
HAL Id: hal-01434794
https://inria.hal.science/hal-01434794

Submitted on 13 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

PAN – Distributed Real-Time Complex Event Detection
in Multiple Data Streams

Lukas Probst, Ivan Giangreco, Heiko Schuldt

To cite this version:
Lukas Probst, Ivan Giangreco, Heiko Schuldt. PAN – Distributed Real-Time Complex Event Detection
in Multiple Data Streams. 16th IFIP WG 6.1 International Conference on Distributed Applications
and Interoperable Systems (DAIS), Jun 2016, Heraklion, Crete, Greece. pp.189-195, �10.1007/978-3-
319-39577-7_15�. �hal-01434794�

https://inria.hal.science/hal-01434794
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

PAN – Distributed Real-Time Complex Event
Detection in Multiple Data Streams

Lukas Probst Ivan Giangreco Heiko Schuldt

Databases and Information Systems Group
University of Basel, Switzerland

{lukas.probst|ivan.giangreco|heiko.schuldt}@unibas.ch

Abstract. In this paper, we present PAN, a generic middleware for dis-
tributed real-time complex event detection (CED) which is able to an-
alyze multiple distributed data streams. In PAN, CED applications are
defined as workflows and are executed by dedicated workers in a dis-
tributed way in a P2P network. In consequence, PAN is scalable in terms
of the number of data streams and the complexity of the analyses. Eval-
uations based on an extended version of the ACM DEBS 2013 Grand
Challenge scenario show the effectiveness and efficiency of PAN.

1 Introduction

The last decade has seen a vast proliferation of devices that sense their environ-
ment. As according to the IoT vision most of them are connected to the Internet,
they are able to disseminate the data they measure in form of continuous data
streams. Hence, the number of data streams and the volume of streamed data
has increased enormously. Nevertheless, the analysis of a single or multiple of
these Big Data streams in real-time is essential. In particular, the detection of
complex events out of the raw streaming data in real-time is a major challenge
and at the same time an important aspect in a variety of applications. As an
example, consider a soccer team in which each player is equipped with several
sensors which produce continuous data streams. These streams need to be an-
alyzed to produce added value on a match for different stakeholders (clients).
Hence, different events need to be detected out of all the incoming streams. This
requires an infrastructure that i.) allows to implement, in a modular way, ba-
sic components for detecting simple events, that ii.) supports the combination
of these components for complex event detection into workflows and that iii.)
scales with the number of streams and with the complexity of the analyses.

The first generation of complex event detection (CED) systems, also called
complex event processing (CEP) systems, has been built with a centralized ar-
chitecture (e.g., [1, 8, 10]). This significantly limits their scalability, especially if
complex events have to be detected in real-time. More recent approaches (e.g., [2,
4, 6]) use a distributed architecture and forward streams in a publish/subscribe
style between workers that perform parts of the complex event detection.

In this paper, we introduce PAN (P2P Analysis N etwork), a generic dis-
tributed real-time CED middleware which jointly addresses the challenges we

have listed above. PAN is able to analyze multiple distributed input data streams
and to concurrently handle several analysis requests of different clients. In PAN,
CED applications are defined as workflows on top of components implement-
ing basic event detectors or other analysis operators such as aggregators. These
workflows are executed in a distributed way in a P2P network based on pub-
lish/subscribe communication between workers. As a result, PAN has a high
degree of scalability.

The contribution of this paper is twofold. First, we present PAN, a novel
middleware architecture for distributed and scalable CED that seamlessly com-
bines ideas from workflow management (definition of CED workflows) and P2P
systems (distributed, scalable CED). Second, we provide the results of an evalua-
tion of PAN’s performance and scalability characteristics on the basis of a sports
use case using an extended version of the ACM DEBS 2013 Grand Challenge
scenario [7, 11]. The results show the effectiveness of the PAN approach.

The remainder of this paper is organized as follows: We introduce PAN in
Sect. 2 and report on the evaluation of PAN in Sect. 3. Section 4 presents related
work and Sect. 5 concludes.

2 PAN

In this section, we present and discuss the concepts of PAN. The main idea behind
PAN is to obtain a high degree of scalability for real-time CED applications by
distributing the workload across several peers in an unstructured P2P network
and communicating via publish/subscribe.

2.1 CED Workflows in PAN

In PAN, CED applications are defined by means of workflows. They consist
of so-called workers which provide basic functionality for CED and which are
combined using a partial order that allows both sequential and parallel execution
of workers, depending on the semantics of a concrete CED application. Figure 1
illustrates a sample workflow which generates the player as well as the team
ball possession statistic streams for the soccer use case. This workflow includes
several intermediate streams (e.g., BALLHITS), i.e., streams that are generated
as output streams by some workers and consumed as input streams at other,
subsequent workers. The sensor devices producing the initial input streams are
sources of a workflow. Moreover, there are devices outside PAN called clients
that consume the output streams of the workers. The clients are the sinks of a
workflow and might join it only for a short time.

Each worker is hosted on a peer. Each peer, in turn, can host a single or
multiple workers. With this design, PAN obtains a high degree of flexibility in
terms of workflow distribution since the workflow can be either executed on a
single machine or fully distributed onto a large number of peers hosting workers
which compute only small subtasks.

To standardize the interaction between workers in PAN, they only share data
via network communication, independent from their deployment.

S

S

S
S

...

Peer 4

4, 8,
10, 12

ACTIVEBALL

BALLHITS BP_A*,
BP_B*

Pub/sub
repository

P2P Analysis Network

61, 62, 99,
100, 63, 64,
65, 66, 67,
68

69, 38, 71,
46, 73, 74,
75, 44

Peer 1

105, 106, 13,
14, 97, 98,
47, 16, 49,
88, 19, 52

53, 54, 23,
24, 57, 58,
59, 28

4, 8, 10, 12

105, 106, 13, 14,
97, 98, 47, 16,
49, 88, 19, 52

53, 54, 23, 24,
57, 58, 59, 28

61, 62, 99, 100,
63, 64, 65, 66,
67, 68

69, 38, 71, 46,
73, 74, 75, 44

A1, A2,
A3, A4

A5, A6,
A8, A7

B1, B2,
B3, B4

B5, B6,
B7, B8

BP_wholeGame_A
Forwarder
Worker 1

Active Ball
Worker

Ball Hit
Detector
Worker

Players Ball
Possession

Worker

Teams Ball
Possession

Worker

Avg Player
Position
Worker 3

Forwarder
Worker 5

Forwarder
Worker 4

Avg Player
Position
Worker 4

Avg Player
Position
Worker 1

Forwarder
Worker 3

Avg Player
Position
Worker 2

B2

SENSOR105
Peer 2

Peer 3

Peer 5 Peer 6 Peer 7 Peer 8

Forwarder
Worker 2

Fig. 1. Sample CED workflow in PAN for soccer game analysis. The initial input
streams are taken from the ACM DEBS 2013 Grand Challenge [7, 11].2

2.2 Publish/Subscribe

Hard-wiring the communication between the workers would lead to a highly
inflexible system, earmarked for a specific workflow. In contrast, the publish/
subscribe style of interaction allows to decouple the sender of a data stream
and its receiver. PAN uses a central publish/subscribe repository which stores a
mapping from the stream identifier to a list of publishers. When a new worker
is deployed, it has to publish all its output streams. Subsequently, all potential
subscribers (clients or other workers) can use this information to identify the
publisher and fetch data stream elements from there. Note that the repository
has to be contacted only once, when the link between subscriber and publisher
is established. Hence, the central repository does not become a bottleneck.

2.3 PAN Workers

A PAN worker is a building block for the CED workflows. At the interface, each
worker generates one or several output stream(s) on the basis of one or several
input stream(s) it consumes – either directly from a sensor or from other workers.
The input streams are processed by one or several components inside the worker.
The output streams contain the analysis results of these components.

PAN uses separate ring buffers to handle a worker’s input and output streams
and thus to connect two workers. A worker’s input ring buffers contain the latest
data stream elements of the input streams while the output ring buffers are filled
with the data stream elements created by the worker’s components. Each worker
runs a server to enable downstream workers and clients to fetch the data stream

2 Soccer field graphic: https://de.wikipedia.org/wiki/Datei:Offsidelarge.svg

Client icon: http://www.flaticon.com/packs/humans-3

elements stored in its output ring buffers. To fill its input ring buffers, a worker
can fetch new data stream elements from a publisher periodically or on demand.
In contrast, sensors always push their data to the first workers of a CED workflow
which then forward by publishing the streams to all other workers and clients.

All generic and application-specific components of a worker run in parallel.
A component can use all input data streams for its analysis task. However, a
worker’s components are strictly separated from each other. They neither share
state, nor can they directly communicate with each other.

2.4 Scalability

Increasing the number of sensor data streams to be analyzed, the number of
different analyses that have to be performed, or the complexity of these analyses
results in an increased computational effort. PAN can handle this by distribut-
ing the overall workload across more workers which can then be deployed on
peers with free capacities. In consequence, PAN scales w.r.t. the number of data
streams and w.r.t. the complexity and the number of analyses.

3 Evaluation and Implementation

In our evaluation each peer is deployed in the Azure Cloud platform3. The ping
between two peers is around 0.9 ms. Both clients and (simulated) sensors are
deployed on a separate physical server4 with a ping around 21 ms to the Cloud.

In order to create a CED application that runs on top of PAN one only has to
implement the workers in Java and to specify the workflow in a JSON config file,
similar to TechniBall’s XML approach [9]. The config file is used to automatically
deploy the CED system. The actual connection between the workers is done at
start-up time using the publish/subscribe repository. Due to space limitations,
we refer to [12] for further information on the implementation of PAN.

For evaluation purposes, we have implemented a soccer analysis applica-
tion that generates ball possession streams using the dataset from the ACM
DEBS 2013 Grand Challenge [7, 11] in multiple steps (see Fig. 1). The input
data streams are created by sensors attached to the shin guards of the players
and inside the ball and include position, timestamp, velocity and acceleration
info. We have used the first 25 minutes of the soccer match for our evaluation.

PAN’s performance is measured using the query delay that indicates how long
the system needs to calculate and generate a certain output data stream. It is
defined as the difference between the machine time when receiving an output
data stream element at the client MT (c) and the machine time MT (s) at which
the corresponding sensor data stream element has been emitted. Note that the
query delay comprises also the time for sending the input stream to the first
worker and for fetching the stream from the last worker of the CED workflow.

3 Small VM instances (standard A1), 1 core 1.6 GHz CPU, 1.75 GB RAM
4 Lenovo ThinkPad W530, Intel Core i7-3820QM CPU @ 2.70 GHz, 12 GB RAM

Table 1. Average query delay with increasing number of peers

Stream 3 peers 6 peers 8 peers 14 peers

SENSOR105 69.76 ms 66.61 ms 73.79 ms 88.96 ms
B2 2923.73 ms 123.99 ms 165.68 ms 114.72 ms
BP wholeGame A 1141.07 ms 1078.43 ms 948.44 ms 961.06 ms

We analyze PAN’s performance by varying the number of peers hosting the
workers of the ball possession workflow. More precisely, we use four different
deployments with 3, 6, 8, and 14 peers. The client periodically (every 20 ms)
fetches the latest data element of three streams, produced at different positions
in the workflow: a forwarded sensor data stream (SENSOR105), an intermediate
output data stream (B2) and a final output data stream (BP wholeGame A).

Table 1 lists the results of this evaluation. While the average query delays
of the SENSOR105 and the BP wholeGame A streams are rather constant, the
query delay of the B2 stream is approximately 20 times higher in the three peers
setting than in the other settings. With only three peers, the two peers that are
supposed to be responsible for generating the average player position streams
are not capable of doing so. However, the evaluation shows that PAN can solve
such computational bottlenecks by distributing the workflow onto more peers.

4 Related Work

Similar to PAN, also RACED [4] distributes the detection components in a P2P
network and links these components using publish/subscribe. However, since
in RACED the data stream requested by a client has to be generated along its
shortest path tree (SPT), clients cannot share a workflow if they do not have the
same SPT while in PAN no duplication is needed. In [6] the authors of RACED
propose a single-tree deployment strategy for their T-REX middleware [5] that
allows workflows to be shared by clients such that the same output stream does
not have to be generated multiple times. However, while PAN is a worker-based
CED middleware, RACED and T-REX are language-based CED middleware
approaches that suffer from some limitations as the client can neither define
complex calculations nor small programs that have to be performed in order to
detect a complex event or to generate the corresponding output data stream
element. The same is true for all other language-based CED middleware systems
such as, for instance, Amit [1] or Cayuga [8]. Worker-based CED middleware
systems like PAN or OSIRIS-SE [2], in contrast, facilitate the implementation of
arbitrary workers in a modular way and thus do not suffer from such limitations.

In reply to the ACM DEBS 2013 Grand Challenge [7, 11], six systems have
been proposed [3]. While the workers and CED workflows of PAN are based
on the requirements of the challenge and thus have some similarity with all
these systems, PAN’s architecture is mainly influenced by the approach of Jer-
gler et al. [10] that proposes a workflow-based architecture for CED in which

different workers are connected with non-blocking ring buffers. While [10] states
that the concept can in general be implemented in a distributed way using pub-
lish/subscribe, only a centralized implementation is presented. Hence, PAN fills
a void as it promotes these concepts to a distributed and thus scalable system.

5 Conclusion

In this paper, we have introduced the distributed real-time CED middleware
PAN. It uses workflows to define CED applications and distributes the workload
onto multiple workers hosted by peers in a P2P network. The worker-based
approach allows to implement parts of CED workflows in a modular way, ranging
from simple stream forwarding to highly sophisticated analyses. Evaluations have
shown that PAN is able to eliminate computational bottlenecks by distributing
the workflow on more peers. In our future work, we plan to organize the workers
in a structured P2P network to store the mapping of streams to publishers in
a distributed and reliable way. Moreover, we plan to further analyze, evaluate
and compare different approaches to publish/subscribe-based communication, in
particular a pull-based vs. a push-based communication approach.

References

1. Adi, A., Etzion, O.: Amit - the situation manager. VLDB Journal 13(2) (2004)
2. Brettlecker, G., Schuldt, H.: Reliable distributed data stream management in mo-

bile environments. Information Systems 36(3) (2011)
3. Chakravarthy, S., et al. (eds.): The 7th ACM International Conference on Dis-

tributed Event-Based Systems, DEBS ’13, Arlington, TX, USA. ACM (2013)
4. Cugola, G., Margara, A.: Raced: an Adaptive Middleware for Complex Event De-

tection. In: Proc. ARM’09. Urbana Champaign, IL, USA (2009)
5. Cugola, G., Margara, A.: Complex event processing with t-rex. Journal of Systems

and Software 85(8) (2012)
6. Cugola, G., Margara, A.: Deployment strategies for distributed complex event pro-

cessing. Computing 95(2) (2013)
7. ACM DEBS 2013 Grand Challenge Description. http://www.orgs.ttu.edu/

debs2013/index.php?goto=cfchallengedetails

8. Demers, A.J., et al.: Cayuga: A General Purpose Event Monitoring System. In:
Proc. CIDR’07. Asilomar, CA, USA (2007)

9. Gal, A., et al.: Grand Challenge: The TechniBall System. In: Proc. DEBS’13. ACM,
Arlington, TX, USA (2013)

10. Jergler, M., et al.: Grand Challenge: Real-time Soccer Analytics Leveraging Low-
latency Complex Event Processing. In: Proc. DEBS’13. Arlington, TX, USA (2013)

11. Mutschler, C., Ziekow, H., Jerzak, Z.: The DEBS 2013 Grand Challenge. In: Proc.
DEBS’13. Arlington, USA (2013)

12. Probst, L.: PAN – A P2P Approach for Scalable Complex Event Detection
in Distributed Data Streams. Master’s thesis, University of Basel (2014),
http://dbis.cs.unibas.ch/downloads/theses/MSc_Thesis_Lukas_Probst.

pdf/at_download/file

