
HAL Id: hal-01434792
https://inria.hal.science/hal-01434792

Submitted on 13 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Performance Evaluation of Erasure Coding Libraries
for Cloud-Based Data Stores

Dorian Burihabwa, Pascal Felber, Hugues Mercier, Valerio Schiavoni

To cite this version:
Dorian Burihabwa, Pascal Felber, Hugues Mercier, Valerio Schiavoni. A Performance Evaluation of
Erasure Coding Libraries for Cloud-Based Data Stores. 16th IFIP WG 6.1 International Conference
on Distributed Applications and Interoperable Systems (DAIS), Jun 2016, Heraklion, Crete, Greece.
pp.160-173, �10.1007/978-3-319-39577-7_13�. �hal-01434792�

https://inria.hal.science/hal-01434792
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A Performance Evaluation of Erasure Coding
Libraries for Cloud-Based Data Stores

(Practical experience report)

Dorian Burihabwa, Pascal Felber, Hugues Mercier, and Valerio Schiavoni

Université de Neuchâtel, Switzerland
first.last@unine.ch

Abstract. Erasure codes have been widely used over the last decade
to implement reliable data stores. They offer interesting trade-offs be-
tween efficiency, reliability, and storage overhead. Indeed, a distributed
data store holding encoded data blocks can tolerate the failure of mul-
tiple nodes while requiring only a fraction of the space necessary for
plain replication, albeit at an increased encoding and decoding cost.
There exists nowadays a number of libraries implementing several vari-
ations of erasure codes, which notably differ in terms of complexity and
implementation-specific optimizations.

Seven years ago, Plank et al. [14] have conducted a comprehensive per-
formance evaluation of open-source erasure coding libraries available at
the time to compare their raw performance and measure the impact of
different parameter configurations. In the present experimental study,
we take a fresh perspective at the state of the art of erasure coding li-
braries. Not only do we cover a wider set of libraries running on modern
hardware, but we also consider their efficiency when used in realistic
settings for cloud-based storage, namely when deployed across several
nodes in a data centre. Our measurements therefore account for the end-
to-end costs of data accesses over several distributed nodes, including
the encoding and decoding costs, and shed light on the performance one
can expect from the various libraries when deployed in a real system.
Our results reveal important differences in the efficiency of the different
libraries, notably due to the type of coding algorithm and the use of
hardware-specific optimizations.

1 Introduction

Cloud-based storage has seen an impressive growth over the last few years, no-
tably thanks to the availability of affordable solutions from large companies like
Dropbox, Google, Amazon, Microsoft, or Apple. While these services mainly
target the general public, several companies have also specialized in the devel-
opment of dedicated solutions offering specific properties in terms of security or
dependability, support for deployment on premises, or customized application
support. There is also a great interest from the scientific community to develop



2 Burihabwa et al.

their own solution to finely control and tune a complete Cloud-based stack, be
it in terms of communication, processing, or storage.

In the era of “Big Data”, the amount of information to manage can quickly
become a bottleneck. Storage space is plenty but not infinite, and data must be
stored redundantly for reliability purposes. It must therefore be replicated but
at the same time remain relatively compact in size. There is therefore a tension
between space efficiency and performance, as any form of compression comes
with associated processing overhead.

A common approach to address this challenge is to use erasure coding. This
technique, already used since the eighties for redundant array of independent
disks, allows infrastructure providers to add some redundancy to stored data
without the space overhead of full replication, and with relatively low compu-
tation costs and sufficient flexibility in how failed disks or missing data can be
recovered.

The theory of erasure codes has been developed over decades, and techniques
are mature. Yet, practical libraries for performing the associated computations
efficiently in software have truly emerged over the last few years, largely driven
by the needs from backup services, data centers, and Cloud-based infrastructures
in general (“Anything” as a Service).

Seven years ago, Plank et al. [14] have conducted a comprehensive perfor-
mance evaluation of open-source erasure coding libraries available at the time.
The focus of the study was on the raw performance of the libraries and the
impact of different parameter configurations. Since then, the landscape has sig-
nificantly evolved, with improved encoders and new libraries, as well as a shift
toward integration within software stacks for data centers.

In this experimental study, we want to take a fresh perspective at the state
of practice in erasure coding for data storage. Rather than focusing just on the
libraries, we are interesting in evaluating them in realistic settings, i.e., within
a complete software stack involving multiple clients and server nodes deployed
across a data center. This study does also account for the costs related to data
serialization and transmission, the overhead associated with the different APIs,
the reads and writes to the back-end databases, etc. Therefore, it allows us to
quantify the costs of using the libraries to build a complete storage solution, and
to observe how the various configuration parameters affect end-to-end perfor-
mance.

Our findings notably reveal several interesting lessons. First, modern encod-
ing libraries efficiently exploit specific hardware instructions for better perfor-
mances, and in a cloud-environment it is important to obtain direct access to
the CPU’s full instruction set. Second, the usage of high-level languages such as
Python, which allow for portable and dependable client-side front-ends, to in-
teract with efficient C-based libraries does not cause noticeable overhead. Third,
the deployment of encoded data blocks over storage back-ends require practi-
tioners to accommodate much less data than a solution based on replication.
Fourth, the reconstruction of missing blocks is a sensibly more costly operation
than the pure decoding when all blocks are available: this is an important factor



Evaluation of Erasure Coding Libraries 3

XOR

coding disk

k data disks

Fig. 1: Redundancy using XOR.

XOR

k+1 healthy disks

failed disk

Fig. 2: Failed disk recovered using XOR.

to take into account in case of disaster-recovery actions to estimate the time to
recover missing data.

The remainder of this paper is organized as follows. We first give an overview
of erasure coding and related with in Section 2. We then describe the different
libraries and the storage architecture used as part of this study in Sections 3
and 4, respectively. We present and discuss experimental results in Section 5,
and we finally conclude in Section 6.

2 Background and Related Work

The objective of error-correcting codes for data storage is to carefully add re-
dundancy to data in order to protect it against corruption when stored on media
like DVDs, magnetic tapes or solid-state drives. In these systems, the errors are
usually modeled as erasures, meaning that their locations are known. Consider
the example shown in Figure 1, where a coding disk is used to store the XOR
(“exclusive or”) of k data blocks. If the system realizes that one of the disks
has failed, as shown in Figure 2, it can XOR the healthy disks and recover the
failure. This is the maximum decoding capability of this code, and there will be
data loss if more than one disk fails.

In general, k data blocks are coded to generate n− k coding blocks, as illus-
trated in Figure 3. After disk failures, the system will try to decode the original
codewords from the healthy disks, like in Figure 4. The number of recoverable
disk failures depends on the code itself.

The most famous class of erasure codes are Reed-Solomon codes (RS), first
introduced in 1960 [17]. An (n, k) Reed-Solomon code is a linear block code
with dimension k and length n defined over the finite field of n elements. Reed-
Solomon codes have many interesting properties. First, they achieve the singleton
bound with equality, and thus are maximum distance separable (MDS) [8]. In
other words, they can correct up to n − k symbol erasures, i.e., any k of the
n code symbols are necessary and sufficient for decoding. Second, using a large
field, they can correct bursts of errors, thus their widespread adoption in storage
media where such bursts are common.

Encoding and decoding Reed-Solomon codes is challenging, and optimizing
both operations has kept many coding theorists and engineers busy for more than



4 Burihabwa et al.

Encoder

k data disks

n - k coding disks

Fig. 3: Generic erasure code
encoder.

Decoder

n healthy disks

n disks with some failures

Fig. 4: Generic erasure code decoder.

50 years. There is a large amount of literature on these topics, covering theory
(e.g., [5]) and implementation (e.g., [18]), but in a nutshell the best encoding
and decoding implementations are quadratic in the size of data.

Reed-Solomon, while storage-efficient, were not originally designed for dis-
tributed storage and are somewhat ill-suited for this purpose. Besides their com-
plexity, their main drawback is that they require at least k geographically dis-
tributed healthy disks to recover a single failure, followed by decoding of all the
codewords with a block on the failed disk. This incurs significant bandwidth
and latency costs. This handicap has led to the development of codes that can
recreate destroyed redundancy without decoding the original codewords. The
tradeoffs between storage overhead and failure repairability is an active area of
research [3,11], and there are many interesting theoretical and practical questions
to solve. Among other work of interest, NCCloud [2] reduces the cost of repair
in multi-cloud storage if one cloud storage provider fails permanently. We also
mention the coding work done for Microsoft Azure [1,6], and XOR-based erasure
codes [7] in the context of efficient cloud-based file-systems exploiting rotated
Reed-Solomon codes. RAID-like erasure-coding techniques have been studied in
the context of cloud-based storage solutions [7]. Plank et al. [14] studied cho-
sen erasure-coding libraries, which has in great part motivated and inspired the
present study.

3 Coding Libraries

We tested four different coding libraries in our experimental evaluation. These
libraries are considered state-of-the-art and are widely adopted in storage and
networking applications. We describe below the main features of each of them.
Table 1 summarizes their principal characteristics.

Liberasurecode Liberasurecode1 is an erasure code API library in C that sup-
ports pluggable erasure code backends. It supports backends such as jerasure and

1 https://bitbucket.org/tsg-/liberasurecode

https://bitbucket.org/tsg-/liberasurecode


Evaluation of Erasure Coding Libraries 5

Encoder Library HW Description

liberasure rs vand LibErasure × Vandermonde RS
liberasure flat xor 3 LibErasure × Flat-XOR (d = 3)
liberasure flat xor 4 LibErasure × Flat-XOR (d = 4)

jerasure rs vand Jerasure SIMD (SSSE3), CLMUL Vandermonde RS
jerasure rs cauchy Jerasure SIMD (SSSE3), CLMUL Cauchy RS

isa l rs vand Intel ISA-L SIMD (SSE4), AVX(1/2) Vandermonde RS
longhair cauchy 256 LongHair SIMD (SSSE3) Cauchy RS

Table 1: Summary of encoder names and libraries, support for hardware acceleration
(HW), and the description of the algorithms (RS stands for Reed-Solomon).

Intel ISA-L but also provides three erasure codes of its own: a Reed Solomon
implementation and two flat XOR implementations. Flat XOR erasure codes [4]
are small low-density parity-check (LDPC) codes [10]. With flat XOR codes,
each parity element is the XOR of a distinct subset of data elements. Such codes
are not maximum distance separable (MDS) and, hence, incur in some additional
storage overhead over MDS codes. However, they offer the advantage of addi-
tional recovery possibilities, i.e., an element can be recovered using many distinct
sets of elements. We evaluate two flat XOR codes constructions, flat xor 3 and
flat xor 4, that respectively have a Hamming distance of d = 3 and d = 4.

Jerasure. The Jerasure library,2 first released in 2007, is one of the oldest and
most popular erasure coding library. Jerasure is written in C/C++ and imple-
ments several variants of Reed-Solomon and MDS erasure codes (Vandermonde,
Cauchy [9], Blaum-Roth, RAID-6 Liberation [12],...). As it has been used in
many different projects, Jerasure is also a stable and mature library. It notably
provides a rich and well documented API, and has been optimized for speed
on modern processors (e.g., by leveraging SIMD instructions since version 2.0).
More details about the internals of this library can be found at [15].

Intel ISA-L. Intel Intelligent Storage Acceleration Library (ISA-L)3 is an im-
plementation of erasure codes optimized for speed on Intel processors [13]. It is
written primarily in hand-coded assembler and aggressively optimizes the ma-
trix multiplication operation, the most expensive step of encoding. During the
decoding operations, Intel ISA uses a cubic cost Gaussian elimination solver. For
our evaluation we the latest version (v2.14).

LongHair. The LongHair library4 is an implementation of fast Cauchy Reed-
Solomon erasure codes in C [16]. It was designed to be portable and extremely
fast, and it provides an API flexible enough for file transfer where the blocks
arrive out of order.

2 http://jerasure.org/jerasure/jerasure
3 https://software.intel.com/en-us/storage/ISA-L
4 https://github.com/catid/longhair

http://jerasure.org/jerasure/jerasure
https://software.intel.com/en-us/storage/ISA-L
https://github.com/catid/longhair


6 Burihabwa et al.

Encoder
Python, C, C++

Clients
(benchmark)

Storage
nodes

KV store
Redis

KV store
Redis

KV store
Redis

Storage
service

Client
Apache AB

Client
Apache AB

Proxy
Java, Spring, Jetty

POST/GET

PO
ST
/G
ET

GRPC protobuf

TCP

TCP

TCP

docker

docker

docker

docker

docker

docker

docker

Fig. 5: Architecture of the experimental testbed.

4 Experimental Cloud-based Data Store

In order to easily and efficiently evaluate the wide spectrum of coding libraries de-
scribed previously, and to accelerate the comparison between current and future
solutions, we designed and implement a lightweight, yet modular experimental
testbed. We describe its components, the internal mechanisms, the deployment
infrastructure, and other contextual assumptions in the remainder of this section.

4.1 Architecture

In its simplest instantiation, a cloud-based data store that leverages erasure cod-
ing comprises the following core components, as depicted in Figure 5: a storage
server (“proxy”) that mediates interactions between clients and the data store,
an encoder, and a set of storage nodes.

The proxy component is the main front-end to the system. While there can
be an arbitrary number of proxies for a given data store, we only consider one in
our evaluation. The proxy exposes a simple stateless REST interface to put and
get data blocks. The interface mimics the operating principles of well-established
services like Amazon S3. More sophisticated operations, such as operating on
subsets of the data blocks for a given file, can be easily integrated. The interac-
tions between the proxy and the clients happen via synchronous HTTP messages
over pre-established TCP channels. The proxy dispatches/collects data blocks
to/from the encoder service.

The encoder component performs the actual processing and transformation
of data blocks before they are stored, as well as the reverse decoding opera-
tion. The encoder is co-localized within the same host as the proxy to maximize
throughput and avoid bottlenecks induced by high pressure on the network stack.
To increase the flexibility of our testbed, our encoder provides a plugin mecha-
nism to dynamically load and swap different coding libraries. This mechanism
relies on a platform-independent transport mechanism (using protobuf) and



Evaluation of Erasure Coding Libraries 7

a stable interface between the proxy and the encoder. The encoder interface
currently exposes three main operations: encode, decode, and reconstruct.

Once the blocks have been encoded, they are sent by the proxy to the storage
nodes. Each storage node is independent from the others and all the interac-
tions are mediated by the proxy. Blocks are dispatched to storage nodes using
an explicit placement strategy: the proxy ensures that encoded block parts are
spread to distinct nodes so that the failure of one node results in the loss of
one part. Upon read, the proxy contacts a random subset of storage nodes of
minimal size to reconstruct the requested block.

The clients are separate processes running on different nodes in the same
data center. They read and write data by contacting the proxy following access
patterns defined as part of the workloads.

4.2 Implementation

We used different languages and technologies to implement our testbed and inte-
grate with the open-source erasure coding libraries. Our implementation choices
have been largely driven by performance and simplicity considerations, as well
as by constraints from the evaluated libraries.

The proxy component is implemented in Java and exploits the exporting
facilities of the Spring Boot framework5 (v1.3.1) to leverage industrial-grade
application servers. The proxy handles POST and GET requests via the embedded
Jetty web-server.

The encoder component is implemented in Python to facilitate the inte-
gration with the PyEClib6 library (v1.2), the reference Python binding for
liberasure. This library implements wrappers to uniformly access several en-
coding libraries.

The open-source libraries under evaluation are implemented in C/C++ (e.g.,
liberasure, JErasure, LongHair) or a mix of C and hand-written Assembly
(e.g., Intel ISA-L). These implementation choices lead to the best performances
and can take advantage of hardware acceleration, as in the case of Intel ISA-L

that exploits built-in SIMD CPU instructions. We call the libraries via a common
access layer and software wrappers implemented in Python. Python provides an
easy mean to bind to such libraries via its built-in support for native code. For
completeness, we also evaluate the overhead of using an interpreted language
such as Python in our experimental validation. The suite of macro-benchmarks
leverages Apache Bench7 (v2.3) to measure the maximum throughput and per-
request latencies. The storage nodes run on top of Redis8 (v3.0.7), a lightweight
yet efficient in-memory key-value store. Redis tools provide easy-to-use prob-
ing mechanisms (e.g., the redis-cli command-line tool) to retrieve the current
memory occupied by the stored key-value pairs. We exploit these tools to cal-
culate the storage overhead of the encoded blocks. Our deployment machinery

5 https://projects.spring.io/spring-boot/
6 https://pypi.python.org/pypi/PyECLib
7 https://httpd.apache.org/docs/2.4/programs/ab.html
8 http://redis.io

https://projects.spring.io/spring-boot/
https://pypi.python.org/pypi/PyECLib
https://httpd.apache.org/docs/2.4/programs/ab.html
http://redis.io


8 Burihabwa et al.

allows us to scale at will all the mentioned components. To do so, we rely on the
tools offered by the Docker9 ecosystem (v1.6) and its Compose10 orchestration
tool (v1.5.3).

5 Experimental Results

This section presents our extensive evaluation of the previously described coding
libraries. We first describe the settings of our evaluation, then we test in isolation
the coding libraries via a set of micro-benchmarks, and we finally evaluate the
libraries in realistic settings.

5.1 Evaluation settings

We deploy and conduct our experiments over a cluster of machines intercon-
nected by a 1 Gb/s switched network. Each physical host features 8-Core Xeon
CPUs and 8 GB of RAM. We deploy virtual machines (VM) on top of the hosts.

The KVM hypervisor, which controls the execution of the VM, is configured
to expose the physical CPU to the guest VM and Docker container by mean
of the host-passthrough11 option. This VM configuration allows certain cod-
ing libraries (e.g., Intel ISA-L) to exploit ad-hoc CPU instruction sets. In this
evaluation, we do not account for any GPU acceleration. The VMs leverage the
virtio module for better I/O performances.

We deploy one Docker container on each VM without any memory restriction
to minimize interferences due to co-locations and maximize performances.

5.2 Micro-benchmark

Our first set of experiments evaluate the throughput of the coding libraries for
increasing block sizes of 4 MB, 16 MB and 64 MB. In this scenario, the libraries
are tested in isolation via specialized clients that send a continuous stream of
data blocks to encode or decode.

For each library we execute 10,000 times the encode function and show the
average and standard deviation results. All the Reed-Solomon libraries are con-
figured with k = 10 and m = 4, a typical configuration used in modern data
centers (e.g., at Facebook [19]). To approach a similar configuration, the Flat
XOR libraries are set to k = 10 and m = 5. For reference purposes, we compare
against a baseline striping encoder/decoder that simply splits the data in the
requested number of blocks (typically one block per stripe) and immediately
returns them to the client without any further processing.

Figure 6 presents our results for encoding (top) and decoding (bottom). We
notice that liberasure rs vand is the slowest in the encoding phase, achieving

9 https://www.docker.com
10 https://docs.docker.com/compose/
11 http://www.linux-kvm.org/page/Tuning_KVM

https://www.docker.com
https://docs.docker.com/compose/
http://www.linux-kvm.org/page/Tuning_KVM


Evaluation of Erasure Coding Libraries 9

 0

 50

 100

 150

 200

isa_lrs_vand

jerasure
rs_cauchy

jerasure
rs_vand

liberasure

flat_xor_3

liberasure

flat_xor_4

liberasure

rs_vand

longhair
cauchy_256

striping

T
h

ro
u
g

h
p

u
t 

(M
B

/s
)

encode

4 MB 16 MB 64 MB

3
5
2
.6

M
B

/s
 ➝

3
3
9
.8

M
B

/s
 ➝

3
5
2
.4

6
M

B
/s

 ➝

 150

 155

 160

 165

 170

isa_lrs_vand

jerasure
rs_cauchy

jerasure
rs_vand

liberasure

flat_xor_3

liberasure

flat_xor_4

liberasure

rs_vand

longhair
cauchy_256

striping

T
h
ro

u
g
h

p
u
t 
(M

B
/s

)

decode

4 MB 16 MB 64 MB

1
.7

9
G

B
/s

 ➝

1
.5

5
G

B
/s

 ➝

3
4
5
M

B
/s

 ➝

1
.8

G
B

/s
 ➝

1
.5

5
G

B
/s

 ➝

3
4
9
M

B
/s

 ➝

Fig. 6: Micro-benchmark: encode (top) and decode (bottom) throughput for several
coding libraries and block sizes.

at most 52.35 MB/s for a 4 Mb block size. The Jerasure implementation of the
same coding technique (jerasure rs vand) and Intel’s isa l rs vand perform
twice as fast for the same block size, respectively up to 87 MB/s and 107 MB/s.

We can explain the performance gap between different implementations of the
same coding techniques by two main reasons: 1) the longer foray of such libraries
in the open-source community (the original design of Jerasure dates back to
2007) thus benefiting from several contributions and code scrutiny, and 2) native
support for hardware acceleration for the Intel ISA and Jerasure libraries.

Finally, longhair cauchy 256 outperforms the other implementations for
any block size. Indeed, not only is its implementation based on the Jerasure
source code, but it embeds carefully hand-crafted low-level optimizations (e.g.,
selection of the minimal Cauchy matrix, faster matrix bootstrap, etc.).

In the decoding scenario, the decode function is fed with all the available
blocks. As expected, when all the blocks are available, the libraries can de-
code very efficiently, achieving throughputs that are never below 157 MB/s for
any block size. For example, liberasure flat xor 4 achieves a 158.13 MB/s



10 Burihabwa et al.

 0

 5

 10

 15

 20
T

h
ro

u
g
h

p
u
t

(M
B

/s
)

reconstruct 1 block
4 MB 16 MB 64 MB

 0

 5

 10

 15

 20

reconstruct 2 blocks
4 MB 16 MB 64 MB

 0

 5

 10

 15

 20

isa_lrs_vand

jerasure
rs_cauchy

jerasure
rs_vand

liberasure

flat_xor_3

liberasure

flat_xor_4

liberasure

rs_vand

T
h
ro

u
g
h

p
u

t
(M

B
/s

)

reconstruct 3 blocks
4 MB 16 MB 64 MB

 0

 5

 10

 15

 20

isa_lrs_vand

jerasure
rs_cauchy

jerasure
rs_vand

liberasure

flat_xor_3

liberasure

flat_xor_4

liberasure

rs_vand

reconstruct 4 blocks
4 MB 16 MB 64 MB

Fig. 7: Micro-benchmarks: throughput of reconstruct for increasing number of miss-
ing blocks and block sizes.

throughput with 4 MB blocks, and jerasure rs cauchy reaches 164.87 MB/s.
The highly optimized longhair cauchy 256 achieves results that are orders-of-
magnitude better also in decoding (up to 1.79 GB/s for 4 MB blocks).

Finally, Figure 7 shows the cost of reconstructing missing blocks. We present
the achieved throughput of the coding libraries in reconstructing from 1 to 4
missing blocks (from top-left to bottom-right). Figure 7 presents the average
throughput for 100 executions. Notice how liberasure rs vand achieves the
best result (20.77 MB/s) in reconstructing 1 missing block with 4 MB block sizes
but steadily decreases with bigger block sizes and more to reconstruct. This result
confirms the measures of the same library in pure decoding shown previously
in Figure 6. The other libraries perform consistently across the spectrum of
parameters, and all operate between 17.15 MB/s and 19.19 MB/s. These results
need to be taken carefully into account to decide which is the best fitting library
to adopt in a cloud setting.

We performed a breakdown analysis of the computing times for each of the
microbenchmarks. The goal of this analysis is to verify that the cost of using a
high-level language such as Python did not hinder our results and thus negatively
impacted on the observed performances. We exploit the cProfile module12 to
profile the execution of the encode, decode, and reconstruct microbenchmarks,
and to gather profiling statistics. Indeed, the CPU spends almost the totality

12 https://docs.python.org/2/library/profile.html

https://docs.python.org/2/library/profile.html


Evaluation of Erasure Coding Libraries 11

 0
 20
 40
 60
 80

 100

0 1s 2s 3s

C
D

F
 (

%
)

isa_l_rs_vand

 
 
 
 
 
 

0 1s 2s 3s

jerasure_rs_cauchy

 
 
 
 
 
 

0 1s 2s 3s

jerasure_rs_vand
 0

 20
 40
 60
 80

 100

C
D

F
 (

%
)

liberasure_flat_xor_3

 
 
 
 
 
 

liberasure_flat_xor_4

 
 
 
 
 
 

liberasure_rs_vand
 0

 20
 40
 60
 80

 100

C
D

F
 (

%
)

longhair_cauchy_256

 
 
 
 
 
 

striping

 
 
 
 
 
 

bypass

Fig. 8: Latency distribution of 500 requests measured by Apache ab client.

of the execution time (always more than 99%) in the native code of the en-
coding libraries. These results confirm the choice of Python as having near-zero
impact on the overall performances, while providing major benefits in ease of
programming, deployment, and availability of open-source libraries.

5.3 Macrobenchmark

In this section we evaluate the coding libraries in a more complex scenario that
involves a large-scale storage infrastructure service. First we focus on the ob-
served per-request latency as measured by an external client that stores files
into the system. The client is implemented on top of the Apache ab benchmark
tool. It issues POST requests using a randomly generated key and payload, which
are sent to the proxy and eventually stored into the Redis storage nodes.

Figure 8 shows the cumulative distribution function (CDF) of the latencies
as observed by the client. These results include two additional variants that
concretely avoid any encoding actions: striping and bypass. The striping

variant simply splits the file into the desired number of blocks and immediately
returns them to the client. We implemented this solution as an additional back-
end to the PyECLib library. The bypass technique allows to circumvent any
communication overhead between the proxy and the encoder components (see
Figure 5). The difference between the bypass and striping indicate the price
one pays to send the files back and forth between the proxy and the encoder. We
observe that isa l rs vand and longhair cauchy 256 achieve the best overall



12 Burihabwa et al.

0%

+10%

+20%

+30%

+40%

+50%

+60%

baseline
(no-coding)

isa_lrs_vand

jerasure
rs_cauchy

jerasure
rs_vand

liberasure

flat_xor_3

liberasure

flat_xor_4

liberasure

rs_vand

longhair
cauchy_256

N
o
rm

a
liz

e
d

S
to

ra
g

e
 O

v
e
rh

e
a
d

500 <key,value> pairs, key=128bit, value=4MB

2GB

2.93GB 2.95GB 2.93GB

3.14GB 3.14GB

2.93GB 2.93GB

Fig. 9: Storage overhead.

performances, with the 99th percentile of the latencies below 2.645 s and 2.482 s
respectively, and the median latencies as low as 1.192 s and 1.133 s.

We conclude our experimental evaluation by comparing the storage overhead
induced by the choice of a given coding library. Figure 9 presents our results.
The client sequentially stores 500 files of 4 MB each, for a total of 2 GB of data.
The baseline results indicate the cost of storing the files without any form of cod-
ing. On the y-axis we show the storage overhead normalized against the baseline
cost, while for each library we indicate the total space requirements. In our ex-
periments, the Flat XOR erasure codes are on average 8% more demanding than
the other codes: they require a total of 3.14GB of storage space (corresponding
to a +63% of the original data).

6 Conclusion

We have studied and compared, in this practical experience report, the perfor-
mance of several open-source erasure coding libraries that are widely used to
implement error correction in distributed systems. These libraries notably differ
in terms of coding algorithms, implementation quality, and hardware-specific op-
timizations. Unlike the seminal study of Plank et al. [14] published seven years
ago, we focus here on the latest generation of coding libraries when used in real-
istic settings for cloud-based storage, and deployed on modern hardware inside
a data centre.

We conducted a wide range of experiments with these libraries to not only
measure their raw speed at encoding and decoding data, but also evaluate their
performance when used to store and retrieve actual content. Our observations
notably highlight the importance of specific hardware instructions such as SIMD
to improve performance, the negligible overhead of using coding libraries in high-
level languages like Python, the good space efficiency of erasure codes for fault-



Evaluation of Erasure Coding Libraries 13

tolerant storage, and the relatively high cost of the reconstruction of missing
blocks as compared to regular decoding operations.

The objective of this experimental study was to evaluate and compare ex-
isting solutions, rather than develop original coding methods. We hope that it
will bring valuable insights and guidance to other researchers interested in using
erasure coding for data storage.

References

1. Calder, B., Wang, J., Ogus, A., Nilakantan, N., Skjolsvold, A., McK-
elvie, S., Xu, Y., Srivastav, S., Wu, J., Simitci, H., Haridas, J., Ud-
daraju, C., Khatri, H., Edwards, A., Bedekar, V., Mainali, S., Abbasi,
R., Agarwal, A., Haq, M. F. u., Haq, M. I. u., Bhardwaj, D., Dayanand,
S., Adusumilli, A., McNett, M., Sankaran, S., Manivannan, K., and Rigas,
L. Windows Azure Storage: A Highly Available Cloud Storage Service with Strong
Consistency. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (New York, NY, USA, 2011), SOSP ’11, ACM, pp. 143–157.

2. Chen, H. C., Hu, Y., Lee, P. P., and Tang, Y. NCCloud: a network-coding-
based storage system in a cloud-of-clouds. Transactions on Computers 63, 1 (2014),
31–44.

3. Dimakis, A., Godfrey, P., Wu, Y., Wainwright, M., and Ramchandran,
K. Network coding for distributed storage systems. IEEE Transactions on Infor-
mation Theory 56, 9 (2010), 4539–4551.

4. Greenan, K. M., Li, X., and Wylie, J. J. Flat XOR-based erasure codes in
storage systems: Constructions, efficient recovery, and tradeoffs. In Mass Storage
Systems and Technologies (MSST), 2010 IEEE 26th Symposium on (2010), IEEE,
pp. 1–14.

5. Guruswami, V., and Sudan, M. Improved decoding of reed-solomon and
algebraic-geometry codes. IEEE Transactions on Information Theory 45, 6 (1999),
1757–1767.

6. Huang, C., Simitci, H., Xu, Y., Ogus, A., Calder, B., Gopalan, P., Li, J.,
and Yekhanin, S. Erasure coding in Windows Azure Storage. In Proceedings of
the USENIX Annual Technical Conference (2012), USENIX ATC, pp. 15–26.

7. Khan, O., Burns, R. C., Plank, J. S., Pierce, W., and Huang, C. Rethinking
erasure codes for cloud file systems: minimizing i/o for recovery and degraded reads.
In Proceedings of the 7th Conference on File and Storage Technologies, FAST’12,
USENIX Association, p. 20.

8. Lin, S., and Costello, D. J. Error Control Coding, second ed. Paerson Prentice
Hall, 2004.

9. Luby, M., and Zuckermank, D. An xor-based erasure-resilient coding scheme.
Tech. rep., Tech Report, 1995.

10. Luby, M. G., Mitzenmacher, M., Shokrollahi, M. A., Spielman, D. A., and
Stemann, V. Practical loss-resilient codes. In Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing (1997), ACM, pp. 150–159.

11. Oggier, F. E., and Datta, A. Self-repairing codes - local repairability for cheap
and fast maintenance of erasure coded data. Computing 97, 2 (2015), 171–201.

12. Plank, J. S. The raid-6 liber8tion code. International Journal of High Perfor-
mance Computing Applications (2009).



14 Burihabwa et al.

13. Plank, J. S., Greenan, K. M., and Miller, E. L. Screaming fast Galois field
arithmetic using Intel SIMD instructions. In FAST (2013), pp. 299–306.

14. Plank, J. S., Luo, J., Schuman, C. D., Xu, L., and Wilcox-O’Hearn, Z.
A performance evaluation and examination of open-source erasure coding libraries
for storage. In Proceedings of the 7th Conference on File and Storage Technologies
(Berkeley, CA, USA, 2009), FAST ’09, USENIX Association, pp. 253–265.

15. Plank, J. S., Simmerman, S., and Schuman, C. D. Jerasure: A library in
c/c++ facilitating erasure coding for storage applications-version 1.2. Tech. rep.,
Technical Report CS-08-627, University of Tennessee, 2008.

16. Plank, J. S., and Xu, L. Optimizing cauchy reed-solomon codes for fault-tolerant
network storage applications. In Network Computing and Applications, 2006. NCA
2006. Fifth IEEE International Symposium on (2006), IEEE, pp. 173–180.

17. Reed, I. S., and Solomon, G. Polynomial codes over certain finite fields. Journal
of the Society for Industrial and Applied Mathematics 8, 2 (1960), 300–304.

18. Sankaran, J. Reed Solomon decoder: TMS320C64x implementation. Application
Report SPRA686, Texas Instruments, 2000.

19. Sathiamoorthy, M., Asteris, M., Papailiopoulos, D., Dimakis, A. G.,
Vadali, R., Chen, S., and Borthakur, D. Xoring elephants: Novel erasure
codes for big data. Proc. VLDB Endow. 6, 5 (Mar. 2013), 325–336.


	A Performance Evaluation of Erasure Coding Libraries for Cloud-Based Data Stores[3mm] (Practical experience report)

