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Abstract. Annotations obtained by Cultural Heritage institutions from
the crowd need to be automatically assessed for their quality. Machine
learning using graph kernels is an effective technique to use structural
information in datasets to make predictions. We employ the Weisfeiler-
Lehman graph kernel for RDF to make predictions about the quality of
crowdsourced annotations in Steve.museum dataset, which is modelled
and enriched as RDF. Our results indicate that we could predict quality
of crowdsourced annotations with an accuracy of 75%. We also employ
the kernel to understand which features from the RDF graph are relevant
to make predictions about different categories of quality.
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1 Introduction

Cultural Heritage institutions are digitizing their collections. This process in-
volves manually making digital copies of the artifacts in their collection and
registering relevant information about the metadata of the artifacts into their
systems. Professionals are employed by the institutions to provide this informa-
tion according to their high quality standards.

In most cases, providing such information for large collections is an exhaustive
task in terms of human resources and requires expertise knowledge from many
domains. Hiring more professionals with domain expertise in order to speed up
the tasks is not feasible, so these institutions are looking into crowdsourcing this
artwork description (annotation). The crowd provides diversified information
about artifacts, hence issues dealing with the quality of annotations arise. Con-
sider, for instance, the artwork collection item (a sculpture) from Steve.museum
depicted in Figure 1; the figure includes the annotations produced by crowd an-
notators in a real-world annotation campaign. The annotations in green indicate
the ones which were considered useful by the professionals at institution while



the red ones indicate the ones which were not considered useful to be added to
their collection. Employing human reviewers to assess the quality of annotations
is as expensive as hiring professional annotators and thus there is a need for au-
tomated processes to assess the quality of these annotations or, in other words,
to develop methods to estimate the trust in them.

Fig. 1. The artwork titled Kinarra from the Steve.museum dataset and associated
crowd annotations. Green = useful, red = non-useful.

Properties of the annotations such as annotator, annotated artifact, time
stamp etc. and properties of the artifact and of the annotators themselves can all
be modeled using the Resource Description Framework (RDF), i.e. as a labeled
graph. Apart from representing the entities and the relations between them, such
an RDF graph also captures the structural information of the information. In
an earlier work [3], we modelled the annotations and employed some annotation
properties such as semantic similarity and reputation of the users to predict
the quality of annotations. Machine learning techniques such as Support Vector
Machines (SVMs) can be used to make predictions about features in the dataset.
Recently, machine learning using graph kernels has arisen as an efficient method
for learning from RDF graphs [13,6], that can effectively exploit the structural
properties of the graph using SVMs. To show the potential of such a graph kernel
we apply it on the Steve.Museum dataset. First we transform the annotations
and contextual information from the dataset to a semantic model and enrich
the model with external vocabularies and knowledge sources. We then leverage
this model to make predictions about the annotation quality by applying the
Weisfeiler-Lehman RDF graph kernel.

Our contributions are threefold; 1) We propose a workflow to transform and
enrich Cultural Heritage datasets into semantic (RDF) data; 2) We show how
a specialized kernel for RDF can be applied on a semantic Cultural Heritage
annotation dataset to predict annotation quality and relevant features; and 3)
We provide insights into the benefit of RDF kernel for Cultural Heritage datasets.
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The paper is structured as follows. In Section 2 we describe related work.
In Section 3 we describe the overall workflow and explain in detail about the
enriched semantic model and RDF kernel. Section 4 describes the Steve.Museum
dataset and the metrics used, followed by the results and their analysis in Section
5. We provide discussion and future work in Section 6.

2 Related Work

Utilizing knowledge from the crowds to perform tasks is widely used on the
Web [7]. Open Mind Common Sense [23] is a knowledge acquisition system de-
signed to acquire commonsense knowledge from the general public over the Web.
Several Cultural Heritage institutions have been looking towards users on the
Web to provide information about their artifacts such as depicted visuals, meta
data, sentiments etc. These institutions define tasks for gathering annotations
from the users either as a game as in ESP game [25] or through online systems
as shown in examples from “Your Paintings Tagger” by BBC4 Accurator for
Rijksmuseum Amsterdam5, and others such as Brooklyn Museum, New York
Library and others [17].

We consider the estimation of quality of crowdsourced annotations as a task
equivalent to the estimation of the trustworthiness of the annotations, and indi-
rectly of the trustworthiness of the annotator. We refer the reader to the works
of Artz and Gil [1] for an extensive survey of trust models in the Semantic Web,
Golbeck [9] for trust models on the Web, Sabater and Sierra [18] for trust mod-
els in computer science and Prasad et al. [15] for Bayesian computational trust
models.

Studies have been done to understand the quality of information provided
by the crowd as shown by Snow et al. [24]. Inel et al. [11] have been studying
the annotations obtained from the crowdsourcing platforms such as Crowdflower
to make quality assessments. There have also been many methods developed to
determine the quality of these crowdsourced information, where majority voting
has been widely used. For example, in ESP game, a label is added to the picture if
at least two randomly picked users suggest the same label. This research extends
two previous works of ours. We extend a Semantic Web representation of cultural
heritage annotations that we previously introduced [3], and we explore how to
make machine learning-based quality assessments from such a model. These
machine learning-based assessments implicitly introduce a measure of similarity
between Semantic Web data. The use of semantic similarity measures to semi-
automatically predict the quality of crowdsourced cultural heritage annotations
has been explored in another previous work of ours [2]. However, in that work
semantic similarity is computed only between the annotations, while here it
extends to the metadata.

In this paper we utilize RDF graph kernels to utilize structural properties of
graphs to make predictions about annotation quality. Although features about

4 http://tagger.thepcf.org.uk/
5 http://rma-accurator.appspot.com
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the user and of the annotations were used to make predictions of quality with
SVMs in a previous work of ours [14], we did not employ RDF graph kernels
for the predictions. This paper aims to provide a new method employing RDF
graph kernels for automatically predicting quality of crowdsourced annotations
in the cultural heritage domain.

3 Approach

In this section we describe the workflow that we propose to assess the quality of
crowdsourced annotations. We begin with an overview of the workflow and then
we describe each component in detail.

3.1 Workflow Overview

The workflow that we adopt to estimate the quality of the user-provided anno-
tations is depicted in Fig. 2 and consists of three steps:

1. Representing Annotations in RDF
2. Annotations Enrichment
3. Machine learning with graph kernels for RDF

Whenever an annotation is introduced in the system, it is modeled in RDF,
along with its related metadata (e.g., its author). The resulting RDF graph
is then enriched by linking it with information provided by authoritative and
trusted Linked data sources. In this manner, we expand the knowledge graph
describing the annotation. Lastly, we use Support Vector Machines and the
Weisfeiler-Lehman graph kernel to estimate the quality of the annotation, ex-
ploiting the information provided in the enriched graph and using a set of pre-
viously evaluated (and enriched) annotations. The following sections describe
these steps in detail.

3.2 Representing Annotations in RDF

Annotations describing artworks provided by the users from the Web are repre-
sented using the Open Annotation Model [19] which helps to link annotations
to the user who created them and the artifact for which an annotation was
created. A subset of annotations are reviewed by the experts at the cultural
heritage institutions and their reviews are represented as an annotation of an
annotation. The review indicates an expert opinion about the annotation that
the user provided according to standards of the institution. Apart from infor-
mation about annotations, we would like to extend our information about the
user who provided the annotation. For users who registered in the system and
provided profile information, we model their information using the FOAF ontol-
ogy [5], while anonymous users do not have any additional information in their
profile. Also the artifact has some meta data such as the creator of the artifact,
a title, and material properties. We use the Eurpeana Data Model (EDM) [10]
to represent these properties. Fig. 3 shows our generic semantic model for the
annotations contributed to the cultural heritage domain.
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Fig. 2. Annotation evaluation workflow. First, the annotation is represented in RDF.
Then it is enriched. Lastly, we use the RDF-based machine learning to predict its
quality.
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5



3.3 Annotations Enrichment

Enrichment of the annotations is done since RDF graph kernels can easily use
additional information since all additional information is part of RDF graph to
make predictions. The properties related to the artwork, the creator of the art-
work and the annotation itself are relevant to be enriched. Unfortunately, to the
best of our knowledge, there were no publicly accessible knowledge repositories
related to artworks. We extend the creator data using the Union List of Artist
Names (ULAN) and DBPedia, and annotation data with DBPedia, Flickr and
Wikipedia.

The ULAN is a structured vocabulary maintained by professionals of the
Getty Research Institute and contains information such as date of birth and na-
tionality of 202.720 past and current artists (in 20116). Wikipedia7 is a mostly
unstructured knowledge base maintained by tens of thousands of volunteers
worldwide and contains information on a very broad spectrum of topics. The
information is intended for human consumption. DBpedia8 is a semantic reposi-
tory of information that is extracted from Wikipedia. Most pages on the English
Wikipedia have a corresponding entry in DBPedia. Information in DBPedia is
structured in RDF and is machine processable. Flickr is a website where people
upload and share their images. Most images are tagged with descriptive labels.

Institutions store creator information either as structured, semi-structured or
unstructured text. For linking purposes we assume creator text is unstructured.
We map ULAN resources using the getty:labelPreferred (e.g. Rembrandt van
Rijn) and getty:labelNonPreferred(e.g. Rembrandt Hermanszoon van Rijn)
properties. We also map DBPedia resources of type dbpedia-owl:Artist using
the foaf:name property.

The textual annotations are compared to DBPedia resources based on the
rdfs:label property to check whether the annotation corresponds to existing
words. The popularity of each annotation is calculated using Flickr by counting
the number of images that have been uploaded in 2014 and were labeled with
that annotation.

3.4 Machine Learning with Graph Kernels for RDF

In a typical machine learning classification task, one tries to predict a class for
a set of instances. Each instance is represented by a feature vector: a list of
properties of that instance. This approach fits well to the scenario where the
dataset is a table in a database, and each instance is a row. But it does not
easily translate to RDF graphs. For example, consider the simple RDF graph
given in Fig. 4A. Suppose we want to predict a property of things (i.e. people)
that are Persons, then our instances are the two nodes: person1 and person2. It
is not immediately obvious what the features of person1 and person2 are.

6 http://www.getty.edu/research/tools/vocabularies/ulan/faq.html
7 http://en.wikipedia.org/wiki/Wikipedia:About
8 http://wiki.dbpedia.org/About
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Fig. 4. Example RDF graph (A), with two subgraphs of depth 2 (B) and examples of
extracted features (C).
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Machine learning for RDF data using graph kernels was introduced in [13] as
a way to deal with this issue by using structural patterns of the RDF graph as
input for kernel based learning algorithms [20,21]. For each instance we consider
the subgraph around that instance (up to a certain depth) as its ‘features’, see
Fig. 4B. For these subgraphs structural properties are computed as something
that is called a ‘kernel’, which is essentially a similarity function between objects,
for instance, between subgraphs of an RDF graph. This kernel is used as the
input data for a learning algorithm. The main advantage of using graph kernels
for learning from RDF, compared to other techniques, is that it is a generically
applicable and flexible approach [16]. Little knowledge of the dataset is required
to use these methods and it allows for easy integration of additional knowledge
into the learning process, by simply adding triples to the RDF graph.

In this paper we will use the Weisfeiler-Lehman [22] graph kernel for RDF
(WLRDF), introduced in [6]. This is a state of the art graph kernel for learning
from RDF data in terms of prediction accuracy, with very good computational
performance. For each instance, the WLRDF kernel efficiently computes subtree
patterns as features, in a number of iterations, where each iteration computes
more complex patterns. These patterns are illustrated in Fig. 4C. Typically, the
features that are considered by a kernel are computed implicitly. However, sub-
tree features of the WLRDF kernel are computed explicitly and we can therefore
inspect which subtree patterns are important in the learning process.

As our learning algorithm, we use the well-known Support Vector Machine
(SVM). SVMs are very efficient and robust classification algorithms that try to
separate classes by finding a maximally separating hyperplane. For more see for
example the books [20,21].

In the machine learning step in our workflow, the instances that we use
are annotations, i.e. nodes that are of type Annotation. For each annotation
a subgraph is extracted up to a specified depth. From Fig. 3 we can see that
larger depths leads to the inclusion of more levels of information in the graph.
The WLRDF kernel is computed using these subgraphs and then used to train
a SVM on labelled (in terms of quality) annotations. This SVM is then used to
predict the annotation quality of unseen annotations.

4 Experimental Setup

We apply our approach on the Steve.museum dataset, which is described in
Section 4.1. The details of the enrichment step is discussed in 4.2 followed by
the experimental parameters set to run the experiment in Section 4.3.

4.1 Steve.museum Dataset

The Steve.museum [12] project was started together with United States art mu-
seums with the aim to explore the role that user-contributed descriptions can
play in improving on-line access to works of art. Annotations were gathered for
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1, 784 artworks and the usefulness of each annotation was evaluated by pro-
fessional museum staff. The reviewers distinguished 12 categories of usefulness.
The category usefulness-useful and usefulness-not useful indicated posi-
tive and negative usefulness. Other categories described why the annotation was
not useful (e.g. problematic-misspelling, judgement-positive). The anno-
tations including their evaluations and annotator information were published as
a SQL dataset.

The dataset contains 49, 767 artifacts annotations in total, along with the
related metadata, created by 730 anonymous9 and 488 registered users, where
anonymous users created 24.016 annotations (43% of the total). Registered users
could enter additional profile information. Table 1 lists those properties and the
percentage of registered users who provided a value for a property.

There are some differences in the behaviour of anonymous and registered
users: the first contributed on average 15 annotations per session, the latter 33.
Moreover, we see a clear pattern in the week day distribution: registered users
contribute annotations mostly between Tuesday and Thursday and the anony-
mous users during the other days of the week. Also, registered users contributed
most of their annotations in the morning and in the evening, although the pat-
tern here is less definite.

Out of the 49, 767 annotations, 48, 789 (98%) have been evaluated, of which
87% as usefulness-useful. Table 3 shows the average performance per session
of the registered and anonymous users. The annotations contributed by the reg-
istered users are of slightly higher quality than those contributed by anonymous
users.

4.2 Dataset Transformation

We transformed the data into Linked Data using the model illustrated in Figure
3. Most properties of the users and the annotation could be mapped one-to-one.
However, some annotations were reviewed multiple times. For the purpose of
prediction we required each annotation to have exactly one review; therefore, we
applied the following strategy: if any of the reviews stated the usefulness of an
annotation as usefulness-useful, we selected that review, giving more weight
to a potentially useful annotation. If not, we selected the usefulness value with
the single highest frequency. When there were multiple reviews with the highest
frequency, we removed the annotation as this happened in very few cases. This
resulted in the deletion of 1, 246 annotations leaving 47, 543 annotations. Also
we removed the reviewer information from the graph since that information
would not be present for future (un-reviewed) annotations which we want to
automatically assess.

9 Anonymous users were identified using a disambiguation process based on their web
session identifier since multiple annotations may have been created by the same user
at different times. However, we do not know if two sessions were created by the same
anonymous user, but for registered users we see that this happens quite rarely: the
average number of sessions per registered user is 1.03.
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The Steve.museum dataset contains 1, 082 unstructured creator names. Our
goal was to identify creators pointing to individual persons. Therefore we fil-
tered the creator names containing the string unknown, locations (countries and
places), time periods, and hashed strings to anonymize the details of certain
artefacts. This resulted in 742 creator strings (of which some could still point
to the same person) which we considered candidate artists. When possible we
put the name in < firstname >< lastname > order. We used the preprocessed
name to match to DBPedia and ULAN.

For each name that could not be matched we performed a Wikipedia search
on that name where we automatically retrieved the top 5 results and checked if
the corresponding DBPedia resources were of the type dbpedia-owl:Artist. We
automatically made the mapping if there was only one Artist in the results and
decided manually when there were multiple Artists. In total 579 candidate artists
were mapped onto 479 distinct DBPedia resources. For the ULAN mapping we
used both the preprocessed name and the spelling variations on DBPedia if there
was a match. In total 470 candidate artists were mapped to 422 distinct ULAN
resources. The mapping process resulted in 605 mapped candidates of which 442
mapped by both ULAN and DBPedia, 138 only mapped to DBPedia and 27
only mapped to ULAN.

To enrich the annotation as described in Section 3 we tokenized the annota-
tion and removed stopwords, special characters such as “” and “>”, and words
of length 1. We added a custom:wikipediaMatchCount property to each anno-
tation with the number of matched words from the preprocessed annotation. For
Flickr we used the flickr.photos.search API function searching for all pho-
tos containing all annotation words as label and which were uploaded in 2014.
We added a custom:flickrMatchCount property to each annotation with the
amount of photos returned by the API. Finally, to match with the Wikipedia
description of the creators we tokenized and stemmed the description, stemmed
the preprocessed annotation words and added a custom:hasCreatorMatchCount

property indicating the amount of matched words.

Table 2 provides a summary of the complete dataset. The transformed dataset
and the enrichments are available as RDF/XML files online.10

Community Experience Education Age Gender
Household
income

431 (88%) 483 (99%) 483 (99%) 480 (98%) 447 (92%) 344 (70%)

Works in
a museum

Involvement
level

Tagging
experience

Internet
connection

Internet
usage

428 (88%) 411 (84%) 425 (87%) 406 (83%) 432 (89%)
Table 1. Annotator properties and the percentage of registered annotators who filled
in the property.

10 The dataset can be downloaded at https://www.dropbox.com/s/0l8zo023hhsrsjt/
all_data.zip?dl=0.
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Total number of triples 473,986

Annotators / registered annotators 1,218 / 488 (40%)

Annotated artworks 1,784

Annotations / unique annotations 45,733 / 13,949 (31%)

Candidate creators / mapped creators 1,082 / 605 (56%)

Annotations in Flickr (> 0 images retrieved) 25,591 (56%)

Annotations in DBpedia (> 0 words matched) 25,163 (55%)
Table 2. Summary of the transformed and enriched Steve.museum dataset.

Evaluation Category Average frequency Average frequency
per session per session
(Registered users) (Anonymous users)

usefulness-useful 75.57% 74.46%

usefulness-not useful 11.19% 11.96%

problematic-personal 0.53% 0.61%

problematic-no consensus 0.69% 0.63%

problematic-foreign 0.99% 1.13%

problematic-huh 0.36% 0.55%

problematic-misperception 2.65% 2.76%

problematic-misspelling 0.88% 0.89%

judgement-positive 0.70% 0.48%

judgement-negative 0.75% 0.95%

comments 2.15% 1.72%

not evaluated 3.54% 3.86%
Table 3. Comparison of the average performance per session between registered and
anonymous users.

4.3 Experimental Parameters

As can be seen in Table 3 the distribution of the usefulness categories is very
skewed and many categories are very small. For our experiments we therefore
kept the larger usefulness-useful and usefulness-not useful categories,
grouped together both problematic and judgement subcategories and removed
both the comments category and annotations which were not evaluated.

Our experiments have been implemented in Java using the ‘mustard’ li-
brary11, which implements different graph kernels, such as the WL RDF kernel,
for RDF data and wraps the Java versions of the LibSVM [4] and LibLIN-
EAR12 [8] SVM libraries.

11 Our code can be found in the org.data2semantics.mustard.experiments.IFIPTM

package of the library at https://github.com/Data2Semantics/mustard
12 http://liblinear.bwaldvogel.de/
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The experiments were run on depth 1 (including annotation properties),
depth 2 (additionally including annotator and artwork properties) and depth
3 (additionally including properties from the linked datasets). On each depth we
created 10 subsets of the graph and performed a 5-fold cross-validation, optimiz-
ing the C-parameter of the SVM in each fold, using again 5-fold cross-validation.
The number of iterations parameter h for the WLRDF kernel was fixed to the
depth ×2. This parameter can also be optimized, however this has relatively lit-
tle impact, since the higher iterations include the lower iterations. Subsets were
created by taking a random sample of annotations in the usefulness-useful

category of size equal to the other categories combined and took all annotations
from those categories. Each subset contained approximately 9000 annotations.
For each depth and subset we calculated the accuracy, precision, recall and F1
score for the categories combined and individually.

5 Results and Analysis

In this section we present our experimental results. First we give our quantitative
results and then we qualitatively analyse important features for predicting the
different categories.

5.1 Comparison of Accuracy, Precision and Recall for Predictions
at Different Depths

We compare the accuracy, F1-measure, precision and recall for predicting four
different categories (usefulness-useful, usefulness-not useful, judgment,
problematic) at three different depths of the graph and present the results in
Table 4. The features for the graph which were included at different depths
are described in Section 4.3. We repeated the experiment for predicting two
types of review categories (usefulness-useful and usefulness-not useful)
and found that the results are comparable to the ones mentioned in Table 4,
while the overall F1-measure was higher, with 0.76 for every depth. This is to
be expected since the two classes which were hard to predict were not included.
The best overall results were achieved under the depth 2 setting. The judgement
class is very hard to predict, as we can see from the very low precision, recall
and f1 scores.

5.2 Comparison of Relevant Graph Features at Different Depths

The multi-class SVM implementation in LibLINEAR computes a SVM for each
class, which can be used to identify the important graph features for each class.
Thus, we trained a SVM for the first of our 10 four-class subsets. A manual
analysis of these important features (those with the highest weight) for the
different classes at different depths shows some interesting results. We will not
mention the results for the judgement class, since it was predicted very poorly.
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Depth Prediction class Avg. Accuracy Precision Recall F1 measure

1 Usefulness-useful 0.75 0.78 0.76

Usefulness-not useful 0.74 0.74 0.74

Judgement 0.00 0.00 0.00

Problematic 0.68 0.25 0.37

All classes 0.75 0.54 0.44 0.47

2 Usefulness-useful 0.77 0.77 0.77

Usefulness-not useful 0.74 0.75 0.75

Judgement 0.30 0.04 0.07

Problematic 0.64 0.34 0.45

All classes 0.75 0.61 0.48 0.51

3 Usefulness-useful 0.77 0.76 0.77

Usefulness-not useful 0.74 0.76 0.75

Judgement 0.05 0.01 0.01

Problematic 0.64 0.32 0.42

All classes 0.75 0.55 0.46 0.49
Table 4. Comparison of Results from Predictions Using the WLRDF Kernel at Dif-
ferent Depths

At depth 1, the useful class has a large number of specific date strings,
e.g. “2007-07-18T00:22:04”, as important features. However, the not-useful

class is recognized by features pointing to the artwork that is annotated, such
as oac:hasTarget->http://purl.org/artwork/1043. The problematic class
has important features similar to the useful class.

Graph features containing edm:object_type and oac:hasBody are almost
exclusively the most important features for identifying useful annotations at
depth 2 and 3. In contrast, the type of features that are used in classifying
not-useful annotations is more diverse. They include graph features with the
material used in the artwork or information about the annotators. For example
a set of important features has the graph pattern that includes the information
that the annotator has “Intermediate” experience. The problematic class at
depth 2 and 3 is recognized with very specific features, like date strings, that are
not as general as for the other two classes.

6 Discussion and Future Work

In this paper we presented a workflow to convert datasets in the Cultural Her-
itage domain to RDF and to enrich the datasets to be used for predictions of
annotation quality using RDF graph kernels. We have provided both a qualita-
tive and quantitative analysis of the results and have shown that RDF kernels
are quite beneficial in making predictions about quality.

From our experiments it can be seen that employing RDF graph kernels helps
in predicting classes of annotations with a overall best accuracy of 75%, which
is a good rate of acceptance. The single class measures of accuracy, precision,
recall and f1-measure for the classes of judgement and problematic are not

13

oac:hasTarget -> http://purl.org/artwork/1043
edm:object_type
oac:hasBody


useful since the percentage of their classes were too small to perform a good
training and thus they were predicted badly.

We also identified which features are relevant at different depths to make
the predictions per category and provided an analysis. The features which are
relevant to predict a certain class of quality are useful to design annotation tasks
in the future. If a particular creator is selected as a relevant feature and if the
majority of annotations by different users to an artwork belonging to that creator
tend to be evaluated mostly as usefulness-not useful, then it might indicate
that the annotation task is difficult for that particular artwork. Similarily for
different datasets such in-depth analysis helps to re-design the annotation tasks
to obtain better quality from the crowds.

The approach of using graph kernels for RDF is very flexible as additional
information can easily be added to the learning process by extending the RDF
graph. However in Steve.museum dataset, some node labels provide very specific
information, which is not beneficial for generalization. For example, the anno-
tations are timestamped with exact times in seconds, whereas the day of the
week might be more informative. Some (light) graph pre-processing can help to
alleviate these issues, without hindering the flexibility and extensibility of the
approach. We will investigate this in future work.

The automatic prediction of quality of annotations based on their metadata
helps Cultural Heritage institutions alleviate the task of reviewing large number
of annotations and helps to add the most useful annotations directly to their
system for better search and retrieval through their collection. As part of fu-
ture work, we would like to perform our experiments on different datasets from
the Cultural Heritage domain to understand how and which features are most
relevant in predicting quality from these datasets.
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