
HAL Id: hal-01442473
https://inria.hal.science/hal-01442473

Submitted on 20 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Merging Cellular Automata Rules to Optimise a
Solution to the Modulo-n Problem

Claudio M. Martins, Pedro De Oliveira

To cite this version:
Claudio M. Martins, Pedro De Oliveira. Merging Cellular Automata Rules to Optimise a Solution to
the Modulo-n Problem. 21st Workshop on Cellular Automata and Discrete Complex Systems (AU-
TOMATA), Jun 2015, Turku, Finland. pp.196-209, �10.1007/978-3-662-47221-7_15�. �hal-01442473�

https://inria.hal.science/hal-01442473
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Merging Cellular Automata Rules to Optimise a

Solution to the Modulo-n Problem

Claudio L.M. Martins
2
 and Pedro P.B. de Oliveira

1,2

Universidade Presbiteriana Mackenzie

Faculdade de Computação e Informática1 &

Pós-Graduação em Engenharia Elétrica e Computação2

Rua da Consolação 896, Consolação

01302-907 São Paulo, SP - Brazil

claudio.luis.martins@terra.com.br

pedrob@mackenzie.br

Abstract. Understanding how the composition of cellular automata rules can

perform predefined computations can contribute to the general notion of emerg-

ing computing by means of locally processing components. In this context, a

solution has been recently proposed to the Modulo-n Problem, which is the de-

termination of whether the number of 1-bits in a binary string is perfectly di-

visible by the positive integer n. Here, we show how to optimise that solution in

terms of a reduction of the number of rules required, by means of a merging op-

eration involving of the rules´ active state transitions. The potential for a more

general usage of the merging operation is also addressed.

Keywords: Cellular automata, emergent computation, rule composition, Modu-

lo-n problem, MODn problem, merging, active state transitions, parity problem.

1 Introduction: The Modulo-n Problem Solution to be Optimised

Cellular automata (CAs) are discrete dynamical systems with a grid-like regular lat-

tice of identical finite automata cells, each cell having an identical pattern of connec-

tions to its neighbours. The next state of each cell is given by the transition rule of the

automaton, according to the current cell state and those of its neighbouring cells. CAs

may perform arbitrary computations, even out of the action of simple local rules [6].

One of these computations consists in solving the parity problem, herein denoted

the MOD2 problem, which consists of determining the parity of the number of 1s in a

binary string: even parity, when the number of 1s modulo-2 is 0, or odd parity, when

the number of 1s modulo-2 is 1.

In its formulation for cellular automata, this computational problem is considered

solved when any odd-sized (N) binary string initialising a cyclic lattice, is converted,

after some time steps, into 0
N
 or 1

N
, if the initial amount of 1-bits is even, or odd,

respectively. The MOD2 problem is ill-defined for even-sized lattices because the

initial configuration 1
N

would have an even number of 1s, which would be a contra-

diction because 1
N

should be the final configuration for lattices with odd number of

mailto:claudio.luis.martins@terra.com.br
mailto:pedrob@mackenzie.br

1s. Although it has been proved in [5] that a one-dimensional rule with radius at least

4 is required to solve MOD2, [2] and [4] showed how to solve the problem with a

composition of only two elementary rules. This makes it evident the power of rule

compositions.

As a general case, we refer to the MODn problem, which consists of determining

whether the number of 1-bits in a cyclic binary string is multiple of n, with the con-

straint that it is always ill-defined for lattice sizes multiple of n.

In [1], we described a generalised solution to the MODn problem, based upon the

application of a set of one-dimensional CA rules, in a pre-determined order, which

amounts to composing the individual rules employed. This solution is only constrained

in that the lattice size N cannot be a multiple of n nor a multiple of any factor of n.

Such a general solution (Sn) for the MODn problem, for any binary string  with size

N, is given below, where we name rules 0
nR and 1

nR as the Replacement rules, and

0
1

G , 1
1

G , 0
2

G , 1
2

G and so on, as the Grouping rules, whose meanings are defined in

the next section.

Sn =



















































































n

N

n

NNN

n

NNNN

nnnn
RGGRGGE 00

1
0

2
11

1
1

2
22222254 . (1)

The solution means that starting with the size-N initial configuration , the follow-

ing sequence of rule applications should be performed:

1. Apply rule 0
nR for  n

N time steps, followed by rules 0
1

G , 0
2

G and so on, up

to 0
2nG , for  2

N time steps each.

2. Apply rule 1
nR for  n

N time steps, followed by rules 1
1

G , 1
2

G and so on, up

to 1
2nG , for  2

N time steps each.

3. Repeat the two previous procedures  n
N times.

4. Finalise the process, by applying elementary CA rule 254 for  2
N time steps.

Since the sequence of rules superscripted with 0 operate on the 0-bits and the ones

superscripted with 1 operate on the 1-bits, the stages 1 and 2 above may be inverted,

with the same global outcome.

In this paper, we propose a simplification of the solution above, by performing a

merging procedure of the rules´ active state transitions, that is, those that replace the

state of the centre cell in the neighbourhood.

In the next section, we present the Replacement rules, the Grouping rules and the

result of their composition. In Section 3, we discuss the active state transitions of the

rules present in Sn, as well as how they can be used to simplify their representations.

The merging of these rules is then discussed in Section 4, as well as how the active

transitions should be modified so as to render viable mergings. We conclude in Sec-

tion 5 with various remarks, in particular addressing some conditions we must respect

in the choice of rules to be merged and the active transitions to be modified.

2 Replacement and Grouping Rules

Two key roles are required for rules to solve the MODn problem: to transform cer-

tain blocks of states of a configuration, and to group together specific kinds of blocks;

these roles are achieved by the Replacement rules (R) and the Grouping rules (G),

respectively. Elementary rule 254 just finalises the problem, by preserving the config-

uration 0
N
, and transforming all the others to 1

N
.

Replacement rules 0
nR can replace n end 0s, of a sequence of n or more consecu-

tives 0s, with n 1s, while, analogously, Replacement rules 1
nR can replace n end 1s, of

a sequence of n or more consecutives 1s, with n 0s. Both are, therefore, MODn-

conserving rules. Considering the n end bits, 0s or 1s, that need to be replaced of a

sequence of n or more consecutive identical bits, the following cases are possible: n

bits from the left, n-1 from the left and 1 from the right, n-2 from the left and 2 from

the right, …, 2 from the left and n-2 from the right, 1 from the left and n-1 from the

right, and n bits from the right.

Knowing that a one-dimensional CA rule that changes n end bits from one side of

the string must have at least radius n, and that it suffices radius n-1 for a rule that is to

change n-1 bits from one side and 1 from the other side, or n-2 bits from one side and

2 from the other side, and so on, we can consider only the smallest possible radius of

these rules.

So, there are n-1 rules that replace n end 0s, of a sequence of n or more 0s, with n

1s, namely, rule 0
1,1nR (n-1 bits from the left and 1 from the right), that transforms

the strings 10
n-1

0
x
01 into 11

n-1
0

x
11, rule 0

2,2n
R (n-2 bits from the left and 2 from the

right), that transforms the strings 10
n-2

0
x
001 into 11

n-2
0

x
111, and so on, up to rule

0
1,1 n

R (1 bit from the left and n-1 from the right), that transforms the strings

100
x
0

n-1
1 into 110

x
1

n-1
1; in all cases, for any integer x ≥ 0.

By applying Replacement rules for  n
N iterations, no sequence with n or more con-

secutive identical bits is left in the lattice, except if its configuration is 0
N
 or 1

N
.

In order to eliminate simultaneous occurrence of different blocks of the same bit

left by the Replacement rules, the smaller blocks will be grouped into larger ones,

moving themselves through the lattice, according to the Grouping rules.

Grouping rules are those that can shift to the left or to the right, strings of m identi-

cal bits, in order to group them with larger strings of the same bit.

We refer to a Grouping rule that can shift m 0s as 0
mG ; but since this movement

may be possible to the left or to the right, we denote it 0
mG


 when the movement is to

the left, and 0
mG


 when the movement is to the right. Analogously, in order to shift

and group m 1s, rules 1
mG


 and 1
mG


 are employed, or just 1
mG , indistinctly.

Rules that can only move an isolated bit, 0 or 1 (0
1

G or 1
1

G , respectively), should

have, at least, radius 2. Rules that can only move an isolated pair of bits should have at

least radius 3, and so on. These rules are also MODn-conserving rules.

For either 0 or 1, n-2 Grouping rules will be used, because, after the application of

the Replacement rules, no strings of consecutive identical bits larger than n-1 will

remain in the lattice. So, we just have to move strings smaller than n-1 consecutive

identical bits to group them into the larger blocks of the same bit.

In order to solve the MOD2 problem, since n = 2, no Grouping rules are necessary,

as demonstrated in [4].

By composing only Replacement and Grouping rules, with no application of the el-

ementary rule 254, any initial configuration is transformed into another that belongs to

a reduced group of final configurations. We disregard differences due to rotational

symmetry, which means that final configurations as 1100000000, 0110000000, ...,

0000000110 are considered the same as 0000000011.

Simplifying the possible relationships between initial and final configurations be-

fore applying rule 254, we have the following, where ||1 stands for the number of 1s

in string :

If MODn(N) = MODn(||1) and both ≠ 0 (ill-defined problem):

 MODn(||1) ≠ 0: 1
N

(meaning that, when MODn (||1)=1, convergence is to 1
N
)

If MODn(N) ≠ MODn(||1):

 MODn(||1) = 0: 0
N

 MODn(||1) ≠ 0: 0
N-MODn(||1)

1
MODn(||1)

 or some necklaces

We have already disregarded the lattices with size N multiple of n (ill-defined prob-

lem), where MODn(N) = 0.

The predominance of 0s instead of 1s is because, at the end, we use the Replace-

ment rules that operate on the 1s, transforming them into 0s.

Necklaces are configurations of the form (0
A
1

B
)

C
, for integers A, B and C, where

A < n and B < n, or A < n and B > n, but B is not multiple of n, or B < n and A > n but

A is not multiple of n. For necklace configurations, the Grouping rules just cause

shifts on the lattice, with no further effect; also, the Replacement rules cause no effect

when A < n and B < n, or may lead to periodic regimes only when A > n or B > n, by

continuously transforming (0
A
1

B
)

C
 into (0

A’
1

B’
)

C
, back and forth.

If N is a prime number, no necklace will remain in the lattice.

Therefore, for any initial configurations where MODn(||1) = 0, the problem is al-

ready solved, as defined. However, for all the other configurations where MODn(||1)

≠ 0 should be converted into 1
N
, elementary rule 254 can be used, without affecting

the configuration 0
N
.

All the details, lemmas and their proofs, and further explanations regarding this

section can be found in [1].

3 Active State Transitions and the Simplified CA Representations

A solution for the MOD3 problem was reported in [3] and further optimised and

generalised in [1]. In order to solve the MOD3 problem we need radius 2 rules as

Replacement rules and Grouping rules. A radius 2 rule has 32 state transitions that can

be active or not: by active transition, we mean those that change the state value of the

centre cell of the neighbourhood.

Transition Transition

31 1 1 1 1 1 1 31 1 1 1 1 1 1

30 1 1 1 1 0 1 30 1 1 1 1 0 1

29 1 1 1 0 1 1 29 1 1 1 0 1 0 1 on the left

28 1 1 1 0 0 1 28 1 1 1 0 0 1

27 1 1 0 1 1 0 27 1 1 0 1 1 1 Isolated 0

26 1 1 0 1 0 0 26 1 1 0 1 0 1 Isolated 0

25 1 1 0 0 1 0 25 1 1 0 0 1 0

24 1 1 0 0 0 1 1st 0 from the left 24 1 1 0 0 0 0

23 1 0 1 1 1 1 23 1 0 1 1 1 1

22 1 0 1 1 0 1 22 1 0 1 1 0 1

21 1 0 1 0 1 1 21 1 0 1 0 1 0 1 on the left

20 1 0 1 0 0 1 20 1 0 1 0 0 1

19 1 0 0 1 1 0 19 1 0 0 1 1 0

18 1 0 0 1 0 0 18 1 0 0 1 0 0

17 1 0 0 0 1 1 2nd 0 from the left 17 1 0 0 0 1 0

16 1 0 0 0 0 1 2nd 0 from the left 16 1 0 0 0 0 0

15 0 1 1 1 1 1 15 0 1 1 1 1 1

14 0 1 1 1 0 1 14 0 1 1 1 0 1

13 0 1 1 0 1 1 13 0 1 1 0 1 0 1 on the left

12 0 1 1 0 0 1 12 0 1 1 0 0 1

11 0 1 0 1 1 0 11 0 1 0 1 1 1 Isolated 0

10 0 1 0 1 0 0 10 0 1 0 1 0 1 Isolated 0

9 0 1 0 0 1 0 9 0 1 0 0 1 0

8 0 1 0 0 0 1 1st 0 from the left 8 0 1 0 0 0 0

7 0 0 1 1 1 1 7 0 0 1 1 1 1

6 0 0 1 1 0 1 6 0 0 1 1 0 1

5 0 0 1 0 1 1 5 0 0 1 0 1 0 1 on the left

4 0 0 1 0 0 1 4 0 0 1 0 0 1

3 0 0 0 1 1 1 1st 0 from the right 3 0 0 0 1 1 0

2 0 0 0 1 0 1 1st 0 from the right 2 0 0 0 1 0 0

1 0 0 0 0 1 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Active

Transition

Active

Transition

24 1 1 0 0 0 1 1st 0 from the left 29 1 1 1 0 1 0 1 on the left

17 1 0 0 0 1 1 2nd 0 from the left 27 1 1 0 1 1 1 Isolated 0

16 1 0 0 0 0 1 2nd 0 from the left 26 1 1 0 1 0 1 Isolated 0

8 0 1 0 0 0 1 1st 0 from the left 21 1 0 1 0 1 0 1 on the left

3 0 0 0 1 1 1 1st 0 from the right 13 0 1 1 0 1 0 1 on the left

2 0 0 0 1 0 1 1st 0 from the right 11 0 1 0 1 1 1 Isolated 0

10 0 1 0 1 0 1 Isolated 0

5 0 0 1 0 1 0 1 on the left

Active

Transitions

Active

Transitions

24 & 8 * 1 0 0 0 1 1st 0 from the left 27, 26, 11 & 10 * 1 0 1 * 1 Isolated 0

17 & 16 1 0 0 0 * 1 2nd 0 from the left 29, 21, 13 & 5 * * 1 0 1 0 1 on the left

3 & 2 0 0 0 1 * 1 1st 0 from the right

Output bit / Note

Output bit / Note

Neighbourhood Output bit / Note Neighbourhood

Neighbourhood Output bit / Note Neighbourhood

Rule 4.059.296.252 Rule 3.704.675.536

Neighbourhood Output bit / Note Neighbourhood Output bit / Note

0
1G


0
1,2R

Figure 1: State transitions of rules 0
1,2

R and 0
1G


, with their simplified representations

through their active transitions.

CA rules can be represented just through their active transitions, and grouped

whenever possible, i.e., placed together at the same row of the state transition table,

using symbol * to stand for either possibilities, 0 or 1 (see Figure 1).

This figure shows all the state transitions of the rules 0
1,2

R and 0
1

G


, separating

and placing together only the active transitions as shown further down in the figure.

The Replacement rule 0
1,2

R has only 6 active transitions, highlighted out of the 32

possibilities, and can be represented by the three rows and the end of the figure. The

Grouping rule 0
1

G


 has 8 active transitions, and can be represented just by two rows.

The written notes indicate which bit is been replaced by the Replacement rule or

changed to make the shift by the Grouping rule.

The minimum required radius for a rule to perform as expected depends on the

number of cells (excluding those with the * character), to the right or to the left, of the

centre cell of the neighbourhood of all grouped active transitions. The highest value is

the required radius. At the end of Figure 1 we can see that the minimum radius re-

quired to both rules is 2.

4 Merging Replacement and Grouping Rules

4.1 The Merging Operation

The merging process should, in fact, be generally regarded as a two-stage process,

consisting of joining together the active transitions of the rules involved, with subse-

quent editing of some of them, if required. Details are given throughout this section.

The Replacement and Grouping rules to be joined in just one Merged rule do not

operate on the same strings simultaneously, because these strings have different sizes

for any value of n, i.e., while Replacement rules replace n bits (from strings with n or

more consecutive identical bits), Grouping rules move m bits (from strings with just

an isolated string of m bits), and m is always equal or smaller than n-2.

Therefore, all effects of the Merged rule – such as the possibility of partition reduc-

tion, the formation of strings with only 0s or only 1s, or the formation of some neck-

laces – are the same when applying the separated rules. One exception is the formation

of partial necklaces (described in Section 4.2), that occurs because of the impossibil-

ity to join some isolated strings to their larger blocks (created by the Grouping rules),

due to changes on the lattice, through the simultaneous action of the Replacement and

Grouping rules.

As a consequence, the same lemmas and proofs described in [1] should be consid-

ered, but the formation of partial necklaces must now be added to the possibilities of

final configuration after applying the Merged rule. In the next subsections we address

some specific cases, such as the merging of the rules that solve the problem MOD3

and the problem MOD4, so as to convey the underlying issues of the process more

clearly.

4.2 The MOD3 Case

As is the case here, we may consider that a task of a CA rule can be performed by

one or more active state transitions. Accordingly, the task performed by rule 0
1,2

R , for

example, is to eliminate any string with three or more consecutive 0s in the lattice,

conserving the Modulo-3 property, while the task performed by the rule 0
1G


 is to

shift isolated 0s to the left in order to group them with larger strings of the same bit,

also conserving the Modulo-3 property. In what follows, we go about joining these

functions into a single rule.

Figure 1 shows that Replacement rule 0
1,2

R and Grouping rule 0
1G


 have different

active state transitions. The resulting rule of the merging of a Replacement rule and

one or more Grouping rules is generically termed in this work as 0
nM or 1

nM , ac-

cording to the specific bit it manipulates. In the case of the MOD3 problem, for in-

stance, merging rules 0
1,2

R and 0
1

G


 results the rule 0
1,2M


.

Figure 2 shows the simplified representation of rule 0
1,2M


 from the perspective of

its active transitions.

Active

Transitions

27, 26, 11 & 10 * 1 0 1 * 1 Isolated 0

29, 21, 13 & 5 * * 1 0 1 0 1 on the left

24 & 8 * 1 0 0 0 1 1st 0 from the left

17 & 16 1 0 0 0 * 1 2nd 0 from the left

3 & 2 0 0 0 1 * 1 1st 0 from the right

Neighbourhood Output bit / Note

Rule 3.721.649.628 0
1,2M



Figure 2: Simplified representation of the rule 0
1,2M


.

Our goal is to ensure that these 3 alternatives can perform the same tasks:

N
NN

RG















0

1,2
0
1


 ,

N
NN

GR















0
1

0
1,2


, or

N
N

M















0

1,2


.

The application to all possible initial configurations of a given size of the possible

rule sequences – that is, the Replacement rule followed by the Grouping rule, or vice

versa, or yet the Merged rule only – allows us to compare all resulting final configura-

tions; this is what is summarised in Figure 3, for N = 13 (therefore, with respect to all

2
13

 different initial configurations).

Analysis of the data in Figure 3 indicates that the Modulo-3 property is preserved

for all initial configurations, thus increasing their number of 1s, up to 11, 12 or 13

occurrences, correspondingly to the initial values of Modulo-3 equal to 2, 0 or 1,

respectively. This occurs because the Replacement rule can transform three 0s into

three 1s. The alternative that begins with the Grouping rule has an advantage in this

replacement task, in that it shifts isolated 0s and groups them into larger chains before

replacing the 0s. This increases the amount of strings with three or more consecutive

0s, therefore improving the effectiveness of the Replacement rule.

Hence, the final configurations of the different alternatives are not necessarily the

same, even disregarding differences due to rotational symmetries, because the number

of 1s may be different. Even with the same number of 1s, the spaces between isolated

0s may be also different.

By a superficial analysis, we would say that there is no equivalence among the out-

comes of the three possible processing alternatives; but, if we go back to our initial

goals, it is possible to observe that, for all possible initial conditions, the application

of any of the three alternatives transforms the lattice into a final configuration as de-

sired. In other words, all final configurations have at most two consecutive 0s (be-

cause of the Replacement rule) and there are no isolated 0s and isolated pairs of 0s

occurring simultaneously (because of the Grouping rule).

Initial Final Initial Final Initial Final

0 0 1 0 0 1 0 0 1

1 13 13 1 13 13 1 13 13

2 11 78 2 11 78 2 11 78

9 78 9 104 9 78

12 208 12 182 12 208

7 52 7 65 7 52

10 130 10 130

13 533 13 650 13 533

5 13 5 13 5 13

8 13 8 13

11 1261 11 1274 11 1261

9 585 9 650 9 533

12 1131 12 1066 12 1183

7 78 7 78 7 78

10 455 10 650

13 1183 13 1638 13 988

8 91 8 91 8 91

11 1196 11 1196 11 1196

9 234 9 234 9 234

12 481 12 481 12 481

10 156 10 156 10 156

13 130 13 130 13 130

11 11 78 11 11 78 11 11 78

12 12 13 12 12 13 12 12 13

13 13 1 13 13 1 13 13 1

8192 8192 8192

Amount of 1s Amount of

Configurations

Amount of 1s Amount of

Configurations

Amount of 1s Amount of

Configurations

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

Total Total Total

9 9 9

10 10 10

N
NN

RG















0

1,2
0
1

 N
NN

GR















0
1

0
1,2

 N
N

M















0

1,2



Figure 3: Summary after the application to all possible initial configurations of a given size

(N=13) of the different rule sequences.

So, if the desired task is exactly the latter (lattice with at most two consecutive 0s,

and without isolated 0s and pairs of 0s simultaneously), the goal has been achieved,

demonstrating the equivalence of these alternatives.

We should remember that the solution to the MOD3 alternates the sequence of

rules that operate on the 0s with the sequence of rules that operate on the 1s, alternat-

ing the size of the bit strings with only 0s and 1s, until achieving the required condi-

tion for elementary rule 254 to finalise the solution.

Therefore, applying rule 0
3M instead of 0

3
R and 0

1G , and rule 1
3

M instead of

1
3

R and 1
1G , the solution S3 is simplified to Ss3, using only three rules, instead of

five, as originally (according to [1]):

 S3 =































































 3

32322 00
1

11
1 33254

N

NNNNN

RGRGE  (2)

 Ss3 =






























 3
2 0

3
1
3254

N
N NN

MME . (3)

Disregarding the action of elementary rule 254 in the previous expressions, and let-

ting S3’ and Ss3’ denote the remaining (partial) and simplified (partial) solutions, re-

spectively, Figure 4 compares them, displaying a summary of all final configurations

left after applying these two solutions to all possible initial configurations with N=16.

The final configuration 1100000000000000 and all its equivalent configurations due

to rotational symmetry are considered the same.

Amount

of 1s

Final Configuration

with some Necklaces

 No. Of

Configs.

Amount

of 1s

Final Configuration

with some Necklaces

 No. Of

Configs.

Amount

of 1s

Final Configuration with

some Partial Necklaces

 No. Of

Configs.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21845 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21845

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 19232 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 14576 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 4768

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 2608 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 656 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1568

0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 144

0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 64

0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 64

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 4

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 21845 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 21845

65536

Original Sequence S3' Simplified Sequence Ss3'

2 2 2

5

8 8

TOTAL TOTAL 65536
Figure 4: Summary after applying both partial solutions (original and simplified) to the MOD3

problem on all possible initial configurations of size 16.

The simplified partial solution transforms some initial configurations into partial

necklaces (i.e, configurations where only a part of it is a necklace), further to the neck-

laces that already had been transformed by the original partial solution.

Necklaces and partial necklaces appear only when MODn(N) ≠ MODn(||1); oth-

erwise, the lattice converges to 0
N
 or 1

N
.

For the MOD3 problem, necklaces have the forms (01)
8
 or (0

2
1

2
)

4
, and partial

necklaces belong to ((0
3
)

+
(01)

+
)

+
; they are trapped in these forms because after 0

3M

has transformed the three 0s into three 1s, only isolated 0s remain, that move syn-

chronously, keeping the form ((1
3
)

+
(10)

+
)

+
, until 1

3
M is applied, thus reversing the

configuration to ((0
3
)

+
(01)

+
)

+
.

For both alternatives, original and simplified partial solutions, any initial configura-

tions where MODn(||1) = 0 converges to 0
N
 and the problem is already solved, as

defined. However, in order for all the other configurations with MODn(||1) ≠ 0 to end

up in 1
N
, elementary rule 254 is used, with no effect on the configuration 0

N
.

4.3 The MOD4 Case and the Problem of Synchronised Displacements

Following the same rationale for merging rules in the optimised MOD3 solution

(i.e., merging Replacement and Grouping rules that work on the same bit), in order to

optimise the solution to MOD4 we have to merge one Replacement rule with two

Grouping rules. For the 0-bit, 0
4

M results from merging rules 0
4

R , 0
1

G and 0
2

G ,

while for the 1-bit, 1
4

M results from merging rules 1
4R , 1

1
G and 1

2G . Rules
4

R and

2
G should have radius 3, at least. Therefore, the resulting

4
M rules should also have

radius 3. We employ the ‘+’ symbol for the joining of active transitions of the rules.

The problem in this merging is related to the Grouping rules. For instance, apply-

ing rules 0
1

G and 0
2

G , separately or joined, without editing some active transitions,

does not lead to the same outcome because of possible synchronised movements of

isolated 0s and isolated pairs of 0s.

Figure 5 shows the joining of rules 0
2,2

R , 0
1

G


 and 0
2

G


, and also shows the tem-

poral evolution of an initial configuration where the problem occurs.

Output bit

112 80 48 16 * * 1 0 0 0 0 1

97 96 33 32 * 1 0 0 0 0 * 1

7 6 5 4 0 0 0 0 1 * * 1

67 66 3 2 * 0 0 0 0 1 * 1

123 122 107 106 91 90 75 74 59 58 43 42 27 26 11 10 * * * 1 0 1 * 0

119 118 117 116 87 86 85 84 55 54 53 52 23 22 21 20 * * 1 0 1 * * 1

121 105 89 73 57 41 25 9 * * * 1 0 0 1 0

103 102 101 100 39 38 37 36 * 1 0 0 1 * * 1

 + + = Rule 321600197915107966665688126986998903292

Active State Transitions Neighbourhood

0
2,2R

0
1G


0
2G


0
2,2R 0

1G


0
2G


7

t 0

t 1

t 2

t 3

t 4

t 5

t 6

t 7

t 8

t 9

t 10

t 11

t 12

t 13

t 14

t 15

t 16

t 17















 3
0

2,2

7
0
1

7
0
2 RGG







  0

2

0

1

0

2,2 GGR


Figure 5: Joining of rules 0
2,2

R ,
0
1

G


 and
0
2

G


, and the temporal evolution of the configura-

tion 10000110011101 comparing two processing alternatives (joined or separate rules).

4.4 Removing and Inserting Active Transitions to Change the Displacement
Step of the Rule

Hence, for the efficient merging of these three rules, we have to fix these synchro-

nised movements caused by the Grouping rules. A first idea would be to exchange one

of them by a shift to the right, compensating for the current shift to the left. However,

looking ahead to the context of the MOD5 problem, in order to optimise its solution

with 3 Grouping rules, this method would no longer be sufficient.

Since we are handling larger radius than in the MOD3 problem, a more robust solu-

tion is to change the displacement step of rule 0
1G


: instead of moving the isolated 0

just one position to the left, we had better move it two positions, whenever possible

(which is not always the case). The new rule with this feature is denoted 2,0
1

G


. Figure

6 shows its 8 active transitions (125, 109, 93, 77, 61, 45, 29 and 13), but no longer the

8 others (123, 122, 91, 90, 59, 58, 27 and 26) that the previous rule had.

Output bit

119 118 117 116 87 86 85 84 55 54 53 52 23 22 21 20 * * 1 0 1 * * 1

107 106 75 74 43 42 11 10 * * 0 1 0 1 * 0

125 109 93 77 61 45 29 13 * * * 1 1 0 1 0

 = Rule 297668273963817264613187722719825810176

Active State Transitions Neighbourhood

2,0
1

G


Figure 6: Rule
2,0

1
G


 represented by its active transitions.

4.5 Removing Active State Transitions to Eliminate Remaining Synchronised
Displacements

Finally, there is a further problem yet to be solved: when the isolated 0 cannot be

moved 2 positions because of an isolated pair of 0s close to its left (as happens in the

string *100101*), a synchronised displacement will continue to occur. Therefore,

instead of transforming the string 100101 into 001011 (as would happen due to the

modification just proposed), we had rather transform it into 000111.

To accomplish this some active state transitions should be turned off, as shown in

Figure 7, indicated by two arrows. For clarity purposes of this process, notice that the

string **0101* in Figure 6 has been instantiated into strings 000101*, 010101*,

100101* and 110101*, and that the string *1001** in Figure 5 gave rise to *100100,

*100101, *100110 and *100111.

The active transitions that should be deactivated are 75 and 74 from rule 2,0
1

G


,

and 101 and 37 from rule 0
2

G


. Rules 2,0
1

G


 and 0
2

G


 become 2,0
*1

G


and 0
*2

G


, re-

spectively, after some of their original active transitions have been deactivated (see

Figure 7). Rule 0
2,2

M


 is derived from joining 0
2,2

R , 2,0
*1

G


 and 0
*2

G


.

The ideal merging of active state transitions to solve these conflicts is presented in

Figure 8.

Output bit

119 118 117 116 87 86 85 84 55 54 53 52 23 22 21 20 * * 1 0 1 * * 1
11 10 0 0 0 1 0 1 * 0

43 42 0 1 0 1 0 1 * 0

75 74 1 0 0 1 0 1 * 1

107 106 1 1 0 1 0 1 * 0

125 109 93 77 61 45 29 13 * * * 1 1 0 1 0

Output bit

121 105 89 73 57 41 25 9 * * * 1 0 0 1 0

103 39 * 1 0 0 1 1 1 1

102 38 * 1 0 0 1 1 0 1

101 37 * 1 0 0 1 0 1 0

100 36 * 1 0 0 1 0 0 1

Active State Transitions Neighbourhood

 = Rule 336299833476273345402472786266733739264

Active State Transitions Neighbourhood

 = Rule 2976682739638172646131877227198258101762,0
1

G


0
2G


Figure 7: Rules
2,0

1
G


and 0
2

G


 represented by their active state transitions and pointing out

those which have to be disabled (not highlighted output bit).

Output bit

112 80 48 16 * * 1 0 0 0 0 1
97 96 33 32 * 1 0 0 0 0 * 1

7 6 5 4 0 0 0 0 1 * * 1

67 66 3 2 * 0 0 0 0 1 * 1

119 118 117 116 87 86 85 84 55 54 53 52 23 22 21 20 * * 1 0 1 * * 1

11 10 0 0 0 1 0 1 * 0

43 42 0 1 0 1 0 1 * 0

107 106 1 1 0 1 0 1 * 0

125 109 93 77 61 45 29 13 * * * 1 1 0 1 0

121 105 89 73 57 41 25 9 * * * 1 0 0 1 0

103 39 * 1 0 0 1 1 1 1

102 38 * 1 0 0 1 1 0 1

100 36 * 1 0 0 1 0 0 1

 = Rule 295014986420811337252501870505639399932

Active State Transitions Neighbourhood

0
*2

2,0
*1

0
2,2

0
2,2 GGRM




Figure 8: Rule 0
2,2

M


represented by its active state transitions.

The same rationale lead us to rule 1
2,2

M


, composed by 1
2,2

R , 2,1
*1

G


 and 1
*2

G


,

whose Wolfram number is 255816358659918533639648036274123862084.

So, the solution S4 is simplified to Ss4, using only 3 rules instead of the 7 original

rules: S4 =









2
254

N

E







































































 4

422422 00
1

0
2

11
1

1
2 44

N

NNNNNN

RGGRGG  (4)

Ss4 =









2
254

N

E





















 401
44

N

NN
MM . (5)

Testing the same procedure for MOD5 and obtaining similar results, we conclude

that the simplified solution that can solve the MODn problem can have only 3 rules,

one elementary (radius 1), and two others with radius n-1, as long as the size N of the

binary string  is not multiple of n neither multiple of any factor of n. This simplified

solution then becomes: Ssn =









2
254

N

E





















 n

N

NN
nn MM 01 . (6)

5 Concluding Remarks

We demonstrated how a simple action, locally coordinated, represented here by

one-dimensional cellular automata rules, can perform a solution to a complex global

computation such as the MODn problem.

The design of rules to compute some task may start from analysing these tasks, and

maybe dividing them into smaller instances. For each minor task, we can select a sin-

gle or a group of active state transitions to execute it.

Different tasks performed by different CA rules, can be merged in a single rule, as

long as there is no conflict among the individual tasks; this was the case of the task

performed by the Replacement rules and the one performed by the Grouping rules in

the MOD3 problem.

Much study is still necessary for the understanding and the generalisation of these

mergings. However, in our work we could realise some evidence which might help

further studies.

Rules classified with fixed point or null dynamical regimes according to [7] yield a

predictable behaviour and render themselves, in some cases, to performing specific

tasks. These rules are good candidates to have their active transitions joined or even

separated, generating other rules that perform the same task. In contrast, rules with

complex, chaotic or periodic dynamical behaviours are not candidates for these com-

positions or decompositions of their active transitions.

Even for the candidate rules, it is not always possible to merge their tasks into a

single rule, especially when there is an overlap among the active transitions, or when

two tasks performed simultaneously do not perform as required; this is what occurred,

for instance, in our attempt to join the two Grouping rules, where one of them grouped

isolated bits and the other grouped isolated pairs of bits in the MOD4 problem.

In order to merge rules for performing equivalent operation, we modified tasks and

solved conflicts, following a standard that allowed us to generalise the MODn solu-

tion. As n increases, in order to solve the MOD5 problem, for instance, the number of

synchronised displacements caused by merging Grouping rules also increases. So, in

order to merge satisfactorily rules
3,0

*1
G ,

2,0
*2

G and 0
*3

G , or rules
3,1

*1
G ,

2,1
*2

G and

1
*3

G , we have to disable active transitions in the rule pairs involved in synchronised

displacements of strings, as shown below (where G stands for either 0G or 1G):

10001001 (or 01110110): 
*3

G and
2,

*2
G (a single step for each rule);

1000101 (or 0111010): 
*3

G and
3,

*1
G (a single step for each rule);

11001101 (or 00110010):
2,

*2
G and

3,
*1
G (2 steps for each rule);

0100101 (or 1011010):
2,

*2
G and

3,
*1
G (a single step for each rule); and

1100101 (or 0011010):
2,

*2
G and

3,
*1
G (2 steps for

2,
*2
G and 1 for

3,
*1
G).

For the suitability of 0
5M and 1

5M , we then have to disable 5 pairs of groups of

active transitions. In general, this number depends on n, as exemplified in Figure 9.

2 Steps 3 Steps 4 Steps

G 3* G 2* G 2* G 4* G 3* G 2* G 3* G 2* G 2* G 5* G 4* G 3* G 2* G 4* G 3* G 2* G 3* G 2* G 2*

G 4* 1

G 3* 1 G 3* 1 1 1

G 2* 1 G 2* 1 1 1 G 2* 1 1 1 1 1 1

G 1* 1 1 1 G 1* 1 1 1 1 1 G 1* 1 1 1 1 1 1 1 1 1 1

G 3* 1

G 2* 1 1 G 2* 1 1 1

G 1* 1 G 1* 1 1 1 G 1* 1 1 1 1 1 1

G 2* 1

G 1* 1 G 1* 1 1 1

4 Steps G 1* 1

2(Cn -3,2) 3(Cn -4,2) 4(Cn -5,2)

Subtotal 2 3 4

Total

3 Steps

Pairs of groups of active state transitions to be disabled

1 Step
n =6

1 Step 2 Steps
n =7

1 Step 2 Steps

9

Cn -2,2 Cn -2,2 2(Cn -3,2) Cn -2,2 2(Cn -3,2)

n =5

35

1 Step

2 Steps

3 Steps

5 15

3(Cn -4,2)

3 6 6 10 12

Figure 9: Number of groups of active state transitions to be disabled according to n.

The number of pairs of groups of active transitions to be disabled for each merging

rule is Cn-2,2 + 2Cn-3,2 + 3Cn-4,2 + … + (n-3)C2,2 which can be calculated through

the 4th degree polynomial ((n-3)
4
 + 6(n-3)

3
 + 11(n-3)

2
 + 6(n-3))/24. All these conflicts

can be eliminated, and the merging process can always be carried out.

Acknowledgements: We are grateful to CNPq – Conselho Nacional de Desen-

volvimento Científico e Tecnológico, and IPM – Instituto Presbiteriano Mackenzie.

References

1. C.L.M. Martins and P.P.B. de Oliveira. “Computing Modulo-n by Composing Cellular

Automata Rules”. Under submission to Fundamenta Informaticae, 2015.

2. C.L.M. Martins and P.P.B. de Oliveira. “Improvement of a result on sequencing elementary

cellular automata rules for solving the parity problem”. Electronic Notes Theoretical Com-

puter Science, 252:103–119, 2009.

3. H. Xu, K.M. Lee and H.F. Chau. “Modulo three problem with a cellular automaton solu-

tion”. International Journal of Modern Physics C, 14(03):249-256, 2003.

4. K.M. Lee, H. Xu and H.F. Chau. “Parity problem with a cellular automaton solution”. Phys-

ical Review E, 64:026702/1-026702/4, 2001.

5. H. Betel, P.P.B. de Oliveira and P. Flocchini. “Solving the parity problem in one-

dimensional cellular automata”. Natural Computing, 12(3):323-337, 2013.

6. S. Wolfram. A New Kind of Science, Wolfram Media, 2002.

7. W. Li. “Parameterizations of Cellular Automata Rule Space”. SFI Technical Report: Pre-

prints, Santa Fe, NM, USA, 1991.

http://www.researchgate.net/journal/0129-1831_International_Journal_of_Modern_Physics_C

