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Abstract. Nowadays, mobile devices are equipped with multiple radio interfac-

es, data centers provide redundant routing paths, and multihoming is the new 

tendency in existing, extensive server farms. Meanwhile, the unending growth 

rate of Internet traffic generation raises difficulties in meeting end user demands 

regarding bandwidth availability and Quality of Service standards, while TCP 

itself persists as a single-path transport protocol. Multipath TCP, as a set of ex-

tensions to legacy TCP, permits the simultaneous utilization of the available in-

terfaces on a multihomed host, while preserving the standard TCP socket API. 

Consequently, smart terminals possess the distinct capability of leveraging path 

diversity in order to provide robust data transfers and enhance the overall con-

nection performance. However, the implementation of Multipath TCP is still at 

a premature state. Ergo, we propose and evaluate a Multipath TCP Proxy as a 

mechanism towards the incremental adaptation of the extended protocol by ser-

vice delivery platforms. Particularly, we examine the use of an HTTP Proxy as 

a protocol converter that will allow MPTCP-enabled clients to benefit from 

Multipath TCP even when communicating with legacy servers. 

Keywords: Multipath TCP; Protocol Conversion; Congestion Control; Policy 

Routing; Bandwidth Throttling 

1 Introduction 

Computer networks are continuously evolving. When the TCP/IP stack was originally 

designed, hosts were equipped with a single network interface. On modern epoch 

terminals, however, multiple wired and/or wireless interfaces are available. Despite its 

age, the Transmission Control Protocol (TCP) remains the dominant transport mecha-

nism on the Internet in an era when smart devices crave to exploit their numerous, 

usually underutilized, interfaces and harvest the available network resources. 

A number of protocols have been proposed to provide multihoming functionalities 

to end user devices without the use of legacy routing protocols, such as BGP. Two 

main categories can be identified: (a) host based solutions – where modifications 

should be implemented on user handsets and devices, and (b) router based solutions – 

where end devices are left unchanged and new protocol implementations are fulfilled 



on router networking stack. Since multihoming and simultaneous usage of network 

interfaces should be agnostic of the basic network connectivity, solutions that are 

based on the introduction of middle-boxes seem more appropriate in multivendor and 

multi-ISPs environments. Ιn this paper we try to address the issues imposed from 

higher bandwidth requirements, especially on mobile nodes. 

The first and more widely adopted approach is the SCTP (Stream Control Trans-

mission Protocol). SCTP is a message-oriented protocol like UDP that requires SCTP 

associations over diverse network paths. SCTP is based on delivering chunks of in-

formation from different network interfaces, transported on different paths inside an 

IP network and finally multiplexed on host level. Even though SCTP is adopted from 

the vast majority of Operating Systems and is already used in the telecom industry as 

a replacement to the SS7 signaling protocol, SCTP cannot be consider as the optimal 

way forward for end-devices. The main drawback of SCTP implementations [1] is the 

high complexity and the negative effect on computing resources, which are relatively 

expensive on mobile nodes. Furthermore, existing experimental analysis of SCTP in 

heterogeneous networks demonstrates poor performance in high packet and band-

width rates. 

Another approach is the Loc/ID (Locator and Identity) separation method. In this 

context, the nodes have both an identity that uniquely distinguishes the end host and 

an associated locator that describes the network connectivity structure. This concept 

separates the two name spaces (identities and addresses), which are combined in tradi-

tional IP networks. In Loc/ID separation architectures the IDs are used for end to end 

communications, whereas the locators are assigned to different network interfaces. 

The main representative in this category is the LISP implementation for mobile nodes, 

described as Lisp-MN [2]. LISP is not yet implemented on large scale networks and 

requires significant changes in the infrastructure of Internet Service Providers (ISPs). 

Furthermore, it lacks the functionality to parallel use multiple interfaces on the same 

dialogue maximizing throughput and user experience. 

A third approach is Multipath TCP (MPTCP) [3]. Multipath TCP enables an Inter-

net device to efficiently use its multiple interfaces by installing a set of extensions on 

top of traditional TCP, which permit the establishment of additional TCP subflows 

under the umbrella of a single MPTCP session. Consequently, supplementary capabil-

ities are introduced to the protocol’s core functionality empowering features such as 

enhanced robustness against network malfunction, bandwidth aggregation, as well as 

dynamic data offloading. Moreover, cellular networks leveraging MP-TCP can en-

hance Quality of Experience (QoE) by providing robustness towards data communi-

cation technology availability and cell-to-cell service degradation. At the same time, 

MPTCP preserves the standard socket API and maintains backward compatibility 

with Legacy TCP at both the network and application levels. This fallback procedure 

serves also as a fail-safe mechanism, since MPTCP deployment is at a premature state 

and/or middle-boxes may strip down the MPTCP signaling options.  

In an attempt to achieve effective “resource pooling” [4] and aggregate the band-

width available, MPTCP implements a congestion control mechanism coupled at the 

MPTCP-level of the transport layer [5], consequently creating a coalescence of links 

effectively behaving as a shared channel of higher capacity. As a result, hosts are able 

to ceaselessly monitor the dynamic state of the network routes involved in data trans-

fers and shift Internet traffic from degraded paths to more efficient ones according to 

the available bandwidth per utilized link. On the other hand, in order to ensure con-



tinuous packet transmissions, unaffected by individual malfunctioning connections or 

link-related congestion phenomena, a unique receive window shared across all the 

TCP subflows is implemented at the recipient. Additionally, a buffer of adequate 

space is required [6], so as to assure in-order delivery of the information segments to 

the application layer. The buffering space should accommodate an increased amount 

of packets, compared to legacy TCP systems, in an effort to cope with the head-of-

line blocking caused by the dissimilar transmission delays of the diverse routing 

paths.  

Nonetheless, the deployment of MPTCP solutions is still lagging behind. Current-

ly, a host can benefit from Multipath TCP only if its peer possesses MPTCP-

capability as well. This requirement raises barriers in the deployment of MPTCP, 

since service delivery platforms dawdle as far as protocol installation is concerned 

[7]. While the multipath functionality can be introduced quite seamlessly to user 

equipment due to the frequent OS updates of personal computers and smart devices, 

such changes are more complex to conduct inside an Internet Service Provider’s core 

infrastructure, especially on application servers handling a myriad of requests on a 

constant basis. The inset of an intermediate node as a protocol converter, aiming at 

the creation of a split TCP-MPTCP connection between the MPTCP-enabled clients 

and MPTCP-unaware systems, as illustrated in Fig. 1, may serve as a stepping stone 

towards the gradual incorporation of MPTCP, partially sidestepping initial compati-

bility issues and consequently user QoE degradation.  

 

Fig. 1. Creation of the split TCP-MPTCP connection, after insertion of the MPTCP Proxy in 

between the communication ends. 

2 Multipath TCP Proxy 

Deploying proxies as a middle-box is often not considered best practice by research-

ers [8] regarding traditional network architectures and datacenter topologies [9]. Such 

deployments reduce the overall service availability, downgrade service performance 

by creating bandwidth bottlenecks, and increase the operational costs. Even though 

middle-boxes impose all these drawbacks, service providers are still keen on deploy-

ing them as a way to enforce network policies for charging or traffic steering purpos-

es. Furthermore, installing middle-boxes is relatively common in order to benefit from 

new technologies without waiting to be adopted by terminals and network devices 

[10, 11].   

Our proposal aims at the introduction of a protocol converter in the form of a Mul-

tipath TCP Proxy in order to provide multipath functionality on behalf of traditional 

TCP systems, bypassing compulsory protocol adaptation in the ISP core infrastructure 



[12]. As a result, MPTCP-capable hosts will be able to effectively take advantage of 

their enhanced, multipath features, while the established path redundancy will give 

network operators the opportunity to more efficiently distribute traffic load and miti-

gate bottleneck occurrences.  

In addition, our MPTCP Proxy is enhanced with a bandwidth throttling [13] 

mechanism as a reactive means for network traffic regulation and congestion minimi-

zation. The bandwidth manipulation algorithm, which runs inside the MPTCP Proxy, 

permits the application of load control policies, compatible with the specifications of 

Multipath TCP with regard to traffic engineering and billing purposes, while aiming 

at the satisfaction of Quality of Service (QoS) standards. The mechanism utilizes a 

Scapy [14] sniffer, which is responsible for monitoring the characteristics of incoming 

connections by parsing the options field of the TCP header. As soon as an MPTCP 

connection is established consisting of at least two active TCP subflows, the MPTCP 

Proxy throttles the desired TCP connection based on pre-determined criteria. The 

eventual traffic redirection is feasible due to the insertion of packet mangling rules on 

top of the Netfilter Framework [15]. 

The overall scheme allows operators to get in the middle of the process of out-

going data scheduling by virtually sub-dividing a packet queue into multiple ones and 

re-configuring them using classful queuing disciplines. Each independent queue is 

responsible for the management and forwarding of packets of a predetermined desti-

nation, allowing network operators to manipulate Internet traffic by assigning the 

most fitting packet queue to specific TCP subflows based on routing policy criteria. 

The concurrent utilization of diverse wired and/or radio access technologies in con-

junction with the application of capacity limitation techniques creates the illusion of 

less suitable routing paths, ergo resulting in a force-steering of the forwarded traffic. 

As a result, it becomes possible to re-allocate network load and alleviate bottleneck 

phenomena, while harnessing the excess, available bandwidth, as well as offer 

MPTCP-enabled clients enhanced QoE due to the traversal of less congested areas. 

3 Experimental Evaluation 

We have evaluated our proposal in an experimental environment similar to the afore-

mentioned Fig. 1, consisting of a Raspberry Pi Model B running Debian Wheezy on 

top of a custom, MPTCP-compatible 3.12.35+ Linux kernel, an MPTCP Proxy with 

kernel version 3.14.0 and Squid Proxy installed, equipped with the stable release 

v0.89.2 of the extended protocol, and a MPTCP-unaware HTTP server with Apache2 

running on port 80. During our experimental scenarios we have disabled Squid’s 

caching mechanism in order to measure pure forwarding performance. In particular, 

we examined the impact of memory space allotment with regards to the MPTCP at-

tainable bandwidth, the responsiveness of our bandwidth throttling mechanism, as 

well as the packet forwarding delay inserted due to the protocol conversion process. 

3.1 Baseline Scenario  

In our initial experimental scenario, we depict the performance accomplished by Leg-

acy TCP during direct communication between our Raspberry Pi and the MPTCP-

unaware HTTP server. Since the MPTCP Proxy is not explicitly introduced to our 



client-side device, the negotiation of multipath functionality fails between the end 

hosts. As the MPTCP options embedded inside the TCP header cannot be interpreted 

by the legacy server-side system, multipath support is not advertised by the HTTP 

server causing the RPi to fall back to regular TCP and only establish a single – tradi-

tional – TCP connection. Fig. 2 illustrates the achieved throughput for two types of 

TCP sessions, a wired and a wireless connection, respectively. 

 

Fig. 2. Legacy TCP performance 

3.2 Dynamic Load Balancing  

Since in our current setup the MPTCP-enabled Raspberry Pi is still unable to simulta-

neously utilize both its network interfaces, we inset our MPTCP Proxy as an interme-

diate node in order to provide multipath functionality on behalf of the legacy TCP 

server. The MPTCP session terminates on the client-side of the protocol converter, 

while a regular TCP connection is initiated on the server-side towards the desired 

destination. Fig. 3 depicts the aggregated throughput achieved under MPTCP’s modi-

fied congestion control algorithm.  

 
Fig. 3. Multipath TCP performance 

 

As the Ethernet interface offers a higher link capacity alongside a smaller Round Trip 

Time (RTT) value compared to the wireless connection, the respective subflow’s 



congestion window tends to inflate faster, ergo allowing for the largest percentage of 

packets to be forwarded via the wired routing path. On the other hand side, the wire-

less link remains almost fully underutilized, since MPTCP perceives it as an inferior 

alternative for load balancing or data offloading in the absence of congestion on the 

wired connection. Therefore, the observations above come to confirm MPTCP’s ca-

pability to strip data across the most efficient of the available paths, while offering no 

less capacity compared to a legacy TCP session. 

3.3 TCP Buffer Size Impact  on MPTCP Performance  

TCP Memory Allocation. One of the major challenges arising as a consequence of 

the deployment of MPTCP solutions is the allocation of adequate buffering space in 

order to cope with the increased demands regarding packet reordering at the receiver 

[16]. The disparate propagation delays along the utilized network links create discon-

tinuities in the re-assembled information stream, since TCP segments often reach their 

final destination out of sequence. In such case, the head-of-line blocking effect be-

comes quite noticeable, temporarily interrupting the final in-order delivery to the ap-

plication layer. 

Fig. 4 illustrates the performance of MPTCP corresponding to two distinct receive 

buffer configurations. According to MPTCP specifications, the required accommoda-

tion space for TCP segments amounts to a maximum of 0.48 ΜΒ. As clearly shown in 

Fig. 4a, adopting a lower bound results in data loss at the receiver, leading to una-

voidable packet retransmissions and an overall service degradation. 

         

 a                                                           b 

Fig. 4. MPTCP performance based on different receive buffer configurations. Max memory 

allocation set at (a) 0.18 MB, (b) 0.72 MB 

On the other hand, Fig. 4b depicts a much more efficient data transfer. Besides the 

naturally stable behavior of the wired access link, the wireless interface achieves a 

satisfactory throughput rate, as well, especially if we additionally consider the poten-

tial randomness of the wireless transmission environment resulting in elevated propa-

gation delays. The TCP memory allocation is adequate enough to sustain a constant 



delivery rate of segments to the application layer, minimizing the impact of head-of-

line blocking. In general, MPTCP paths of commensurate delays tend to decrease 

receiver memory consumption even close to zero, since packets routed over different 

paths arrive timely at their destination without causing extensive gaps in the packet 

sequence at the recipient. 

 

Fig. 5. MPTCP performance degradation as a result of decreasing MTU size down to 1000 

bytes, while keeping buffer size at 0.72 MB 

Maximum Transmitted Unit Size Adjustment. Similar considerations apply in case 

of Maximum Transmitted Unit (MTU) size variations. Intuitively, a large MTU size 

leads to higher data rates, since the number of interrupts, which need to be processed 

by the receive system, diminishes. On the other hand, a small MTU size compels the 

recipient to handle an increased amount of TCP segments provoking packet dropping, 

as depicted in Fig. 5, and overall destabilizing the MPTCP session compared to Fig. 

4b. Default MTUs carry enough payload so as to cause no impairment during the data 

transmission, while gradual size reduction leads more swiftly to service degradation 

compared to legacy TCP systems. This more abrupt impact derives from a combina-

tion of reasons, including the increased number of packets that need to be handled and 

their dissimilar transfer delays. Since more packets are accommodated inside the re-

ceive buffer, the re-ordering process becomes more intense due to the different arrival 

periods of consequent segments. Practically, in case of MTU size variations, a propor-

tionate TCP memory extension should be allocated in order to cope with buffering 

demands and avoid service quality downgrading. 

3.4 Bandwidth Throttling Mechanism 

While Multipath TCP is capable of pooling the accessible network resources per inter-

face, spreading load over a wider network, as well as achieving dynamic data offload-

ing, the parallel application of bandwidth throttling allows for further traffic manipu-

lation. Administrators are capable of further managing the MPTCP sessions and 

force-shifting data across eclectic routing paths, while offering the multipath connec-

tion no less capacity than a single-path TCP session. This is all feasible via the priori-

tization of the TCP subflows by applying the desired levels of bandwidth restriction 

per available network interface, ergo outsmarting MPTCP into perceiving select TCP 



connections as less efficient paths for packet routing, even though their potential link 

capacity indicates otherwise. As a result, packet flows can be redirected away from 

congested areas, while concurrently alleviating bottlenecks. 

Fig. 6a illustrates the effect of the bandwidth restriction introduced on the Ethernet 

interface of our Raspberry Pi. The process completion delay alongside the moderate 

utilization of the available resources tends to cause a miniature impact on delivery 

time. However, even if the queuing disciplines are not configured timely in case of 

transfers of minimal size, a tolerable scenario for network-friendly communications in 

terms of congestion, the desired control policies will be already installed in order to 

support future multipath transmissions without the original process overhead, as de-

picted in Fig. 6b. 

                     

                   a                                                              b  

Fig. 6. Application of bandwidth throttling on the wired network interface (a) initial 5 MB file 

transfer, (b) 5 MB file re-transmitted 

 

Fig. 7. Application of bandwidth throttling on the wired network interface during the transfer of 

a 200 MB file 

Finally, Fig. 7 exhibits the bigger picture of leveraging MPTCP with our bandwidth 

throttling mechanism, as well as the generic behavior of the involved TCP subflows. 



As soon as the control policies have been established, the MPTCP congestion control 

algorithm tends to offload data to the wireless connection, which manages to achieve 

a higher throughput rate compared to throttling-free transmissions (Fig. 4b). Moreo-

ver, the overall connection performance becomes slightly inferior to regular data 

transfers (Fig. 4b) due to the extreme underutilization of the Ethernet link, a differen-

tiation that can be undone by the proper reconfiguration of the capacity limitation 

levels. Nevertheless, the bottom line is that MPTCP still outperforms legacy TCP, as 

well as meets its design goals. 

3.5 Protocol Conversion Delay  

Table 1 presents the chain-performance of the MPTCP Proxy regarding protocol con-

version and packet forwarding. The measurements were attained via the insertion of 

IPtables mangling rules on top of the Netfilter Framework, which targeted corre-

sponding packets of specific characteristics on both communication ends. As a matter 

of fact, our middle-box tends to synchronize one session at a time. Therefore, the 

MPTCP-to-TCP SYN segment conversion delay is equivalent to the time between the 

client-side connection establishment and the server-side 3-way-handshake initializa-

tion. Moreover, data segments are reconstructed internally, meaning they are convert-

ed and forwarded, after they have been received by the application layer. Of course, 

such interaction between low-level kernel and user space tends to introduce additional 

conversion delay, as packets are processed along the entire TCP/IP stack. Further-

more, since the system is actually hosted inside an ESXi hypervisor, the server is also 

running on constrained memory resources and computation power, ergo its propor-

tionate underperformance. Undoubtedly, an application-level solution cannot ensure 

effective service delivery in real world networks compared to – preferably application 

agnostic – highly performing kernel module implementations [17]. Such solutions can 

provide efficient protocol conversion by minimizing unnecessary memory allocations 

and costly read() – write() system calls. 

Table 1. Conversion time within the MPTCP Proxy between the MPTCP and TCP connections 

 SYN Data 

Time (sec.) 0.0078341 ± 0.0006805 0.0153311 ± 0.0080645 
   

4 Conclusion 

The traditional TCP protocol obeys rigorously to the end-to-end connection principle, 

thus deterring smart terminals from efficiently exploiting their numerous network 

access interfaces. While TCP is upper bounded by the available capacity of the bot-

tleneck link, Multipath TCP permits the concurrent distribution of traffic load over a 

wider network. As a consequence, MPTCP enhances user experience by providing 

improved performance alongside redundancy, as well as mitigates congestion via 

dynamic data offloading between the available network links. 



Since MPTCP capability still remains to be implemented on the server side, the 

deployment of a MPTCP Proxy at the ISP infrastructure can provide multipath func-

tionality on behalf of legacy TCP systems, as well as allow MPTCP-enabled clients to 

achieve effective “resource pooling”, without the requirement for service providers to 

undergo major changes inside their core network. However, technical and economic 

concerns emerge regarding protocol adaptation, such as increased buffer space de-

mands, which may lead to infrastructure upgrades and more expensive implementa-

tions; re-evaluation of existing mechanisms, such as TCP’s re-ordering algorithm in 

order to effectively handle re-ordering events and lessen head-of-line blocking phe-

nomena, as well as revision of today’s routing policies in order to cope with MPTCP 

path utilization.  

Thereupon, we emphasized the importance of memory allocation sufficiency and 

how inadequate buffer space can lead to performance degradation. In addition, we 

introduced a bandwidth throttling technique as a means to apply traffic engineering 

schemas compatible with MPTCP path utilization without downgrading service quali-

ty. Finally, we underlined the importance of application-agnostic, kernel module im-

plementations in order to efficiently cope with real world networks’ demands by min-

imizing superfluous system processes and overall protocol conversion overhead. 
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