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Abstract. This paper focuses on computational models development and its 

applications on demand response, within smart grid scope. A prosumer model is 

presented and the corresponding economic dispatch problem solution is 

analyzed. The prosumer solar radiation production and energy consumption are 

forecasted by artificial neural networks. The existing demand response models 

are studied and a computational tool based on fuzzy clustering algorithm is 

developed and the results discussed. Consumer energy management 

applications within the InovGrid pilot project are presented. Computation 

systems are developed for the acquisition, monitoring, control and supervision 

of consumption data provided by smart meters, allowing the incorporation of 

consumer actions on their electrical energy management. An energy 

management system with integration of smart meters for energy consumers in a 

smart grid is developed.  

Keywords: Smart Grids, Prosumers, Demand Response, Energy Management 

Applications. 

1   Introduction 

Traditional power grid was designed to operate according to a vertical structure 

defined by generation, transmission and distribution, supported by several control 

devices which guarantee the power grid stability, reliability and efficiency [1]. 

Nowadays the traditional power grid is a system supported by obsolete technology [2] 

and at the same time it has to deal with new challenges such as increasing 

consumption, more inaccessible and costly fossil fuels, penetration of renewable 

source generation, energy markets and several power grid stakeholders. Allowing an 

active participation of energy consumers, reducing greenhouse gas emissions and 

minimizing the new implantation of traditional power plants, are other challenges that 

should be considered [1-3]. In order to provide an answer to these challenges, the 

smart grid appears as a key element for future power grid design. Mainly because 

smart grids allow bidirectional power flow and data communication, also because 

they are based on digital technology and permit to offer new services to consumers 

supported by smart metering, digital control technologies and by the increasing 

consumption awareness. 
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Smart grids encompasses a panoply of themes, methodologies and technologies, 

however in this paper highlight is given to smart consumption where three main 

contributions are introduced: i) to model a prosumer, showing the economic dispatch 

problem solution based on generation and consumption forecast given by neural 

networks; ii) to develop a demand response (DR) computational tool to support 

consumers decisions based on fuzzy clustering and iii) to design smart applications 

for demand side. These main contributions allow giving support to those challenges 

derived from the incorporation of distributed generation into the power grid. In 

addition, the proposed DR model is developed with the purpose of “giving 

intelligence” to consumers, allowing them to take advantage of smart grids 

implementation, in what regards to consumers active participation in power grid 

management and also contributing for energy efficiency increase. The smart 

applications provide the interface between computational tools, developed models and 

consumers. The smart meters, when integrated in a control structure, allow the 

implementation of advanced mathematical models. 

2   Relation to Cyber-Physical Systems 

Considering Cyber-Physical Systems (CPS) as the interaction between computers and 

physical devices is an important aggregation element in smart grids development and 

operation. The information exchange between consumers and power grid operator 

through smart meters is one of the several prevailing CPS in smart grid environment. 

The mobile communication used to perform demand response actions, allowing 

household devices management, helps supporting the desired consumers’ active role 

in grid management. This feature also depends on CPS. 

In this paper the relation to CPS is present, in a straightforward way and in an 

indirect way. An indirect relation to CPS can be found in the prosumer modelling. 

The prosumer model accuracy depends on consumption and solar radiation forecast 

data. For the forecast implementation radiation data derived from the Alcáçovas 

weather station, is used. A processing system is needed to handle the data provided by 

the sensors and signal acquisition hardware. In addition, a communication system is 

also involved in this process. Several straightforward relations to CPS can be found in 

the demand response model deployment. Demand response actions depend on 

information provided by smart meters. In this paper this provided information is used 

to define a computation tool that supports consumers in energy management. Through 

the knowledge of energy price evolution given by the grid operator, available power 

information and power consumption history data, a fuzzy clustering based software is 

developed to define which loads can be connected by a domestic consumer, taking 

into consideration his consumption profiles and operation modes, as described in 

section 4. These preferences can be related with energy price or lifestyle, namely by 

defining which loads are eligible to be managed (connected or disconnected), or by 

defining which hours are more adequate to connect or disconnect loads. Also it is 

important to notice that the smart applications development and implementation 

described in section 5 are intrinsically related to CPS. The consumer owned smart 

meter development incorporates a sensor unit, processor unit, transmitter and display. 
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The hardware is based on Arduino platform. The distributor owned smart meter is the 

Energy Box [4], which consists on a CPS itself. Moreover, the implementation of 

smart application presented is based on a strategy that follows an advanced control 

strategy. This advanced control strategy is designed to perform temperature control 

actions. The advanced control actions are designed and implemented in Matlab 

software. The Matlab inputs are references provided by users and the outputs are 

transmitted to a SCADA system through OPC protocol, in order to perform 

consumers’ tasks, resorting to a programmable logic controller network (PLC). The 

advanced control is developed in Matlab, because the required computation is not 

possible on a SCADA system. However the SCADA system is the interface between 

Matlab and the PLC network. The PLC network is the system actuator, because it 

receives the information provided by the SCADA system and executes the control 

action. Computers are used to monitor and to carry out control actions while physical 

systems, such as sensors and actuators, are the bridge between the cyber system and 

the end energy consumer.  

3   Prosumer Modeling 

Several prosumer models are described in literature [5-12]. There are models based in 

intelligent systems [5,7,8], in stochastic correlation [6], in predictive control [10], in 

graphs [11] in multi-objective methodology [12] and in the aggregation of consumer 

and producer models [9]. In this paper the analyzed prosumer is a domestic consumer, 

which is simultaneously a solar photovoltaic energy producer. Because distributed 

generation has intrinsically intermittent characteristics, the prosumer´s production 

forecast and consumption forecast is included in economic dispatch problem solution. 

The prosumer model (1-7) is based in [9] and considers energy buying prices given by 

energy market, obtained from OMEL´s data base [13]. In addition constant selling 

energy price is considered. The considered generation and consumption power result 

from forecast models. 

 lP,P,P PUMax
slb

 (1) 

Subjected to the following constraints: 

WPP ssbb   (2) 

0sb 

 

(3) 

slgb PPPP 

 

(4) 

maxllminl PPP 

 

(5) 

0PP gs  . (6) 

Where Pb, Pl and Ps are, buying power, load power and selling power, 

respectively,  lPU  is the utility function given by (7). λb and λs are the buying and 
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selling price, respectively. W is the consumer budget and gP is generation power. 

Plmin and Plmax are minimum and maximum load power, respectively.  
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In (7),  t  is the consumption preference factor vector given by (8-9), which 

depends on consumption time and is settled accordingly to the Portuguese winter and 

summer hourly cycles definition [14].  
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(9) 

The consumption preference factor values are shown in Table 1.  

Table 1.  Consumption preference factor values   

Consumption period  t  

Peak hour 1 

Shoulder hour 2 

Off-peak hour 3 

The consumer budget is 1.00€/day, which under some consumption circumstances, 

can imply the occurrence of consumers load management in order to assure that this 

budget limit is not exceeded. 

The mathematical model (1-7) incorporates prosumer preferences on selling or 

buying energy without considering prosumer energy storage capability and its cost. 

Energy selling price is 0.142 €/kWh, which was chosen accordingly to the Portuguese 

current selling price values. 

Solar photovoltaic energy production is higher on summer; however, despite that 

fact, energy buying prices are superior to winter energy prices, which can be justified 

by the summer increased average consumption when compared to the average winter 

consumption.  

In this paper, consumption and production are forecasted resorting to artificial 

neural networks (NN). For the consumption forecast, the forecasted radiation is 

converted into power generation, resorting photovoltaic solar system PV curves [13] 

and considers a 5 kW prosumer’s power generation capacity. For radiation forecast a 

feedforward multilayer perceptron NN with 19 inputs, 43 units in the hidden layers 

and 1 output, is considered. A sigmoid activation function is used in the hidden layer 

and an identity active function on the output layer is used. The training process is 

carried out by Lavenberg Marquard backpropagation algorithm, using the gradient 



Computational Models and Demand Response for Smart Grid   327 

 

descendent method and the root mean square error is the chosen performance. The 

stopping criterion is carried out by cross validation method. The NN is trained with 

radiation and temperature hourly mean values from 4 years (2005, 2007 to 2009). For 

the consumption forecast, a feedforward multi-layer perceptron NN with 19 inputs, 49 

units in the hidden layer and 1 output is considered. The activation functions used in 

the hidden and output layers are the same considered in the radiation forecast NN, as 

well as the training process, performance indicator and stopping criterion. The NN is 

trained using consumption and temperature hourly mean values available from year 

2012. Both consumption and production forecast NN’s are tested for a winter and a 

summer month, using data not provided to the NN during the learning process. 

Because input data is mainly time series, Pearson correlation is used in order to define 

inputs’ pattern. The implemented consumption NN system is shown in Fig.1. The last 

two inputs showed in Fig.1 give the consumption pattern for a 24 hour period [15]. 

Three scenarios and six case studies are described for the prosumer model analysis, 

considering daily and monthly time horizons: a) self-consumption and energy bought 

in energy market; b) total produced energy sold and total consumed energy bought in 

free energy market, and c) total produced energy sold and total consumed energy 

bought in energy market considering load shifting. 

Consumption

 forecast 

NN

Hourly 

consumption (t) 

cos (2hπ/24)

sin (2hπ/24)

Hourly 

consumption (t-168) 

Hourly 

consumption (t-336) 

Hourly 

Temperature (t)

Hourly 

consumption (t+24) 

  

Fig. 1. Consumption forecast NN. 

The economical dispatch problem solution (EDPS) for scenario a) considering a 

daily time horizon is shown in Fig.2 and Fig.3.  

From comparison between Fig.2 and Fig.3 it can be observed that generated power 

on July is superior to January because solar radiation and solar hour duration is 

superior during summer. Consequently the power sold on July is superior to the 

power sold on January and therefore the bought power on July is inferior to the 

bought power on January. In scenario a) a daily time horizon is used to show in detail 

the EDPS result and the balance between generation and demand, regarding the 

possibilities of self-consumption or selling the generated power. The comparison of 

EDPS between winter and summer is also shown with more detail when daily time 

horizon is considered .The EDPS results for this scenario are shown in Table 2. 

In Table 2, the utility value is adimensional and behaves like a satisfaction 

indicator, because it gives information about the appreciation of using prosumer’s 

production. 
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From Fig.2 and Table 2 analysis considering January, a prosumer’s profit would 

have been achieved if the generated energy was sold instead of consumed. From Fig.3 

and Table 2 analysis considering July, generated power was enough to meet 

consumption and the remaining generated power was sold, resulting on prosumer’s 

profit.  

 

Fig. 2. Daily January EDPS. 

 

Fig. 3. Daily July EDPS. 

Table 2.  Daily EDPS results 

Scenario a) Energy cost (€) Utility value 

January 0.30 110.01 

July -1.13 112.30 

The EDPS for scenario b) considering a monthly time horizon is shown in Fig.4 

and Fig.5. 
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On Fig.4 to Fig.7, the load power matches with buying power and generated power 

matches with the power sold. In order to contribute to representation clarity, only the 

first and the last 24 hours of each month are detailed, i.e., 0-24 hours and 720-744 

hours. For the generated power 9 solar hours are considered during winter and 15 

solar hours during summer. In this scenario the necessary budget to accomplish the 

desired consumption without performing load shifting or load shedding actions, is 

superior to 1€/day.  

 

Fig. 4. Monthly January EDPS for scenario b). 

 

Fig. 5. Monthly July EDPS for scenario b). 

The EDPS results for this scenario are shown in Table 3.  

Table 3.  Monthly EDPS results for scenario b)  

Scenario b) Energy cost (€) Utility value 

January 52.13 3596.53 

July 54.28 2666.73 
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The lack of prosumer flexibility in performing consumption adjustments resulted 

into the predefined budget limit violation and therefore the energy cost has increased, 

despite selling all generated energy. The utility values are compatible with the 

previous scenario, showing a slight increase on January and a slight decrease on July. 

For this compatibility analysis the conversion of monthly utility values into average 

daily utility values is considered.  

The EDPS for scenario c) considering a monthly time horizon is shown in Fig.6 

and Fig.7. 

 

Fig. 6. Monthly January EDPS for scenario c). 

 

Fig. 7. Monthly July EDPS for scenario c). 

The EDPS results for this scenario c) are shown in Table 4.  

Table 4.  Monthly EDPS results for scenario c)   

Scenario c) Energy cost (€) Utility value 

January 30 3065.45 

July 30 2338.12 
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In this scenario, the compliance of budget ceiling led to a load shifting and resulted 

on the utility value reduction, on both months. The referred load shifting resulted 

from EDPS outcome as a conjunction of budget ceiling compliance and the Pb, Pl, Ps 

and Pg values. 

In the six case studies the generated power on summer is superior to the one 

observed during winter as well as the load power. This is justified, not only by the 

increased solar radiation during summer, but also with geographical characteristics 

that show higher thermal amplitude during summer when compared to the one 

verified during winter. The prosumer model drives to a lower energy expenditure 

when the load shifting occurs, however if consumption needs increases the load 

shedding is mandatory, in order to accomplish the budget limit [16]. 

4   Demand Response Model 

Usually, DR programs are classified into two main types: Time-Based Program (TBP) 

[17-20], which is also described as Price-Based Programs [17,18] or Time-Based Rate 

program [21] and Incentive-Based Program. The proposed model [22] is TBP type 

based on fuzzy subtractive clustering algorithm and intends to give consumers 

flexibility in order to take advantage of economical benefits allowing the load 

management that best fits consumer’s profiles or life-styles. Consumers load 

management is possible through methods of load scheduling and load shedding. The 

loads selected to be under consumer management actions are named as controllable 

load. Consumers’ profiles and operation modes were obtained from analysis of 

consumption behaviour that allowed a consumption pattern definition. Three 

consumer profiles were set to ensure the coverage of DR generalization on the model 

and help consumers cope with price changes over one day period. Two operation 

modes are set for each consumer profile. An example of a priority list is shown in 

Table 5 [22].  

Table 5.  Controllable load priority list for cleaning mode.  

Economic profile Moderate profile Extravagant profile 

 Dishwasher 

 Washing machine 

 Dryer machine 

 Air conditioner 

 Thermo ventilator 

 Low price  
Low or medium 

price 
 

Low, medium or 

high price 

The priority list shown in Table 5 is the same for all consumer profiles because it 

assures that consumer choice and preferences are kept, despite a possible adjustment 

on energy price through a different profile setting. I.e., considering the settled 

operation mode, all consumption profiles can be chosen accordingly with energy price 

that consumers’ are willing to pay for. Therefore, for any consumption profile, the 
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consumers’ preferences are obeyed because CL priority list is common to the 3 

profiles. Table 5 shows the relation between consumer profiles and energy prices, 

where economic profile is only related with low energy price, moderate profile is 

related with low energy price and also allows a medium energy price and finally the 

extravagant profile is related to all levels of energy prices, allowing a consumption 

which is energy price independent. The necessity of pattern recognition associated 

with a control which supports consumers’ decisions for DR model design is fulfilled 

using fuzzy clustering method. For the control implementation, an off-line fuzzy 

clustering technique is used because it is intended to determine a DR behaviour 

pattern and to design a controller that performs the adequate adjustments between the 

inputs and controller parameters, in order to guarantee an appropriate DR model 

behaviour. The controller is implemented in the Matlab-Simulink® software resorting 

to the Fuzzy Logic Toolbox.  

The demand response model is shown in Fig. 8 [22].  

 

Fig. 8. Demand response model scheme. 

The subtractive clustering technique applied in this paper and all DR model 

considerations are described in [22]. For DR model analysis Fig.9 and Fig.10 are used 

as comparison base. The consumer load diagram without DR model implementation 

is shown in Fig.9.  

The correspondence between Fig.9 and the controllable load power diagram is 

shown in Fig.10.  

 

Fig. 9. Load diagram without DR model. 

The available power, Pa, the base power consumption, Pc, and the energy price (Ep) 

with DR model implementation are shown in Fig.11. The available power is assumed 

to be given by the electric power grid and cannot be exceeded by load power. The 

base power consumption corresponds to the non-controllable load power 

consumption.  

Considering that an economic profile is selected, the total power consumption, P t, 

the base power consumption and available power are shown in Fig. 12. Where the 
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total power consumption diagram is the controllable load power consumption added 

by the controllable load power consumption. 

 

Fig. 10. Controllable loads evolution stage without DR model. 

 

Fig. 11. Power and energy price evolution with DR model. 

The correspondence between Fig.12 and the controllable loads power diagram is 

shown in Fig.13. The load power diagram corresponds to the load scheduling resulted 

from the developed fuzzy subtractive clustering algorithm detailed in [22]. 

 

Fig. 12. Power evolution for economic profile. 

From comparison between Fig.11 and Fig.13, it is shown that controllable loads 

are only connected when energy price is low. In addition, DR model assures that 

consumption is never superior to available power.  

Considering that an ideal profile is selected, the total power consumption, the base 

power consumption and available power are shown in Fig.14.  

The ideal profile allows consumers to connect the same controllable loads used 

without DR model implementation, i.e., is a combination of the 3 profiles in order to 

allow the same consumption flexibility that consumers have in absence of DR model. 
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As a result, even with DR model consumer can reach the same consumption profile 

shown in Fig.9.  

  

Fig. 13. Controllable loads evolution stage for economic profile. 

 

Fig. 14. Power and energy price evolution with DR model for ideal profile. 

From Fig.14 analysis, it is shown that total power consumption is never superior to 

available power and that total power consumption diagram is more flattened than the 

load power diagram shown in Fig.9. The correspondence between Fig.14 and the 

controllable loads power diagram is shown in Fig.15. 

For the DR model implementation in the physical system, smart applications 

development is needed, in order to allow incorporation of the advanced mathematical 

models into the smart metering and monitoring system. 

  

Fig. 15. Controllable loads evolution stage for ideal profile. 
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5   Smart Applications Development and Implementation  

The developed strategy is based on the incorporation of two Smart Meters (SM) types 

in the smart consumer environment (consumer owned SM and distributor owned SM). 

The consumer owned SM runs over a wireless platform and the distributor owned SM 

employs the wired environment [4]. The consumer owned SM is a set of simple 

devices, essentially constituted by a sensor unit and a mobile display, and usually run 

over a wireless network. Therefore, this system is appropriate to domestic purposes.  

The main intention of consumer owned SM is to supply simple data in order to 

support consumption patterns of consumers. The consumer owned SM is developed 

with double interface between Supervisory Control And Data Acquisition (SCADA) 

systems and mobile displays [4]. For the implementation, ZigBee protocol is used, 

which is suitable for small distances and commonly applied for domestic 

environments. The developed hardware is based on Arduino platform. Part of this 

system implementation is shown in Fig.16. This is an original implementation and 

consists of 3 sub-systems: the sensor and processor unit, the mobile display and 

centralized unit, which is the SCADA system.  

 

Fig. 16. Consumer owned SM sensor unit and mobile display [4]. 

The distributor owned SM is composed by sheltered devices with closed 

communication protocols, which are constituted by a sensor unit that measures the 

consumed electricity and remotely informs the local distributer. The consumption 

information exchange is the main distributed owned SM purpose, because it allows 

the electricity local distributor to know about the clients’ consumption, providing a 

significant reduction of operational costs. In addition, this data provides important 

information to the distributor, concerning the consumer patterns, the optimization of 

energy selling prices, the electric grid management and consumption trends [4]. The 

presented strategy pursues the advanced control structure shown in Fig.18 which is 

composed by 2 levels: the Operational level (SCADA system) and the Interactive 

level that optimizes the consumers’ preferences in relation to control references [4]. 

The interactive level allows the assumption of advanced control actions. The 

considered controller development consists on a room control temperature, with 

distributed interfaces that allows receiving inputs accordingly to room users’ 

temperature preferences. The considered room is connected to the master actuator unit 

which receives commands from SCADA system in order to perform control 

temperature regarding restrictions of consumption minimization. On its turn, the 

master actuator unit commands the HVAC actuator which performs room temperature 
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b Display & 
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adjustments. The control algorithm topology is a model-based predictive controller, 

which is implemented on Matlab platform. Matlab is connected to the SCADA system 

through OPC protocol. Details of controller design and achieved results can be found 

on [4]. The operational level consists on a hierarchical cascade control shown in 

Fig.19.  

 

Fig. 18. Two-level supervisory control architecture [4]. 

 

Fig. 19. Operational level controller [4]. 

The first control loop is managed by local programmable logic controllers and the 

second control loop is controlled by a SCADA system. The SCADA system inputs 

referred by (F1(t) .. Fi(t)) are named as comfort laws, because they allow to 

accommodate users decisions about room temperature, luminosity and consider 

energy consumption supplied by the SM, as described in [4]. These comfort laws 

derived from the interactive level shown in Fig.18. The SCADA system output gives 

the necessary data to the interactive level. The operational level also incorporates and 

manages sensors and actuators, namely temperature, luminosity and HVAC. The 

resulted data is fed as input to the SCADA system.  

6   Conclusions  

The prosumer economical dispatch problem solution is obtained considering a time 

dependant cost function that incorporates consumption preferences. Because 

consumption preferences increase on off-peak and shoulder hours, this prosumer 
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model is in line with DR actions. In addition, the NN incorporation supports grid 

operator and enhances the grid management efficiency by providing forecast 

information about production and consumption. In this paper the implemented NN for 

winter and summer periods gave satisfactory results. For the scenarios considered in 

this paper, it can be concluded that self consumption is not always the best decision 

for decreasing the prosumer energy bill. Mainly because prosumer´s profit depends on 

energy selling and buying prices, which are dependant of wholesale energy market. In 

addition, it can be concluded that the budget limit compliance in association with 

consumption preferences led to a load shifting.  

The DR model is obtained resorting to subtractive fuzzy clustering techniques and 

intends to be an efficient domestic consumer’s supporting tool on load management. 

Three consumption profiles and two operation modes are considered, in order to give 

consumers’ flexibility to perform DR actions accordingly to their consumption 

preferences. From the considered case studies, it is visible that, the proposed DR 

model assures that controllable loads priority list is obeyed and that controllable loads 

are connected in accordance to the settled consumption profile. Also, the case studies 

analysis shows that the proposed DR model allows consumer to connect the same 

controllable loads which were also connected considering the absence of DR model, 

because the model allows consumers to take advantage of the offered consumption 

profiles and operation modes.  For the analyzed case studies, the DR model 

guarantees that total consumed power is never higher than the available power. 

Moreover, it can be concluded that power valley filling can be achieved with the DR 

model resulting on reshaped consumption diagrams that are mainly instigated by 

energy price information.  

This paper shows an energy management system development with SM for 

electricity consumers in a smart grid context. The integration of two types of SM is 

considered; the consumer owned SM and the distributor owned SM. The SM are 

connected to a SCADA system that supervises a PLC network. The developed control 

strategy is based on a hierarchical cascade controller. A complete new platform 

connecting the SCADA supervisory system, the Matlab software, and the two existing 

main topologies of electricity smart meters (distributor owned and customer owned) is 

developed. This methodology contributes to provide SCADA systems with the ability 

to handle advanced control techniques for consumer energy management systems.  
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