious-secure PSI to
biometric authentication.



First of all, when designing a secure biometric authentication protocol, one
should consider three major points: The matching should be performed pri-
vately for both sides, namely, for the two parties, a client C' and a server S
who jointly compute a function of their private inputs, the parties should only
learn the output of the matching and nothing else. Secondly, the protocol should
consider both honest-but curious adversaries and malicious adversaries. This is
required for a secure biometric system in order to protect against the attack of
[1], which regenarates the enrolled biometric image from a random template with
a hill climbing attack, that depends on the matching score. However, a recent
publication [15] shows that with malicious behaviour against the cryptographic
identification protocol SciFI [22] designed for the semi-honest adversaries, one
can reconstruct a full face image with the help of computer vision techniques
although SciFI does not output any matching score. The attack relies on the fact
that a dishonest adversary is able to input vectors of any form, not just vectors
that are properly formatted [15]. The attack learns the client’s face code bit-by
bit through the output of ‘match’ or 'nomatch’ decision. Thus, the new protocol
should be designed in the malicious security model so that neither learning the
matching score nor the accept/reject decision could help a malicious party to
learn additional information about the private data of the other party includ-
ing the common elements of the intersection set as in PSI schemes. Finally, the
protocol should be practical and efficiently implementable with linear complex-
ity (in terms of computation and communication cost) and it should depend on
widely adopted representations of biometric data.

With these goals in mind, we present a new minutia-based fingerprint authen-
tication protocol for set difference metric between a client and a server based on
PSI techniques. In particular, the only work within this framework is the work
of [12], that depends on the PSI scheme of [13].

Specifically, our protocol is inspired by the PSI-CA scheme of [10] although
our scheme is defined on an elliptic curve group that simplifies the PSI-CA pro-
tocol of [10] slightly by removing the last step of the protocol (i.e. hashing), but
more importantly, the need for a random oracle which questions the security of
the systems when the ROM is replaced by a real hash function. In fact, certain
artificial signature and encryption schemes are known which are proven secure in
the ROM, but which are trivially insecure when any real function is substituted
for the random oracle [7]. This way, we also reduce the communication com-
plexity since the communication overhead of [10] amounts to 2(m + 1) |pl|-bit
values with |p| = 1024 or |p| = 2048, whereas our protocol requires 2(m + 1)
|g]-bit values with |q| = 160 or |q| = 224. Thus, our scheme is a scalable and
efficient protocol with linear complexity and its security relies on well exploited
cryptographic assumptions (DDH and [-DDHI) in the standard model. Besides,
our protocol reveals neither the server nor the client the elements of the inter-
section set S, but only the size of the intersection set d = |S| is learned by a
single party (C or S). Similar to the scheme of [12], the computation complexity
of |29] is also quadratic, i.e. O(nmwh) for the semi-honest case, where w and
h denote the pixel sizes of the fingerprint image. Thus, our proposal is more



efficient compared to the current private fingerprint matching schemes [12,29]
that are based on Oblivious Polynomial Evaluation (OPE) of [13].

Furthermore, we discuss the security of our scheme in malicious model in
order to prevent the attacks presented in [1,15]. Unfortunately, the PSI-CA
scheme of [10] can only achieve one-sided simulatibility in ROM, i.e. the scheme
only provides privacy of the server against a semi-honest client. Thus, we extend
the security of our protocol so that both parties can be corrupted by a malicious
adversary in standard model.

To the best of our knowledge, the proposed scheme is the first private minutia-
based fingerprint authentication protocol for set difference metric that achieves
complexities linear in the size of input sets, i.e. set of user’s minutia that is secure
in the standard model both for semi-honest and malicious adversaries.

3 Building Blocks

3.1 Fingerprint data

The approach that forms the basis for the biometric data representation of our
scheme is the Minutiae Fuzzy Vault Implementation of Uludag et al. [33,32].
Our system operates on the fingerprint minutiae that are generally represented
as (x;,y;,0;) triplets, denoting their row indices (z;), column indices (y;) and
angle of the associated ridge, respectively. Next, we concatenate z; and y; co-
ordinates of a minutia as [x;|y;] to arrive at the data unit b; for ¢ € [1,m]. To
account for slight variations in minutiae data (due to fingerprint distortions),
raw minutiae data are first quantized. We require an alignment step where the
query minutiae templates are aligned to the registered template based on using
auxiliary alignment data aux, i.e. helper data derived from the orientation field
of fingerprints. Naturally, it is required that the helper data does not leak any
information about the minutiae-based fingerprint template. Another approach
could be the use of alignment-free features, i.e. features that do not depend on
the finger’s rotation or displacement. The reader is referred to [33,32] for the
details of this representation.

3.2 Cryptographic tools

Since our system works in set difference metric, we need to compare/match
aligned query template to the registered template in a private manner. In par-
ticular, our protocol is inspired by the (reversed) PSI-CA scheme of [10] that
enables two parties, i.e. a client C' which has a set B’ = (b],...,b),,) of size m
and a server S which has a set B = (b1, ...,b,) of size n to compute the size of
the intersection of their respective sets without disclosing anything about their
inputs including the common elements of the intersection set. After the compu-
tation the server has obtained the size of the intersection d = |B N B’| and the
client has learnt nothing other than the accept/reject notification based on the
system threshold .



In short, PST and PSI-CA can be achieved using OPE [13], Oblivious Pseudo-
Random Functions (OPRF) [17], Bloom filters [11] and blind signatures [10],
where the latter is the primitive we require in our protocol to achieve linear
complexity. As different from the scheme of PSI-CA of [10] we eliminate the last
step of the protocol, namely hashing the result of the verification and computing
the size of the intersection on these hashes. Besides, we swap the roles of the
server and the client in [10], thus, the biometric server obtains a signature on
its input without disclosing it. This simplification is caused by describing our
protocol on a suitably chosen elliptic curve group where DDH (and I-DDHI)
assumption holds, whereas PSI-CA of [10] works on groups where DDH (and
One-More-Gap-DH) assumption holds. Thus, the client performs 2(m + 1) ex-
ponentiations and server computes (m + n) modular exponentiations modulo
p-bit prime with p = 1024 or p = 2048, whereas in our scheme the same op-
erations are performed modulo ¢-bit prime with ¢ = 160 or ¢ = 224. In [10],
communication overhead amounts to 2(m + 1) p-bit values and n k-bit values,
where & is a security parameter of H:{0.1}* — {0.1}". Since, we eliminate H’
and work on an elliptic curve group, the communication complexity is reduced
from p-bit values to ¢-bit values. To provide client and server privacy against
malicious adversaries, we employ standard techniques of cryptography such as
zero knowledge proof of knowledge (PoK).

3.3 Security Model

We provide efficient biometric authentication protocols with security in the pres-
ence of both semi-honest and malicious adversaries. Here, the term adversary
refers to insiders, i.e., protocol participants. Outside adversaries are not consid-
ered, since their actions can be mitigated via standard network security tech-
niques. Informally, we have the following goals for our protocols.

Client Privacy: No information is leaked about client C' biometrics, except
an upper bound on its size m and the matching score, i.e. the number of common
elements between the biometric template registered at the server and the client’s
fresh template.

Server Privacy: C learns no information beyond an upper bound on the
size of his registered feature set n at the server and the accept/reject notification.

Unlinkability: Neither party can determine if any two instances of the pro-
tocol are related, i.e., executed on the same input by client or server, unless this
can be inferred from the actual protocol output [10].

Our first protocols for authentication are presented in the semi-honest model,
i.e. adversaries that are honest-but-curious, who follow the protocols and try to
gain more information than they should on the other parties’ inputs. An honest-
but-curious party is a party that follows the instructions of the protocol, but
may record the communications it receives and try to infer extra information
using such recordings. In this case, the traditional real-versus-ideal definition
is applied in the security proof. Basically, the protocol privately computes a
function for an honest-but-curious Client C' (resp. Server S) if there exists a
PPT algorithm SIM that is able to simulate the view of C' (resp. S), given only



Client’s (resp. Server’s) (private and public) input and output. The random
variable representing the view of Client (resp. Server) during an execution of the
protocol with Client’s private input B’ = {b}}, Server’s private input B = {b;}
is denoted here by Views(B, B’, P) (resp. Viewc(B, B', P)).

Definition 1. (Privacy against Honest-but-curious Adversaries).

Let Viewg(B, B') be a random variable representing server’s view during execu-
tion of PSI-CA with inputs B, B’, P. There exists a PPT algorithm SIM that
is able to simulate the view of Server (resp. Client), given only Server’s (resp.
Client’s) respective (private and public) input and output; i.e., ¥V(B, B, P):

Views(B,B', P) = SIMs(B, P,|BN B'|))
(resp. Viewc (B, B', P) = SIMc(B', P))

The security of our protocols relies on the following assumptions.

Definition 2. Decisional Diffie-Hellman (DDH). Let x,y, z < Zy and g € G be
a random generator of the prime order group G. Given (g,9%,gY) distinguishing
between the distributions (g, g%, g¥, ¢*Y) and (g, 9%, g¥,9%) is hard.

Definition 3. I-Diffie-Hellman inversion problem (I-DHI). Let | € Z, z & Zy
. 2 1 . 1.
and g € G as above. Given (g,9%, 9% ,...,9% ) computing g= is hard.

Definition 4. [-Decisional Diffie-Hellman inversion problem (I-DDHI). Let | €
Z, z & Zy, g € G. Given (g,gz,gZQ, ...,gzl,v) deciding whether v = g= is hard.

In section 7, we present our last protocol for authentication in malicious model,
where a malicious adversary uses any kind of strategy to learn information. A
malicious party is a part that does not necessarily follow the instructions of the
protocol. Finally, the number of minutiae used in the protocol, namely n and m,
are considered to be public. If privacy of the number of minutiae is required, C'
and S can simply agree on a size (or two sizes) beforehand and then adjust the
number of minutiae they use as input by either omitting a number of minutiae
or adding a number of chaff minutiae to their set.

4 The new Protocol

As a warm up, this section presents our first construction in authentication mode,
secure in the presence of semi-honest adversaries in the ROM. An overview of
the scheme is given in Fig. 1. Although our scheme integrates the PSI-CA of [10],
its security is based on a different assumption. Besides, we work on a group G
implemented using a group of points on a certain elliptic curve with generator g
of prime order ¢ and require a MaptoPoint hash function (modeled as a random
oracle) H: {0.1}* — G together with two random permutations P and P’.

The client C' registers his biometric features b; for i € [1, n] at the server S as
described in section 3.1 and stores the helper data aux publicly. For verification,



C presents his fresh biometrics, aligns it with the help of aux, and obtains {b}}
for i € [1,m]. Next, C' makes an authentication request and the server S replies
by masking the hashed biometric feature set items corresponding to the client
C with a random exponent k € Z, and sends resulting w;s to C, which blindly
exponentiates them with its own random value o € Z,. Next, C shuffles these
vis and sends to S the resulting u/s together with the exponentiations of client’s
items H(D})'s to randomness « € Zg as as. Finally, S tries to match these
x; values received from C with the shuffled u; values, stripped of the initial
randomness k € Z,. S learns the set intersection cardinality (and nothing else)
by counting the number of such matches and notifies C' based on the system
threshold ¢ with an accept/reject decision.

SERVER CLIENT
B=(bi,..., bu). t B =(b'ss b'w)

aligned feature set B’

Registered feature set B P@B)=0@n...0w

pick k €x 7. oompte, ick a er Zq, compute
for i = [1,n]: w;i=H(b:) (Wi) (isisn} foll?j _ ﬁ, mR] q;_ - I—?(b'-)”
_— sml x = H(E

fori=[Ln]: (u:)™ =y; (o) 1isn} ’f(or i= [1,;1]: (vi =w? )
A=y vt 0 - P (vi,., va) = (us, .., tin
‘{Jb >}Vi} {xf, >xWL}‘ (x_;){]fjfm}
If d > t, authenticated
- @
accept/reject

Fig. 1. Protocol in ROM: m = n

Lemma 1. The proposed scheme achieves client privacy against a semi-honest
server based on the [-DDHI assumption in the random oracle model.

Lemma 2. The proposed scheme achieves server privacy against a semi-honest
client based on the DDH assumption in the random oracle model.

Due to page limitations, the proofs will appear in the full version of the paper.

By designing the protocol for an elliptic curve group G, we do not require
a second hash function H’, hence our scheme is less complex compared to [10],
since the elements of G are already 160 or 224-bits instead of 1024 or 2048-bit
as in [10]. Hence, the comparison performed over the H' values as in [10], can be
performed on ,T;»S and ys directly. Since the protocol is designed for semi-honest
adversaries, the attack of [1] does not work since the parties are passive attackers
and do follow the protocol specifications. However, the distance/matching score



or accept/reject notification could be useful for a malicious server for a brute
force attack against the privacy of the client or the opposite, namely, a malicious
client trying to impersonate a user. In other words, this information is only
helpful as in the case of malicious behaviour by one of the parties. However,
to prevent malicious behaviour as presented in [1,15], where the latter attack
is able to break the secure face identification scheme SciFI even if no matching
score or distance information is output by the protocol, one should extend the
security of the new scheme for malicious adversaries.

5 Security in Standard model

As described above, our protocol requires one hash function that is assumed as
a random oracle. However, by slightly modifying the protocol, we are able to
prove the security of our scheme in the standard model. In particular, instead
of extracting the input set of each party via the random oracle queries as in
[10], we use the Proof of Knowledge (PoK) to extract the randomness k used by
each party and determine the input set as in [17, 18]. Hence, we use the input
set of the semi-honest (resp. malicious) party directly in the simulation due
to the extraction of sender’s inputs given this randomness that is obtained by
running the extractor algorithm for PoK with the semi-honest party to extract
k, such that it satisfies the commitment ¢* sent by that semi-honest party. As
an example application, we can replace the hash function with the MapToPoint
hash function of [14, 4], we are able to prove the security in the standard model.

For instance, [14] relies on a variant of Dodis-Yampolskiy’s Pseudo-Random
Function (PRF) based on the Boneh-Boyen unpredictable function [17]. The
Boneh-Boyen function is f,(z) = g% @+?) where g € G generates a group G of
prime order ¢, and y is a random element in Zj. This function is unpredictable
under the computational {-DHI assumption on G [17]. Thus, the decisional (-
DHI assumption on group G implies that the Boneh-Boyen function is a PRF.
Besides, the OPRF construction of [17] is also based on the Boneh-Boyen PRF
with the sole modification being a substitution of a prime-order group G with a
group whose order is a safe RSA modulus.

Lemma 3. The proposed scheme achieves client privacy against a semi-honest
server in the standard model.

Proof. We show that server’s view can be efficiently simulated by a probabilis-
tic polynomial time algorithm SIMg. The server’s view includes his inputs B,
randomnesses he uses, and messages he receives. The server has inputs of the
registered feature set B = {b;} and randomness k € Z,. We follow a similar proof
technique that is presented in [17]. The simulator is constructed as follows:

1. Upon receiving ¢*, 71 and wi, ..., w, from the server, if the server succeeds
in the proof w1, then STMg runs the extractor algorithm for m; with the
server to extract k. Then when getting the randomness k from S, ST Mg tries
every possible input in the range of the hash function -which is identical to



SERVER CLIENT
B=(by, ..., b), t B =(b1, b

Auth. request aligned feature set B’
PB)=(&1....bw)
If m: does not verify, abort

A

Registered feature set B
pick k er Zq, compute g* . ;
for i = [1,n]: wi=H(E) g i, (W) pr<isny plcl.{ & Erls, computega
m=PoK {k| g"} > forj=[1,m]: x;=H(E")
= m=PoK{a|g"}
o . . . = o
If m> does not verify, abort g% () usisn) fori=[1n]: vi=wi
fori=[Ln]: (u)"™ =y < . (2) oy P (v, ..., va) = (s, ..., i)
2, . =j=m
d:|{}"1:"'>y"?}ﬂ{x1 >"'>x””}| ! !
If d > t, authenticated

v

accept/reject

Fig. 2. Protocol in standard model: m ~n

the Boneh-Boyen PRF- to reconstruct the set B as in OPRF proof of [17].
This can be performed due to the fact that the domain of this hash/PRF is
polynomially-sized [17].

2. SIMg picks at random a « Z,, computes g%, computes 7, and adds dis-
tinct pairs (H(b;), z;)=(hi, x;), where x; =H(b;)* and b;s (i.e. the set B)
are computed as in the previous step. SIMg computes v; = w§ and sends
P'(v1,...,0n) = (u1,...,un) and (z1, ..., 2y, ) to the server. Here, (21, ...,24)
denotes the intersection of the client and server’s input set constructed by
selecting a random subset of x; =H(b;)* values with size |d|. For the remain-
ing m — d elements, the simulator padds the set with random values, i.e. ¢
fori e [d+1,m)].

Server learns nothing either interacting with the real world client or inter-
acting with STMg, therefore, the environment (distinguisher) D’s views in the
real world and ideal world are indistinguishable. Now we show that this STMg
does a successful simulation. Consider the following series of games:

1. In the first game, the public parameters are generated as in the definition of
the protocol, and then the adversary A interacts with the real world party
as defined above.

2. In the second game, the parameters are generated the same way, but now A
interacts with a SIM which behaves as the real protocol for step 1, but then
behaves as STMg for step 2. The only difference then is that this simulator
padds the set with random values, i.e. ¢ for i € [d+ 1,m] for the remaining
m — d elements. This differs from the first game only in that the elements
not common with the set B and the simulated set B’ are randomly chosen in




order to simulate the fresh biometric reading of the client biometrics which
cannot be equal to the registered biometric set B totally due to the nature
of biometrics. Thus, this is indistinguishable from the first game by the
randomness of these padded elements chosen from the underlying group.

3. In the last game, the public parameters are generated the same way, and
then adversary A interacts with STMg. This differs from the second game
only in that SIMg extracts k from the proof, and uses this k£ to form the
registered biometric set of the authenticating client at the server. Note that
if the proof is sound, then this set will be identical to that used in the
previous game. Thus this is indistinguishable from the previous game by the
extraction property of the ZK proof system.

Since the first game is indistinguishable from the third, the probability that the
adversary A can detect the simulation in each game can differ only negligibly.
Thus, the simulation is successful.

Lemma 4. The proposed scheme achieves server privacy against a semi-honest
client in the standard model.

Due to page limitations, the proof will appear in the full version of the paper.

6 Use of multi-modal biometrics for high-entropy inputs

One factor limiting the security of biometric cryptosystems is the entropy of the
biometric feature data. To increase the entropy of biometric data and to achieve
higher privacy levels in biometric cryptosystems, one combines the information
of several biometric traits (e.g. fingerprints with finger vein, or face with iris)
or several instances of the same biometric trait, denoted as multi-biometrics
systems. Compared to traditional (uni)biometric authentication, multibiometric
systems offer several advantages such as better recognition accuracy, increased
population coverage, greater security, flexibility and user convenience. For these
systems, different fusion approaches exist, and in [21], fusion at the feature level
is performed for both multi-modal and multi-instances that the key entropy in
the biometric cryptosystem is increased to sufficient levels required in security
applications. In [26,25,24], another fusion at the feature level is described in
the context of biometric IBE in order to avoid the collusion attacks inherent in
fuzzy IBE systems. Considering our biometric matching system, one can follow a
similar strategy as described in [28]. Specifically, 2048 bits Iriscode b has inherent
entropy of 249 bits. If we implement the Iris fuzzy commitment scheme of [5], we
can see this Iris code as z = b @ ¢, where ¢ is a codeword that is stored in form
of H(c) as a helper data together with z. If we concataneted to each biometric
feature (for instance fingerprint minutia value) this ¢, each of the biometric data
has enough input entropy for the hash function. To further increase the input-
entropy, a client password can be concatanated to the biometric inputs, where
a randomly generated 8-character password can have 52-bit entropy [21].



7 Security in Malicious model

Consider a malicious client (or an adversary trying to impersonate a user) that
implements one of the attacks presented in [1, 15] against the biometric authen-
tication system. To prevent this, the security should be guaranteed considering
malicious behaviour of both parties. We note that the PSI-CA protocol of [10]
provides security against semi-honest server and malicious client, when the roles
of server and client are swapped, namely the protocol provides one-sided simu-
latibility in ROM.

To upgrade our scheme presented in Fig. 2 to malicious parties in the stan-
dard model, we add one additional zero-knowledge proof 73 as in [10], where
m3= PoK {a|(JT%, wi)® = T[]~ ui} since a proof of logical and of n separate
statements w{' = u; would reveal the relationship between each index ¢ of wj;
and corresponding index j of w; with w® = wu,; after permutation P’ allow-
ing the server to determine which elements belong to the intersection, rather
than just how many [10]. We note that considering our protocol in a group
equipped with a bilinear map does not solve the problem since the server can
check é(w;, g*) = é(u;, g) for each u; until he determines all the common ele-
ments instead of just their cardinality.

The commitments g, g® together with the proofs of knowledge allows the
simulator to extract the malicious party’s input and may help to ensure that
the inputs are consistent and that the same values are used along the protocol.
However, since any logical and of n separate PoK as in the above sense would
reveal the common elements themselves instead of just their total number, a
challenge /response mechanism similar to the one in [10] is needed to guarantee
that the same « is used on each w;. An overview of the protocol is presented in
Fig. 3.

Lemma 5. The proposed scheme achieves client privacy against a malicious
server in the standard model.

Sketch of the Proof. A malicious server against a honest client can behave arbi-
trarly as in the following ways.

Casel: A malicious server can pick a random set of inputs instead of the
registered user information B or does not apply the same random exponent
k that is committed in w; = H(b;)* and g*. To avoid this, one can include
a zero knowledge proof in order to prove the honest client that the malicious
server knows the underlying registered biometric feature hashes and another
zero knowledge proof to prove that the committed value in ¢g* is consistently
used in all w;s. However, as it is proven in [18], the server (i.e. the receiver of
the PSI scheme of [18]) cannot change its input set B after sending the w;s
since the server’s input set is committed in the first and only message he sends
regarding the biometric data. With this behaviour, the server does not gain
any advantage since the honest client can detect the malicious behaviour from
the authentication result (i.e. a reject decision for a honest client that should
be accepted) as the malicious server cannot compute the matching score and
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Fig. 3. Protocol in malicious model: m =~ n

returns a random accept/reject notification or aborts the protocol without any
notification. We note that an accept decision of that server for a honest client that
should be authenticated remains undetected. Hence, to prove that the committed
input set of the server belongs to the particular client that tries to authenticate to
the system, authorization of server input must be enforced. This can be achieved
via the signature of the sensor on the inputs of the server during the registration
phase of each client to the server, since the sensor, which captures the biometric
data of each client is fully trusted in any biometric authentication system [6]. An
example application in a different context is presented in the Authorized PSI-
CA scheme of [10], which we can integrate into our construction with the sole
modification of substitution the prime-order group G with a group whose order
is a safe RSA modulus N. It is shown that prime-order groups also imply that
the Boneh-Boyen function in a composite-order group N remains a PRF under
the [-DDHI assumption on such groups (and harduness of factoring) and the same
generic-group argument which motivated trust in the [-DDHI assumption on the
prime-order groups carries to composite-order groups as well [17]. Hence, if we
use the MapToPoint hash function of [14] that is identical to the Boneh-Boyen
PRF, we can integrate authorization of server inputs via the signatures of the
trusted sensor at the registration.

Case2: Hence, the only misbehaviour left for the malicious server is to abort
without sending the final decision although it computed the (correct) matching
score. This can be eliminated by providing fairness via integrating an optimistic
fairness protocol, i.e. a semi-trusted offline third party arbiter. Fairness is out of
the scope of this paper.



Lemma 6. The proposed scheme achieves server privacy against a malicious
client in the standard model.

Due to page limitations, the proofs will appear in the full version of the paper.

8 Comparison

As it is noted in [23], the Diffie-Hellman-based private matching protocol of [16],
which was the first PSI protocol, is actually the most efficient w.r.t. communica-
tion (when implemented using elliptic-curve crypto). Besides, the PSI scheme of
[18], PSI-CA scheme of [10] and our scheme are based on small variations of the
protocol in [16], this protocol is suitable for settings with distant parties which
have limited connectivity. To the best of our knowledge, the only schemes that
provide private fingerprint matching protocols with a concrete security analysis
based on fingerprint minutia representation are described in [3], [29],[12], where
the latter considers set difference metric, whereas the others implement the pro-
tocols for euclidean distance. All three of the protocols provide security against
semi-honest adversaries, although the scheme of [29] includes an extention of
his semi-honest protocol for malicious adversaries without any security analysis.
Thus, the comparison is based on the protocols for semi-honest adversaries for
consistency and we assume m ~ n for the authentication mode since the total
number of minutia m registered at the server and captured at the client side n
will be close to each other as opposed to the identification mode as in [3].

Table 1. Comparison of time complexity

Complexity Estimate, i.e. Underlying
Number of exponentiations Method
Blanton et al.” quadratic in m Homomorphic encryption
[3] + m OT protocols and Garbled Circuits
Shahandashti et al. [29] quadratic in m OPE
Feng et al.t [12] quadratic in m OPE
Our Constructioni linear in m PSI-CA

*:in authentication mode;
t: [13] reduces the number of exponentiations to O(n log log m) using Horner’s rule and
hashing for bucket allocation; I m ~ n with 20 < m < 40;

Therefore, our construction is the most efficient authentication protocol for
minutia-based fingerprint authentication based on PSI techniques, in particular
the OPE of [13]. In addition, our protocol is more efficient compared to the
garbled circuit-based construction of [3], as it is shown in [9], the PSI and PSI-
CA constructions of [10] are more efficient compared to garbled-circuit based
constructions. Finally, the only scheme that considers malicious parties is [29]
(without any security analysis). Similar to the comparison in the semi honest



model, our scheme outperforms [29] also in malicious model due to the additional
PoKs at each step of the protocol which is already complex enough for semi-
honest model.

9 Conclusion

In this paper, we design an efficient biometric authentication protocol for a
client-server architecture based on one of the most efficient PSI-CA technique.
Our scheme is suitable for any type of biometrics that can be represented as
an unordered set of features similar to the constructions of fuzzy vault. We
provide the security in standard model based on the well-exploited assumptions
and consider malicious parties, which is essential to eliminate specific attacks
on biometric schemes. A future work could be integration of fairness protocol to
prevent a malicious abort of the server.
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