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Limitations on Robust Ratings and Predictions

Tim Muller, Yang Liu, and Jie Zhang

Nanyang Technological University

Abstract. Predictions are a well-studied form of ratings. Their objec-
tive nature allows a rigourous analysis. A problem is that there are at-
tacks on prediction systems and rating systems. These attacks decrease
the usefulness of the predictions. Attackers may ignore the incentives in
the system, so we may not rely on these to protect ourselves. The user
must block attackers, ideally before the attackers introduce too much
misinformation. We formally axiomatically define robustness as the prop-
erty that no rater can introduce too much misinformation. We formally
prove that notions of robustness come at the expense of other desir-
able properties, such as the lack of bias or effectiveness. We also show
that there do exist trade-offs between the different properties, allowing
a prediction system with limited robustness, limited bias and limited
effectiveness.

1 Introduction

Ratings are an important tool in online cooperation. Ratings are used in, e.g., rec-
ommender systems, trust and reputation systems, e-commerce systems and se-
curity systems [10,11,12]. We reason about a specific type of predictions, namely
those that we can judge in hindsight – called predictions. Prediction are also
an interesting topic of research in themselves [1]. Typically, users that give pre-
dictions that are better (accurate or honest) are rewarded by becoming more
credible. However, there are incentives outside of the system that may drive a
user to give worse (inaccurate or dishonest) predictions. These unfair ratings
attacks are well-known in literature, and found to occur in real systems. On a
robust prediction system, the impact of these unfair ratings is limited.

A standard technique in prediction systems is to have a mechanism to encour-
age users to behave in a certain way, by setting the right incentives. However, in
practice, users may have a bigger incentive to give bad predictions. We know that
users attack systems by providing false predictions [9,14] despite losing credit
within the system. A user that ignores the incentives of a system is called an
attacker. In other words, an attacker does not necessarily care about the rewards
and punishments that the prediction system sets, because incentives outside of
the system (e.g. bribes, collusion) are greater.

As we cannot modify the behaviour of these attackers, we must resort to
interpreting the predictions in a robust fashion. Specifically, we must somehow
limit the impact of unfair ratings. In this paper, we introduce notions of robust-
ness (differing in strength) that codify that the amount of noise that a single



agent can introduce is limited. We have a threefold motivation for the exact for-
mulations: intuitive grounds, information theory and hypothesis testing. Given
our definition of robustness, we can prove a specific prediction system to be
robust.

Robustness comes at a cost. With no tolerance towards misinformation, any
useful way of using predictions is impossible. For weaker robustness require-
ments, we have more subtle impossibilities regarding the use of predictions. One
main contribution in this paper is a general and rigourous proof that robustness,
bias and effectiveness are tradeoffs, and that certain combinations are impossi-
ble. The proofs are axiomatic, meaning that we have axioms for the various levels
of robustness, bias and effectiveness, and we prove that no model can satisfy all
of them. Specifically:

– No meaningful model exists for absolute robustness (no tolerance towards
misinformation).

– Any model for strict robustness (fixed misinformation threshold) has some
bias and a finite lifespan.

– Any model for weak robustness (growing tolerance towards misinformation)
has some bias and cannot be fully effective.

The results are summarised in Table 1.
Fortunately, if we are willing to make the trade-offs, then robust models

do exist. We show that a prediction system with strict robustness can exist
and be useful despite its hampered effectiveness. Similarly, we also show that a
prediction system with weak robustness can be implemented and be far more
effective. These results extend only to prediction systems, since they rely on the
user knowing the validity of the predictions after the fact.

The paper is organised as follows. First we discuss work related to our do-
main, but also impossibility results in social choice which inspired the methodol-
ogy. In Section 3, we present the requirements that we want a prediction system
to fulfill, in natural language. Then, in Section 4, we present a formal model
of predictions, events, filters and misinformation. In Section 5, we formalise the
requirements in that model. In Section 6, we establish the relationships between
the axioms – particularly we close the bridge between the information-theoretic
and the statistical perspective on the quality of predictions. In Section 7, we
prove the impossibility results. All the limitations of robust prediction systems
can be found in this section. In Section 8, we prove the existence of prediction
systems that have robustness, albeit with considerable reduction of effective-
ness. In these latter two sections, non-technical formulations of the results are
presented in bold font. We provide a conclusion in Section 9.

2 Related Work

Our original research interest lies in robust ratings, as e.g. in [16,17]. There,
the ratings are quantified using information theory. This idea is not novel, as
e.g. [11] also uses information theory to quantify ratings. Our novelty is that we



WU SU WU & T SU & T T

AR 0 0 0 0 0

SR(θ) 2θ 0 θ 0 θ

WR(f) > 2f(1) 0 f(n) 0 f(n)

Table 1. Effectiveness given levels of robustness (AR,SR,WR), bias (SU,WU) and
non-prescience (T).

are able to formulate a system with a strict robustness cutoff. The damage of
attacks is strictly limited. However, for the system to work, the ratings must be
predictions – verifiable in hindsight.

Prediction systems are widely used and studied [3,8]. An important type of
prediction system is a prediction market. There has been lots of research on
prediction markets, especially their resistance against manipulation [4,6,9]. An
inherent problem of prediction markets is that raters insensitive to the system’s
incentives have absolute freedom to manipulate [4,6]. Our approach limits the
influence of individual raters, without taking away the ability to predict.

We formulate a set of axioms that we want prediction systems to satisfy.
That approach is inspired on social choice theory [15]. Arrow’s impossibility
theorem [2] states that the result of a vote must 1) have X over Y if all prefer
X over Y , 2) let the order of X and Y be independent of Z and 3) there is
no dictator. In fact, robustness against manipulation is also a well-studied issue
there [15]. Our axioms are fundamentally different, but the idea that certain
combinations of axioms do not admit a model is directly taken from social choice
theory.

3 Axiomatic Requirements

A trust system is robust, when it operates well under attacks. A common way
to increase the robustness of the system, is to try to detect attacks. While such
detection mechanisms certainly mitigate attacks, they cannot prevent them, by
their nature. A detection mechanism detects attacks that have already occurred
(at least partially). Ideally, however, we can prevent the attacks from occurring
in the first place.

In this paper, we are concerned with attacks that introduce misinformation
to the users. However, first, not all attacks induce noise towards the user, but
break the system in other ways (e.g. the reputation lag attack [13], where the
attacker exploits a time delay before his infamy is spread)1. Thus, we only con-
sider attacks by strategic unfair predictions. Second, not all unfair prediction
attacks are harmful (e.g. the camouflage attack, where users are honest to gain
trust, and betray others when trusted; see [17]). We ignore attacks that do not
introduce noise to the user; attacks that do not (aim to) deceive users. Rather,
we look at gathering predictions in a robust manner.

1 We ignore security attacks, such as identity theft or denial of service attacks.



The requirements in this section are informally defined using natural lan-
guage. Later, we formally define our terminology, and translate the requirements
to formal statements. For the sake of precision, we fix the meaning of some terms:
A prediction is a statement about an event before it occurs. An event has an
outcome, after which the degree of correctness of the prediction is known. Noise
is the inverse of that degree of correctness. A rater is an agent (human or sys-
tem) that produces predictions. Ratings are accurate when they assign the true
(subjective) probabilities to outcomes (i.e. outcomes assigned x% happen x%
of the time), and raters are accurate when they produce accurate ratings. See
Section 4 for a more formal definition of the terminology.

3.1 Robustness Requirements

Consider the strictest formulation of robustness, called absolute robustness (AR):
No rater may introduce noise. Note that AR implies that no group of raters
may introduce noise either. Intuitively, AR seems too strong. If no predictions
can introduce any noise, no matter how small or improbable, then how can
the rater make any meaningful predictions? In fact, in Section 7, we prove this
intuition correct; no non-trivial system can be absolutely robust.

The generalisation of absolute robustness is θ-strict robustness (SR): No
rater may introduce noise larger than θ. Note that SR implies that no
group of raters sized n may introduce noise larger than θ ·n. Strict robustness is
also a strong axiom, and it is somewhat workable, although it negatively affects
other aspects of the system. Particularly, due to the fixed-size tolerance of noise,
and the inevitability of noise, any rater can only provide a limited number of
predictions. We refer to this property as effectiveness, and its axiom is stated
below.

Strict robustness can be weakened, e.g. by allowing more noise. Finally, we
weaken robustness to f -weak robustness (WR), where f is a non-decreasing
function: In the first n selected predictions, no rater may introduce
noise larger than f(n). Weak robustness is a generalisation of strict robustness
(let f be a constant function). Here, good (selected) predictions from the past
give the rater some credit. Picking f(n) = n · θ would encode that the average
noise is limited by θ. Whether weak robustness is sufficient is debatable, but we
should expect increased effectiveness for some f .

We formulate a radically different notion of robustness, based on hypothesis
testing. The idea is that one initially assumes perfect accuracy (null hypothe-
sis), and that the null hypothesis may be rejected in favor of any alternative
hypothesis if the data is unlikely to fit the predictions. The hypothesis testing
variant of robustness is (HR): The probability of a sequence of events,
given that the predictions are accurate, must not go below α. We show
later that SR = HR, when α = −2θ.

Remark 1. Note that we are not subjecting the rater to a single statistical test,
but to many. Then, we require that the rater cannot fail any of the statistical
tests. This models the notion that we do not know what kind of attack the rater



may be performing (i.e. what the alternative hypothesis is). For every sequence
of outcomes there is one statistical test, where H0 is that the rater accurately
predicts it, andH1 is that the rater underreports it. For each individual statistical
test, the probability of falsely rejecting H0 is bounded by α. Since we have
multiple tests, the probability that at least one test rejects H0 can (and does)
exceed α.

3.2 Auxiliary Requirements

The system that needs to be robust must also have a variety of other properties.
The filter should not introduce bias, it must not rely on foreknowledge, and it
must not exclude excessively many predictions.

The first requirement is that the system must be implementable – it cannot
make decisions based on future events. Specifically, users cannot be prescient (T):
Whether a prediction is used should not depend on its outcome, nor
on future predictions or outcomes. There are combinations of requirements
that are logically non-contradicting, but that contradict T. Rejecting T means
asserting prescience. Such systems cannot be implemented in a meaningful way,
since the purpose of the prediction was to be able to act before the future
happened. Note that T does not exclude analysing a prediction in the future, it
just prohibits users from using such a future analysis in the present.

Another property of a selection mechanism is that it should not be biased.
The ideal notion of unbiasedness, called strictly unbiased (SU) states: A predic-
tion from a user about an event is used iff any alternative prediction
from that user about that event would be used too. However, this notion
may be too strong, as the mere possibility of an extreme prediction that may in-
troduce an unacceptable amount of noise would imply that all predictions must
be blocked. Hence we formulate (weakly) unbiased selection (WU): A predic-
tion from a user about an event is used iff the opposite prediction
from that user about that event would be used too. This notion matches
the idea that we can not “prefer” one outcome over the other, and thus that
the selection mechanism mistakenly favours one side. However, weak unbiased
selection may introduce a bias towards the center, meaning unlikely events may
be overestimated.

Finally, the property that forms the typical trade-off with robustness: ef-
fectiveness. Effectiveness measures how many predictions can be used over the
lifetime of a trust system. We formulate two incarnations of effectiveness. The
first is optimistic k, n-effectiveness (OE): It is possible to select k predic-
tions for n events. Optimistic k, n-effectiveness can be used to prove hard
limits on robustness of trust systems. The second notion of effectiveness is re-
alistic k, n-effectiveness (RE): Assuming all raters are accurate, we can
expect k predictions for n events. The realistic k, n-effectiveness is used for
the positive results.



4 Modelling

Raters send predictions to users – be it by broadcasting or upon request. Pre-
dictions concern events with an outcome that will eventually be known. Users
want to estimate how likely outcomes of events are, and use predictions for this
purpose. After the event, users use the outcome to judge the predictors. Good
predictors assign high likelihood to actual outcomes, and bad predictors assign
lower likelihood.

There is a sequence P of binary events, where the ith event, denoted pi,
either equals 0 or 1. The prediction of rater a about pi is rai , which (for honest
raters) represents his estimate of p(pi=1) – and rai = p(pi=0) = 1 − p(pi=1).
The sequence of all predictions of rater a is Ra, with Rai his prediction about the
ith event. For a set of raters A, we can write RA to mean {Ra|a ∈ A} Together
A, P and RA form a trust system.

The user has no influence on the values of the predictions or on the outcomes
of the events. The only way to achieve the goal of dealing with predictions in a
robust manner, is to select the right predictions from the predictions that are
given. Note that blocking raters can be accomplished by never selecting that
rater’s predictions, regardless of the values. Thus, the focus on this paper is on
selecting the right predictions. The sequence of predictions that is selected is
called the sequence of filtered predictions, denoted R̂A (where RA is the set that

R̂A is selected from).
Our motivating question is what the limitations are to such a filter. The

filtered predictions may be biased, can we avoid such a bias? All things considered
equal, a looser filter is superior, as it allows the user to consider more information.
How many (sufficiently unbiased) predictions can R̂ contain? Finally, the crucial
question, can we put a hard limit on how much noise a rater can introduce?

Every prediction has an amount of information[11]. Information is the dual
of entropy, and entropy is the expected surprisal of a random variable [5]:

Definition 1. Let X,Y, Z be discrete random variables.
The surprisal of an outcome x of X is − log(P (x)).
The entropy of X is H(X) = EX(− log(P (x)) =

∑
i P (xi) · − log(P (xi)).

Once the actual outcome pi of the event is known, we can analyse the surprisal of
the prediction, which is − log rai or − log rai , when pi = 1 or pi = 0, respectively.
The surprisal of rai given the outcome pi is denoted f E(rai , pi) (to avoid the case
distinction for pi). With perfect information (zero entropy), the surprisal is 0,
so surprisal measures noise (misinformation).

Therefore, surprisal can be used to measure the quality of a prediction (this
is, e.g., the basis of the cross-entropy method [5]). A high quality prediction
assigns a higher probability to the actual outcome. But more importantly, a
prediction is of low quality when a low probability is assigned to the outcome.
Since a high surprisal corresponds to low quality predictions, we use surprisal
to measure the noise of a prediction. However, a high degree of noise in the
prediction does not necessarily mean that the rater was malicious or even in
error. Raters can introduce noise by sheer bad luck.



Other measures could be used than surprisal. There are, however, two ad-
vantages being logarithmic: First, the sum of the surprisal of two outcomes of
independent events is equal to the surprisal of the outcome of the joint event.
The surprisal of a combination of outcomes is the sum of the surprisal of the
individual outcomes; formally log p(x) + log p(y) = log p(x, y), for independent
X,Y . Second, it matches the intuition that the difference between 1% and 2%
is far more significant than the difference between 50% and 51%. However, we
also consider another measure for the quality of predictions, which is based on
hypothesis testing; a statistical tool, rather than information theoretic.

Before continuing, we define a couple of shorthand notations. Typically, we
denote predictions with r, but we may use q instead. Furthermore, we allow
substitution in a sequence/set, denoted RA[rai \ qai ], where rai is replaced by

qai in RA. We may want to get the index of rai in the sequence R̂, which we
denote as ρR̂(rai ). Finally, X v Y if X is a subsequence of Y (same elements
and order). These notations are particularly introduced to simplify the notation
of the axioms.

5 Axioms

We need to have a formal model of the trust system to base the formal version
of our axioms on. The idea here follows the standard approach in social choice.
We formulate a generic collection of events and predictions, and prove that set
of filtered predictions can satisfy a certain combination of axioms. Thus, we can
show the impossibility of a combination of desirable properties.

Axiom AR – absolute robustness – must encode that ”no rater may intro-
duce noise.” That axiom can be stated as:

AR : ∀i,a
∑

rai ∈R̂a
f E(rai , pi) = 0.

Axiom SR – strict robustness – must encode that ”no rater may introduce
noise larger than θ.” That axiom can be stated as:

SR : ∀i,a
∑

rai ∈R̂a
f E(rai , pi) ≤ θ.

Axiom WR – weak robustness – must encode that ”in the first n selected
predictions, no rater may introduce noise larger than f(n).” That axiom can be
stated as:

WR : ∀n,a
∑

rai ∈R̂a∧ρR̂a (r
a
i )<n

f E(rai , pi) ≤ f(n).

Axiom HR – hypothesis testing-based robustness – must encode that ”the
probability of a sequence of events, given that the predictions are accurate, must
not go below α.” That axiom can be stated as:

HR : ∀a(
∏

rai ∈R̂a
rai ≥ α).

The product of the prediction assigned to the actual outcome is what the joint



probability of the outcomes would be if the predictions are accurate. This prob-
ability may not go below α.

Axiom T – non-prescience – must encode that ”whether a prediction is used
should not depend on its outcome, nor on future predictions or outcomes.” The
axiom can be stated as:

T : ∀i≤k,a(rai ∈ Ra=r′ai ∈ R′a) ∧ ∀i<k(pi∈P=p′i∈P ′) =⇒ (rak∈R̂a ⇔ rak∈Q̂a),

whenever two trust systems are equal up to point k, they must allow the same
predictions to be selected or blocked. In other words, at time k the selection
cannot depend on pk+j or rak+j , since there exists a system identical up to k
steps with pk+j 6= p′k,j and rak+j 6= r′ak+j .

Axiom SU – strong unbiasedness – must encode that ”a prediction from a
user about an event is used iff any alternative prediction from that user about
that event would be used too.” The axiom can be stated as:

SU : ∀i,a(rai ∈ R̂a ∧Qa = Ra[rai \ r′ai ] =⇒ r′ai ∈ Q̂a),

every prediction from user a at time i can be replaced by another prediction
from a at i.

Axiom WU – weak unbiasedness – must encode that ”a prediction from a
user about an event is used iff the opposite prediction from that user about that
event would be used too.” The axiom can be stated as:

WU : ∀i,a(rai ∈ R̂a ∧Qa = Ra[rai \ rai ] =⇒ rai ∈ Q̂a),

every prediction from user a at time i can be replaced by another prediction
from a at i.

Axiom OE – optimistic effectiveness – must encode that ”it is possible to
select k predictions for n events.” The axiom can be stated as:

OE : ∀a(maxi<n ρR̂a(rai ) ≥ k),

there highest index of a prediction in R̂a with index below n in Ra is at least k.
Axiom RE – realistic effectiveness – must encode that ”assuming all raters

are accurate, we can expect k predictions for n events.” The axiom can be stated
as:

RE : ∀a,R̃avRa(maxi<n ρ
R̂a[R̃a\R̃a]

(rai ) ≥ k),

which is similar to OE, except it must also hold if we swap arbitrary values of
rai for their negation. With the arbitrary swapping of predictions, RE captures
the possibility that the actual outcome was pi, in which case the surprisal would
be − log(rai ), rather than − log(rai ). Thus, the effectiveness here is attainable for
all sequences of outcomes, rather than just one.

6 Relative Strength of the Axioms

With the exception of Theorem 1, all the propositions and corollaries in this
section are straightforward sanity proofs. Propositions 1, 2, 3 and 4 and Corol-
laries 1 and 2 merely show that axioms that are supposed to be weaker are indeed
weaker. The relative strength of the axioms is depicted in Figure 1. Theorem 1
is the only deep result in this section, as it shows the equivalence between SR(θ)
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Fig. 1. Relations between axioms. Arrows point from strong to weak.

and HR(α), for α = 1
2θ

. Thus Theorem 1 shows that an information-theoretic
perspective coincides with a view based in statistical methods; specifically hy-
pothesis testing.

The first proposition shows that a lower fixed robustness threshold is a
stronger requirement:

Proposition 1. If θ ≤ θ′, then SR(θ) =⇒ SR(θ′).

Proof. By transitivity: ∀i,a
∑
rai ∈R̂a

f E(rai , pi) ≤ θ ≤ θ′.

Proposition 1 shows that strict robustness is a weaker requirement than ab-
solute robustness:

Corollary 1. For all θ, AR =⇒ SR(θ).

The second proposition shows that a consistently lower robustness threshold
is a stronger requirement:

Proposition 2. If, for all n, f(n) ≤ f ′(n), then WR(f) =⇒ WR(f ′).

Proof. By transitivity: ∀i,a
∑
rai ∈R̂a

f E(rai , pi) ≤ f(n) ≤ f ′(n).

Proposition 2 shows that weak robustness is a weaker requirement than strict
robustness:

Corollary 2. If f(1) ≥ θ, then SR(θ) =⇒ WR(f).

The third proposition shows that no bias towards any prediction is a stronger
requirement than no bias w.r.t. the opposite prediction:

Proposition 3. SU =⇒ WU

Proof. The term rai in WU is an instance of r′ai in SU, and SU dictates that
substitution can be done for all r′ai .

The fourth proposition shows that realistic effectiveness is a stronger require-
ment than optimistic effectiveness:

Proposition 4. RE =⇒ OE

Proof. In RE, we can find OE by letting R̃a = ∅.

Finally, this section’s main theorem, which shows the deep link between
information-theoretic robustness and hypothesis testing robustness:



Theorem 1. If α = 1
2θ

, then SR(θ)↔ HR(α).

Proof. Note that
∏
rai ∈R̂a

rai ≥ α iff log(
∏
rai ∈R̂a

rai ) ≥ log(α). Distributing the

log over the product and negating, −
∑
rai ∈R̂a

log(rai ) = − log(α). This is SR(θ)

with θ = log(1/α).

7 Impossibility Results

Here, we study the relationship between the axioms. Specifically, we investigate
whether certain combinations of axioms admit a non-trivial set of filtered ratings.
Moreover, where applicable, we investigate what the size of the set of filtered
ratings can be. Any statement made in this section is a general truth about all
rating systems. The results are summarized in Table 1.

The first is the effective impossibility of a system that has absolute robust-
ness. The only ways in which a system can be absolutely robust, is if it either
never uses predictions or if it only uses predictions that predict 100% probabil-
ity for the correct outcomes. The former implies an effectiveness of 0 (i.e. it is
ineffective); the latter breaks non-prescience. An absolutely robust trust system
without prescience is ineffective:

Theorem 2. AR + T + OE(k, n) =⇒ k = 0

Proof. Let R̂a be a subset of Ra such that it satisfies AR. Since noise is a positive
quantity, ∀rai ∈R̂af

E(rai , pi) = 0. Thus rai = 1 iff pi = 1. If R̂ is non-empty, then we

can take such a, i. Due to T, when pi = 0, R̂ remains the same up to i. However,
if pi = 0, then rai = 1 implies f E(rai , pi) =∞ > 0. By T, if R̂ is non-empty, then

there exists a system that violates AR or T. Hence, R̂ = ∅ and k = 0.

This theorem (and the following) can be stated as an impossibility theorem:
There is no non-prescient, effective, absolutely robust trust system.

Moreover, even if we drop non-prescience (thus using predictions given fore-
knowledge), the system would not even be weakly unbiased unless all predictions
are ignored. In other words, if we select 100% correct predictions, we would lose
(weak) unbiasedness. A weakly unbiased absolutely robust trust system is inef-
fective:

Proposition 5. AR + WU + OE(k, n) =⇒ k = 0

Proof. Similar to to Theorem 2, except rather than swapping pi, we swap rAi .

There is no unbiased, effective, absolutely robust trust system.
Weakening the robustness requirement to strict robustness, we finally obtain

a bit of robustness. A non-prescient rating system with strict robustness can
allow at most θ ratings to be selected from users:

Theorem 3. SR(θ) + T + OE(k, n) =⇒ k ≤ θ



Proof. Let R̂a be a sequence of rai . Due to axiom T, the choice of rai is indepen-
dent of pi. Thus, if rai 6= 1/2, then the model must hold with noise f E(rai , pi) and
f E(rai , pi). Without loss of generality, we can therefore assume rai ≤ rai . Now, via
SR(ic), θ ≥

∑
rai ∈R̂a

f E(rai , pi) ≥
∑
rai ∈R̂a

f E(1/2, pi) = k

There is no non-prescient, unboundedly effective, strictly robust trust
system.

An interesting academic question is whether the fixed bound on effectiveness
can be lifted when we are aware of the future. It turns out that if we replace non-
prescience with weak unbiasedness, that the bound is widened, but still fixed:

Theorem 4. SR(θ) + WU + OE(k, n) =⇒ k ≤ 2θ

Proof. As T is not an axiom, we can select rai knowing pi. However, due to WU,

f E(R̂a≤k, p) + rai must be at most θ. Let ck = θ − f E(R̂a≤k, p). Then we obtain

the recursive equation ck + log(1 − 1
2ck ) = ck−1. Via 1 − 1

2ck = 2ck−1−ck , and
2ck − 1 = 2ck−1 that becomes ck = log(2ck−1 + 1). Basic arithmetics show that
ck = log(k).

There is no unbiased, unboundedly effective, strictly robust trust sys-
tem.

When tightening the requirement on unbiasedness to strong unbiasedness,
we lose effectiveness completely. Even without non-prescience. Thus, strict ro-
bustness and strong unbiased cannot be meaningfully combined.

Theorem 5. SR(θ) + SU + OE(k, n) =⇒ k = 0

Proof. Let rai in R̂a, then the theorem must also hold for qai . However, if we let
qai < − log(θ), and pi = 1, then the strict robustness is broken. Hence, there

cannot be any rai ∈ R̂a, and k = 0.

There is no strongly unbiased, effective, strictly robust trust system.
Again, we weaken the robustness requirement. When we keep strong unbi-

asedness, we again lose effectiveness. Thus, not a single notion of robustness can
combine meaningfully with strong unbiasedness.

Theorem 6. WR(θ) + SU + OE(k, n) =⇒ k = 0

Proof. Reuse the proof of Theorem 5, replacing θ with f(1).

There is no strongly unbiased, effective, weakly robust trust system.
Finally, we consider a weakly robust, non-prescient system. Here, the limita-

tion on the effectiveness is the weakest (assuming θ = f(1)):

Theorem 7. WR(f) + T + OE(k, n) =⇒ k ≤ f(n)

Proof. Reuse the proof of Theorem 3, replacing θ with f(n).

There is no non-prescient, unlimited effective, weakly robust trust
system.



8 Robust Prediction Systems

We have shown the negative impact of robustness on other desirable requirements
on a rating system. Perhaps robustness is simply a problematic notion in itself.
In the proofs, we have shown that models cannot exist in certain combinations,
not that models do exist in the negation. In this section, we show that there do
exist reasonable models that strike a balance between robustness, fairness and
effectiveness.

It does not suffice to prove the converse of the impossibility theorems, as that
would simply prove that there exists a set of filtered ratings of a certain size.
However, the setting in which that size is reached may be a pathological case. We
want to show that filters can be expected to achieve a certain size. Hence, we are
using axiom RE, rather than OE. Realistic effectiveness is an assertion about
raters whose ratings correspond to the true probabilities. We want to show that
these honest raters are expected to have a certain number of ratings selected by
the filter.

First we introduce an auxiliary lemma, that shows that under T, RE = OE:

Lemma 1. T + RE(k, n)⇔ T + OE(k, n)

Proof. For given R̂a, if rai is in R̂a, then, via T, rai ∈ Q̂a. We can take R̃a, and
swap all rai as above. Then we can make OE match any individual instance of

RE for R̃a. Thus, for OE(k, n) and T to hold, RE(k, n) can be deduced to hold
too. Together with Proposition 4, that proves the lemma.

The following theorem concerns strict robustness. A non-prescient, weakly
unbiased, strictly robust filter can be expected to have over θ ratings selected
over a lifetime:

Theorem 8. There is a model that satisfies T + WU + SR(θ) + RE(θ− 1, n),
for sufficiently large n.

Proof. Via Lemma 1, it suffices to prove for T + WU + SR(θ) + OE(θ − 1, n).
If we only select those ratings that are within distance ε from 1/2, then the noise
is at most k + k · ε. Letting k = θ − 1, the noise is at most θ − 1 + (θ − 1) · ε,
which is under θ for sufficiently small ε. It is straightforward to verify that this
scheme does not violate WU.

For the next theorem, we look at an interesting subclass of weak robustness.
We consider only those functions where f(i)− f(i− 1) is constant; specifically,
1. Thus, every prediction, the rater gets an additional bit credit. If the rater
randomly provides ratings, the expected loss equals the gain and a bad rater is
expected to make a nett loss. Specifically, the expected change in nett score is
f E(rai , p1)− 1, which can be negative, 0 or positive.

Theorem 9. Raters whose ratings do not correlate with the events, or correlate
negatively, have a finite effectiveness. Raters whose ratings correlate positively
with the event have a non-zero probability of infinite effectiveness.



Proof. This is a simple application of a rule in random walks [7]. The probability
of ruin – losing all credit – is 1 for random walks with E(step) ≤ 0, and the
probability of ruin is strictly below 1 for random walks with E(step) > 1.

Theorem 9 is a superficially surprising result. We have a hard guarantee
that below average predictors are eventually unable to get their ratings selected.
We cannot guarantee that a high quality predictor is not shunned too. If a
high quality predictor is unlucky, he can still have a random walk ending in
ruin. Note that for simplicity, we took the cutoff at 1/2, we could have chosen
arbitrary values, or even a dynamic version. In all these cases, random walks
without expected gain eventually run into ruin.

9 Conclusion

We have presented a simple formal model for prediction systems. That formal
model focusses on the actual predictions, the outcomes and which predictions
are used, and ignores the non-essential aspects of a prediction system.

We have outlined desirable properties for such a prediction system to have.
Specifically, we have three notions of robustness – how much noise an attacker
(or any rater) can introduce – in various strength (absolute, strict, weak). All
three notions are formulated in information theory, but strict robustness can be
stated in classical statistical term too. Two notions deal with bias, the strong
version disallows any form of bias, whereas the weak version allows bias towards
the center. Two more notions deal with effectiveness – how often the user can
use the ratings. One version (weak) overestimates the effectiveness, to strengthen
the impossibility results. Finally, one notion deals with the fact that users should
not be able to foreknow the future.

All these notions have been translated into axioms in the language of the
formal model for prediction systems. We show that the axioms do indeed satisfy
the desired strength relations.

Based on the axioms, we present a collection of impossibility results. The
absolute notion of robustness cannot have any effectiveness whatsoever. The
strict notion of robustness can have a bounded effectiveness, meaning that the
system cannot keep providing useful predictions indefinitely. For the weak notion
of robustness the effectiveness remains hampered.

Finally, we show that a strict robust system can exist, and while its life-span is
limited, reaching the theoretically maximal effectiveness is feasible. More impor-
tantly, we show that if we weaken robustness, an interesting property regarding
effectiveness arises. Selecting the right function (f(n) = n + θ), we get that
better-than-random raters could have infinite effectiveness, whereas random-or-
worse raters have finite effectiveness. In other words, the quality of the ratings
determines whether the effectiveness is bounded.

Together the results in this paper sketch the idea that fairly strong notions of
robustness are feasible, but come at a high cost. An interesting research direction
would be to fine-tune all the desirable properties into an actual system – rather
than a theoretically induced model.
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