
HAL Id: hal-01442468
https://inria.hal.science/hal-01442468

Submitted on 20 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

L-Convex Polyominoes Are Recognizable in Real Time
by 2D Cellular Automata
Anaël Grandjean, Victor Poupet

To cite this version:
Anaël Grandjean, Victor Poupet. L-Convex Polyominoes Are Recognizable in Real Time by 2D
Cellular Automata. AUTOMATA, Jun 2015, Turku, Finland. pp.127-140, �10.1007/978-3-662-47221-
7_10�. �hal-01442468�

https://inria.hal.science/hal-01442468
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

L-Convex Polyominoes are Recognizable in Real
Time by 2D Cellular Automata

Anaël Grandjean and Victor Poupet

LIRMM, Université Montpellier 2
161 rue Ada, 34392 Montpellier, France

victor.poupet@lirmm.fr, anael.grandjean@lirmm.fr

Abstract. A polyomino is said to be L-convex if any two of its cells are
connected by a 4-connected inner path that changes direction at most
once. The 2-dimensional language representing such polyominoes has
been recently proved to be recognizable by tiling systems by S. Brocchi,
A. Frosini, R. Pinzani and S. Rinaldi. In an attempt to compare recog-
nition power of tiling systems and cellular automata, we have proved
that this language can be recognized by 2-dimensional cellular automata
working on the von Neumann neighborhood in real time.
Although the construction uses a characterization of L-convex polyomi-
noes that is similar to the one used for tiling systems, the real time
constraint which has no equivalent in terms of tilings requires the use of
techniques that are specific to cellular automata.

Introduction

Two-dimensional cellular automata and tiling systems are two different models
that can be considered to recognize classes of two-dimensional languages (or
picture languages). Although they share some similarities such as locality and
uniformity, the two models are fundamentally different.

Tiling systems as language recognizers were introduced by D. Giammarresi
and A. Restivo in 1992 [3] and are based on the model of tile sets introduced
by H. Wang [7]. The strength of the model lies in its inherent non-determinism.
The system itself is a set of local rules describing valid image patterns and a
picture language is recognized by the system if it is the image by a projection of
the set of configurations that verify all local rules.

Cellular automata on the contrary are deterministic dynamical models. Intro-
duced in the 1940s by S. Ulam and J. von Neumann [6] to study self replication
in complex systems they were rapidly considered as computation models and
language recognizers [4]. Contrary to some other classical computation models
that inherently work on words, they can be considered naturally in any dimen-
sion (the original cellular automata studied by Ulam and von Neumann were
2-dimensional) and are therefore particularly well suited to picture languages.
Language recognition is performed by encoding the input in an initial configu-
ration and studying the (deterministic) evolution of the automaton from that
configuration. Time and space complexities can be defined in the usual way.

Because tiling systems lack dynamic behavior, some picture languages that
can be recognized by cellular automata with minimal space and time complexity
(in real time) cannot be recognized by tiling systems, such as the language of
square pictures with vertical symmetry.

Conversely, the non-determinism of tiling systems should allow the recogni-
tion of languages that cannot be recognized by cellular automata in low time
complexities. It is straightforward for instance to verify that the language con-
sidered in [5] as an example of language that cannot be recognized in real time
by a cellular automaton working on the Moore neighborhood but can be recog-
nized on the von Neumann neighborhood can be recognized by a tiling system,
thus proving that tiling systems and real time cellular automata on the Moore
neighborhood are incomparable.

Because the language of L-convex polyominoes was recently proved to be rec-
ognizable by tiling systems when it was previously though not to be, we decided
to investigate its recognizability by real time von Neumann neighborhood cellular
automata. Although the language was also recognized by cellular automata, the
construction turned out to be quite different from the case of tiling systems and
used some techniques specific to cellular automata (and possibly von Neumann
neighborhood cellular automata). This article describes said construction.

1 Definitions

1.1 Cellular Automata

Definition 1 (Cellular Automaton). A cellular automaton (CA) is a quadru-
ple A = (d,Q,N , δ) where

– d ∈ N is the dimension of the automaton ;
– Q is a finite set whose elements are called states ;
– N is a finite subset of Zd called neighborhood of the automaton ;
– δ : QN → Q is the local transition function of the automaton.

Definition 2 (Configuration). A d-dimensional configuration C over the set
of states Q is a mapping from Zd to Q.

The elements of Zd will be referred to as cells and the set of all d-dimensional
configurations over Q will be denoted as Confd(Q).

Given a CA A = (d,Q,N , δ), a configuration C ∈ Confd(Q) and a cell c ∈ Zd,
we denote by NC(c) the neighborhood of c in C :

NC(c) :

{
N → Q
n 7→ C(c+ n)

From the local transition function δ of a CA A = (d,Q,N , δ), we can define
the global transition function of the automaton ∆ : Confd(Q) → Confd(Q)
obtained by applying the local rule on all cells :

∆(C) =

{
Zd → Q
c 7→ δ(NC(c))

The action of the global transition rule makes A a dynamical system over the set
Confd(Q). Because of this dynamic, in the following we will identify the CA A
with its global rule so that A(C) is the image of a configuration C by the action of
the CA A, and more generally At(C) is the configuration resulting from applying
t times the global rule of the automaton from the initial configuration C.

Definition 3 (Von Neumann and Moore Neighborhoods). In d dimen-
sions, the most commonly considered neighborhoods are the von Neumann neigh-
borhood NvN = {c ∈ Zd, ||c||1 ≤ 1} and the Moore neighborhood NM = {c ∈
Zd, ||c||∞ ≤ 1}. Figure 1 illustrates these two neighborhoods in 2 dimensions.

Fig. 1. The von Neumann
(left) and Moore (right) neigh-
borhoods in 2 dimensions.

Fig. 2. Three polyominoes. The center and right
ones are vertically convex, the right one is HV-
convex.

1.2 Picture Recognition

From now on we will only consider 2-dimensional cellular automata (2DCA),
and the set of cells will always be Z2.

Definition 4 (Picture). For n,m ∈ N and Σ a finite alphabet, an (n,m)-
picture (picture of width n and height m) over Σ is a mapping

p : J0, n− 1K× J0,m− 1K→ Σ

Σn,m denotes the set of all (n,m)-pictures over Σ and Σ∗,∗ =
⋃
n,m∈NΣ

n,m

the set of all pictures over Σ. A picture language over Σ is a set of pictures
over Σ.

Definition 5 (Picture Configuration). Given an (n,m)-picture p over Σ,
we define the picture configuration associated to p with quiescent state q0 /∈ Σ
as

Cp,q0 :

 Z2 → Σ ∪ {q0}

x, y 7→
{
p(x, y) if (x, y) ∈ J0, n− 1K× J0,m− 1K

q0 otherwise

Definition 6 (Picture Recognizer). Given a picture language L over an al-
phabet Σ, we say that a 2DCA A = (2,Q,N , δ) such that Σ ⊆ Q recognizes L
with quiescent state q0 ∈ Q\Σ and accepting states Qa ⊆ Q in time τ : N2 → N
if, for any picture p (of size n×m), starting from the picture configuration Cp,q0
at time 0, the origin cell of the automaton is in an accepting state at time τ(n,m)
if and only if p ∈ L. Formally,

∀n,m ∈ N,∀p ∈ Σn,m, Aτ(n,m)(Cp,q0)(0, 0) ∈ Qa ⇔ p ∈ L

Because cellular automata work with a finite neighborhood, the state of the
origin cell at time t (after t actions of the global rule) only depends on the initial
states on the cells in N t, where N 0 = {0} and for all n, Nn+1 = {x + y, x ∈
Nn, y ∈ N}. The real time function is informally defined as the smallest time
such that the state of the origin may depend on all letters of the input :

Definition 7 (Real Time). Given a neighborhood N ⊂ Zd in d dimensions,
the real time function τN : Nd → N associated to N is defined as

τN (n1, n2, . . . , nd) = min{t, J0, n1 − 1K× J0, n2 − 1K× . . .× J0, nd − 1K ⊆ N t}

When considering the specific case of the 2-dimensional von Neumann neigh-
borhood, the real time is defined by τNvN

(n,m) = n+m− 2. There is however
a well known constant speed-up result :

Proposition 1 (folklore). For any k ∈ N, any language that can be recognized
in time (τNvN

+k) by a 2DCA working on the von Neumann neighborhood can also
be recognized in real time by a 2DCA working on the von Neumann neighborhood.

So it will be enough to prove that a language is recognized in time (n,m) 7→
n+m+ k for some constant k to prove that it is recognized in real time.

1.3 Polyominoes

Definition 8 (Polyomino). A placed polyomino is a finite and 4-connected
subset of Z2. A polyomino is the equivalence class of a placed polyomino up to
translation.

Definition 9 (HV-Convexity). A polyomino p is said to be horizontally (resp.
vertically) convex if any cell between two cells of the polyomino on a same hor-
izontal (resp. vertical) line is also a cell of the polyomino :

∀x1, x2, x3, y ∈ Z, x1 ≤ x2 ≤ x3 ∧ (x1, y) ∈ p ∧ (x3, y) ∈ p⇒ (x2, y) ∈ p

A polyomino is HV-convex if it is both horizontally and vertically convex (see
Figure 2).

We will now present the notion of L-convex polyomino, first introduced in
[2] to classify HV-convex polyominoes. Informally, an L-convex polyomino p is
such that for any two of its cells there exists a 4-connected path of cells of p that
connects them such that the path changes direction at most once (see Figure 3).

The following remarks will lead to a formal definition of L-convex polyomi-
noes :

Fig. 3. The polyomino on the left is L-
convex (the figure shows an inner path con-
necting two cells with at most one direction
change, and there is such a path for any pair
of cells). The polyomino on the right is HV-
convex but not L-convex as illustrated by
the pair of highlighted cells for which there
is no inner connecting path that changes
direction at most once.

0 0
0
0

0

000

0
0
0

01 1
1 1
1 1
1 1

1
1

111
1

1

1
1
1

1
1

1 1 11

Fig. 4. A polyomino (left) and its cor-
responding picture over {0, 1} (right).
When this picture is encoded as a con-
figuration of a cellular automaton, the
origin of the automaton is on the lower
left corner of the picture.

– a path that changes direction at most once connecting two cells of a poly-
omino p on the same row (resp. column) is fully horizontal (resp. vertical)
therefore L-convex polyominoes are HV-convex ;

– if c1 = (x1, y1) and c2 = (x2, y2) are two cells in an L-convex polyomino p,
either a1 = (x1, y2) or a2 = (x2, y1) is a cell of p because a1 and a2 are the
angles of the only two paths connecting c1 and c2 that change direction at
most once ;

– if a polyomino p is HV-convex and such that for any two of its cells c1 =
(x1, y1) and c2 = (x2, y2) either a1 = (x1, y2) or a2 = (x2, y1) is a cell of p,
then p is L-convex since by HV-convexity, the whole path connecting c1 to
c2 going through a1 or a2 is in p.

Definition 10 (L-Convexity). A polyomino p is L-convex if it is HV-convex
and verifies

∀x1, x2, y1, y2 ∈ Z, (x1, y1) ∈ p ∧ (x2, y2) ∈ p⇒ (x1, y2) ∈ p ∨ (x2, y1) ∈ p

Given a polyomino p, the picture over the alphabet {0, 1} associated to p
is the picture whose dimensions are the dimensions of the minimal bounding
rectangle of p, where the cell has state 1 if the corresponding cell is in the
polyomino and 0 otherwise (see Figure 4). We define the language LL-convex as
the picture language of all L-convex polyomino pictures.

2 Main Result

This section will be entirely devoted to the proof of the following result

Theorem 1. The picture language LL-convex of L-convex polyomino pictures is
recognizable in real time by a 2DCA working on the von Neumann neighborhood.

The proof will be done by describing the behavior of a 2DCA working on
the von Neumann neighborhood that recognizes LL-convex in real time. In this
description we will use cardinal directions north, south, east and west to denote
the different directions on the configuration as follows :

– north is towards the increasing y axis ;
– south is towards the decreasing y axis ;
– east is towards the increasing x axis ;
– west is towards the decreasing x axis.

With such conventions, the origin of the automaton is located at the south-west
(SW) angle of the picture in the initial configuration and the picture therefore
extends from the origin eastward and northward.

2.1 Preliminary Check

First of all, the automaton must check that the input is the picture of a HV-
convex polyomino.

To do so, during the first step of the computation, each cell containing a 1
considers its neighbors and remembers which of them also contains a 1. Then a
signal moves westward from the eastmost point of each row and southward from
the northmost point on each column. These signals check that each row and
each column contains exactly one segment of connected 1 symbols. Moreover,
the signals check that the segment of 1 on each line and column is connected
to that of the neighbor rows and columns using the neighboring information
gathered during the first step.

These two properties guarantee that the polyomino is connected, HV-convex
and that the picture’s dimensions are that of the minimal bounding rectangle
(no empty row or column). If an error is found on a row or column, the signal is
directed towards the origin and the input is not accepted.

We can now assume that the input corresponds to a HV-convex polyomino
picture, and must determine whether it is also L-convex.

2.2 Characterization of L-Convex Polyominoes

We will now present the characterization of L-convex polyominoes that will be
used by the automaton. It is a slighly rephrased version of the characterization
presented in [1] (Theorem 2).

Given a polyomino p, we say that a cell of p is a corner if it has two consecu-
tive neighbors that are not in p. We classify corners depending on the directions
in which such neighbors not in p are located : a north-east (NE) corner is one
such that the northern and eastern neighbors are not in p, and we similarly have
NW , SW and SE corners (see Figure 5 for an illustration of NE corners). Note
that corner types are not exclusive : a cell can for instance be both a NE and
NW corner.

Proposition 2 (Characterization of L-convex polyominoes [1]). A HV-
convex polyomino p is L-convex if and only if for every NE corner c = (x, y),
denote by (x, y′) the southest cell of p on the same column as c, and (x′, y) the
westmost cell of p on the same row as c, there is no cell (x′′, y′′) of p verifying
any of the following three conditions

(a). x′′ > x (resp. x′′ > x′) and y′′ < y′

(b). x′′ < x′ (resp. x′′ < x′) and y′′ > y′

(c). x′′ < x′ (resp. x′′ < x′) and y′′ < y′

and the symmetric conditions holds for all NW corners (in the South and East
directions).

Figure 5 illustrates this characterization.

NE corners

(x, y)(x’, y)

(x, y’)(x’, y’)

a

b

c

h1

v1

h2

v2

Fig. 5. A HV-convex polyomino is L-convex is for any of its NE corners (represented
as dark grey cells), no cell of the polyomino lies in any of the three zones represented
in hatched light grey, and symmetrically for all of its NW corners. The illustrated
polyomino is not L-convex because there are two cells in the lower left hatched area
(these cells cannot be connected to the represented NE corner by an inner path with
at most one direction change).

Proof (sketch). It is enough to verify that all pairs of corners of a HV-convex
polyomino are connected by an inner path with at most one change of direction.
Moreover by symmetry we can consider only NW and NE corners.

The cells (x′, y), (x, y′) and (x′, y′) in the characterization represent the far-
thest points that can be reached from a given corner in their respective direc-
tions. Cells of the three restricted areas cannot be connected to the corner and
conversely all cells not in these areas can be connected to the corner.

Note that because the polyomino is assumed to be HV-convex it is enough to
check that there is no polyomino cell on the two lines extending from the starting

check point (represented in dark hatched grey in Figure 5). For instance, for the
condition (a), it is enough to check that there is no cell (x′′, y′ − 1) with x′′ > x
and no cell (x + 1, y′′) with y′′ < y′ in the polyomino. This follows from the
4-connectedness of the polyomino.

Although the conditions to verify are perfectly symmetric for NE and NW
corners, when implementing it on a real time cellular automaton the case of
NE corners is significantly simpler because all signals move towards the origin
at maximum speed so the result of the verification easily arrives on time. On
the other hand, for NW corners, some signals move eastward (away from the
origin) so it would take too much time to send the signal all the way to the east
side and back to the origin. We will therefore now focus on implementing the
characterization for NE corners and come back to the NW corners at the end of
the proof.

2.3 Compression and Marking

The characterization from Proposition 2 depends on cells being able to tell if
there is a polyomino cell in a given direction from them. To make sure that each
cell knows this information, consider signals going eastward from the west side of
each row. If the initial configuration is the picture configuration of a HV-convex
polyomino, there is exactly one segment of 1 symbols on each row. Before the
signal meets the first 1, cells can be notified that there is no 1 westward and
that there is at least one 1 eastward. On the segment of 1, cells are notified of
whether they are a border cell or an inner cell and, after the segment of 1, all
cells are notified that there is a 1 westward and none eastward. Of course the
same thing can be done on columns with northward signals.

Now consider a horizontal compression of the input as illustrated by Fig-
ure 6. To compress the input, consider that each cell can now hold two initial
states instead of one (this can be done by increasing the number of states of
the automaton) and move all states westward unless the column in which they
should go is full (contains two states) or is out of the boudaries of the initial
configuration (ignore the darker dots from Figure 6 for the moment).

Such a compression takes dn2 e time steps where n is the width of the input.
During these steps, no signal can propagate westward because the initial data
is already moving west at maximum speed but the time lost performing the
compression can be recovered afterwards because each cell now sees twice as
many states horizontally, which means that relatively to the original states,
horizontal signals can perform two steps at a time.

During the compression, signals can however be propagated eastward (as
illustrated by the darker dots in Figure 6). This means that while the compression
is taking place, the signal indicating to each cell if it has 1 symbols east or west
can propagate, so that at the end of the compression, cells have access to this
information.

By performing a vertical compression after the horizontal one we can otain
in half of the real time a compressed copy of the initial configuration on which
every cell now has the added information of whether there is a 1 in any of the

t=0 t=1 t=4

...

Fig. 6. Horizontal compression of the input, with eastward transmission of information
(dark dots).

four directions. Moreover, later in the construction we will need to know which
columns correspond to the same horizontal segment on the southern border
of the polyomino, so we also propagate northward signals during the vertical
compression from the borders of all horizontal segments of the southern border
of the polyomino (see dashed northward arrows in Figure 8).

After both compressions, the computation of the automaton can properly
start and in this computation horizontal and vertical signals can propagate twice
as fast and all information is twice closer to the origin. This means that the com-
pressed run of the automaton can behave exactly as if the configuration was not
compressed but was given the extra information propagated by the eastward and
northward signals from the beginning1. We will now ignore the compression in
the following explanations, and simply consider that the information propagated
by the northward and eastward signals is readily available to each cell.

Remark: As it is described, it looks as if cells should know when the com-
pression is finished to start performing the next task (be it the second compres-
sion or the accelerated simulation of the uncompressed automaton). However,
one can show that cells can asynchronously start the next task as soon as they
have the necessary information to do so. It is sufficient to detect when all cells
in their neighborhood have finished the compression to perform one step of the
next task. From there, we can show that if each cell advances the following task
as soon as it has enough information to do so, cells that have completed the
compression early will be slowed down progressively to wait for the further cells
to catch up. However, the last cells to finish the compression will never be slowed
down as all other cells have the necessary information available to them. This
means that by continuing the computation after the compression as soon as the
information is available, all cells are at least as advanced as if all had started
their computation at the time when the compression is finished, thus negating
the need to synchronize all cells after the compression.
1 This compression technique works in our case because the automaton (as it will be
described later) only uses horizontal and vertical signals that change directions a
bounded number of times. It is only possible to simulate two steps of the uncom-
pressed automaton if they only involve horizontal or vertical movement, not both.

2.4 First Conditions of the Characterization

With the informations we have, checking conditions (a) and (b) of Proposition 2
is very easy as it is only a matter of sending a westward and a southward signal
from each NE corner. When these signals reach the border of the polyomino, they
check that there are no 1 in the corresponding area by using the information that
was transmitted to each cell during the compressions. If a 1 is found where it
should not be, a signal is directed towards the origin to indicate that the input
should not be accepted.

There are no conflicting signals during this step because there can be at most
one NE corner per column and one at most per row.

2.5 The Third Condition

The third condition from Proposition 2 is much more complex to implement. It
requires sending a westward signal h1 and a southward signal v1 from each NE
corner and having these signals generate secondary signals h2 (westward, from
the collision of v1 with the border of the polyomino) and and v2 (southward from
the collision of h1 and the border). The intersection of h2 and v2 indicate the
cell on which condition (c) should be checked, as illustrated by Figure 5.

Two problems arise when implementing this behavior :

– although v1 and h1 signals originating from different NE corners will never
overlap, if two signals arrive on the same row or column they will produce
v2 or h2 signals that might overlap ;

– h2 signals might intersect with many v2 signals, but only one of them origi-
nates from the same NE corner. It is therefore necessary to ensure that the
verification of condition (c) is not performed on cells that do not correspond
to a valid intersection of h2 and v2 signals.

Priority Rule To solve the first problem, we use a simple priority rule : if two
NE corners c1 and c2 are north of the same horizontal segment on the southern
border of the polyomino, we can ignore the easternmost one. There are two cases
to consider (illustrated by Figure 7). Assume c1 lies north-west of c2 :

– if the westward h1 signal from c1 reaches the border east of that from c2
(left of Figure 7), then the area that would be checked by considering the
intersection of the signals v2 and h2 from c1 (dark grey area in the Figure)
is east of the one that would be considered by the intersection from c2 (light
grey area) and therefore contains it entirely, which means that it is not
necessary to check the area indicated from c2 ;

– if on the contrary the h1 signal from c1 arrives west of that from c2 (right
of Figure 7), the HV-convexity of the polyomino guarantees that there can
be no 1 in either of the two areas considered by the intersections from c1
and c2 since there is at least one 1 north west of where the h1 signal from
c2 arrives, no 1 west of that point so there cannot be any 1 west and south
of it. In this case, it doesn’t matter which intersection is considered since
neither will find a contradiction with the (c) condition from Proposition 2.

c1 c1

c2 c2

Fig. 7. When two v1 signals arrive on the same row we can always safely ignore the
one originating from the eastmost NE corner.

A symmetrical argument shows that it is sufficient to consider signals orig-
inating from the southernmost of two NE corners whose h1 signals arrive on
the same vertical segment of the western border of the polyomino. Horizontal
and vertical signals are however handled differently because the last part of the
construction is not symmetrical.

We want to make sure that there are as many v1 signals as there are distinct
(non-overlapping) h2 signals. To do so, v1 signals are not sent directly by NE
corners but rather sent by the h1 signal when the h1 signal knows that the corner
it originated from is the westmost of the corresponding horizontal segment in the
southern border (see Figure 8). When an h1 signal finds a cell of the polyomino
north before reaching the border of the southern segment (dashed line in the
figure), it knows there is another NE corner west for that segment and therefore
disappears. On the contrary, if such a signal reaches the border of the southern
segment it sends the v1 signal southward.

Counters For v2 signals, we need to solve the second problem that was de-
scribed previously which is to determine which of the possibly many h2 signals
intersected is the one that originated from the same NE corner. To do so, h1
signals produced by NE corners will count how many v2 signals they cross while
going west. If a h1 signal crossed n v2 signals, then the v2 signal it produces will
consider that its corresponding h2 signal is the (n+1)-th to last one (the last n
are not the one that should be considered).

Figure 9 illustrates why the result of such a behavior is correct. Consider an
NE corner c2 such that its h1 signal crossed the v1 signal produced by an NE
corner c1 (top circled intersection)

– if the v1 signal produced by c2 arrives north of the one produced by c1 (left
part of the figure) then the real intersection of the v2 and h2 signals from c2

Fig. 8. h1 signals from an NE corner are interrupted if they detect that there is another
NE corner west whose v1 signal would arrive on the same horizontal segment on the
southern border of the polyomino. v1 signals are sent by h1 signals on the westmost
column corresponding to the southern horizontal segment.

is the first that the v2 signal from c2 encounters, and the later one should
be ignored (lower circled intersection) ;

– if on the contrary the v1 signal from c2 arrives south of that of c1 (right part
of the figure), the real intersection that should be considered is the last one
but by considering the first the automaton will not find any contradiction
to condition (c) since by HV-convexity of the polyomino there are no 1
south and west of either of the two intersections (so it will pick the wrong
intersection but that will not change the final result).

c2

c1

c2

c1

Fig. 9. Considering that for each v2 signal crossed by the h1 signal from c2, one of the
last intersections with an h2 signal should be ignored by the subsequent v2 signal leads
to a correct characterization.

In order to implement this rule, signals need to carry a binary counter. This
counter should follow the signal at maximal speed, and will be incremented
by the h1 signal for each v1 signal encountered (which can be easily done as

incremental binary counters can be implemented on one-way one dimensional
CA). For technical reasons, the counter has an initial value of 1.

As for the v2 signal, as it crosses h2 signals it checks if the area south-west
of said intersection contains a 1 (which can be done instantly because of the
information gathered during the initial compressions), and if so decrements the
counter2. If the counter is equal to 0 (decreasing a 0 counter leaves it at 0) when
the v2 signal reaches the southernmost border of the picture, no error is detected,
but if it is positive then a message is sent to the origin to indicate that the input
is not L-convex.

This works because we know that if there is no 1 south-west of a cell c,
there is no 1 south-west of a cell south of c. If the h1 signal crosses n v1 signals
the counter indicates (n+ 1) when the v2 signal starts moving south and if the
counter is at 0 it means that the (n+1) last intersections were correct according
to condition (c) and therefore the (n+ 1)-th to last was correct.

Checking that the counter is 0 takes log(n) steps where n is the maximal
value of the counter (log(n) is the maximal length of the counter). If the counter
is incremented to n it means that there are at least n NE corners north of the
one from which the signal originated. This means that if the signal moves from
this corner towards the origin (south or west) at maximal speed, it would reach
the origin at least n steps before the real time, and therefore it can spend log(n)
steps checking the value of the counter and still arrive in real time.

Moreover, conflicts of overlapping counters can be resolved by the priority
rule described previously. Precedence must always be given to the counter cor-
responding to the southernmost NE corner :

– when an h1 signal reaches the west border of the polyomino, it marks the
cell on which the v2 signal is produced ;

– if a v2 signal moves through such a marked cell, it is erased ;
– if the counter following a v2 signal is on a cell where a new v2 signal is created,

the counter is invalidated (the end symbol is erased) so that the new v2 signal
has precedence over it. An invalidated counter will ignore decrementations
and will ignore the test to 0 at the end.

2.6 The North-West Corners

The previous subsections describe how NE corners can properly implement the
characterization of L-convex polyominoes from Proposition 2. NW corners will
behave in a very similar fashion, but special care must be taken to prove that
the result of their verification can reach the origin in real time.

On a regular configuration, a signal issued from a NW corner needs to go
east through most of the polyomino, then south and then the result of the
verification should travel back west to the origin. In doing so the signal goes
twice through the width of the input which cannot be done in real time. To solve
2 Decrementation can also be performed on a binary counter moving at maximal speed
but in that case the length of the counter is not reduced when going from an 2n to
(2n−1), but instead a leading 0 is added, which is not a problem for our construction.

this problem, we consider the path of the signal during a horizontal compression
of the configuration :

– the signal starts from the NW corner on the cell c = (x, y) ;
– during the x

2 first steps the signal moves west with the compression, and
when the cell is compressed, the h1 signal is sent eastward ;

– meanwhile, the cell (x′, y) that should have been the target of the h1 signal
moves left with the compression. The h1 signal and the cell arrive at the cell
(x

′

2 , y) at time (x
′

2 , y) ;
– the signal v2 from c moves south until it reaches the southern border of

the input after y steps. At this point a delay of at most log(h − y) steps
is incurred to check the value of the counter (h is the total height of the
input) ;

– the result of the verification is directed towards the origin, it arrives at time
x′

2 + y + log(h− y) + x′

2 < x′ + h which is before real time.

NW corners can therefore properly perform the necessary verifications to
implement the characterization from Proposition 2, which concludes the proof
of Theorem 1.

References

1. Stefano Brocchi, Andrea Frosini, Renzo Pinzani, and Simone Rinaldi. A tiling
system for the class of L-convex polyominoes. Theor. Comput. Sci., 475:73–81,
2013.

2. Giusi Castiglione and Antonio Restivo. Reconstruction of l-convex polyominoes.
Electronic Notes in Discrete Mathematics, 12(0):290 – 301, 2003. 9th International
Workshop on Combinatorial Image Analysis.

3. Dora Giammarresi and Antonio Restivo. Recognizable picture languages. Interna-
tional Journal of Pattern Recognition and Artificial Intelligence, 6(02n03):241–256,
1992.

4. Alvy R. Smith III. Real-time language recognition by one-dimensional cellular au-
tomata. Journal of the ACM, 6:233–253, 1972.

5. Véronique Terrier. Two-dimensional cellular automata recognizer. Theor. Comput.
Sci., 218(2):325–346, 1999.

6. John von Neumann. Theory of Self-Reproducing Automata. University of Illinois
Press, Urbana, IL, USA, 1966.

7. Hao Wang. Proving theorems by pattern recognition II. Bell System Technical
Journal, 40:1–42, 1961.

