
HAL Id: hal-01411183
https://hal.science/hal-01411183

Submitted on 7 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Tracking Middleboxes in the Mobile World with
TraceboxAndroid

Valentin Thirion, Korian Edeline, Benoit Donnet

To cite this version:
Valentin Thirion, Korian Edeline, Benoit Donnet. Tracking Middleboxes in the Mobile World with
TraceboxAndroid. 7th Workshop on Traffic Monitoring and Analysis (TMA), Apr 2015, Barcelona,
Spain. pp.79-91, �10.1007/978-3-319-17172-2_6�. �hal-01411183�

https://hal.science/hal-01411183
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Tracking Middleboxes in the Mobile World
with TraceboxAndroid

Valentin Thirion, Korian Edeline, Benoit Donnet?

Université de Liège – Belgium

Abstract. Middleboxes are largely deployed over cellular networks. It
is known that they might disrupt network performance, expose users to
security issues, and harm protocols deployability. Further, hardly any
network measurements tools for smartphones are able to infer middle-
box behaviors, specially if one cannot control both ends of a path. In
this paper, we present TraceboxAndroid a proof-of-concept measurement
application for Android mobile devices implementing the tracebox algo-
rithm. It aims at diagnosing middlebox-impaired paths by detecting and
locating rewriting middleboxes. We analyze a dataset sample to high-
light the range of opportunities offered by TraceboxAndroid. We show
that TraceboxAndroid can be useful for mobile users as well as for the
research community.

1 Introduction

It has been a while, now, the Research Community has tried to use com-
puting resources made available by end-users. One of the most famous tentative
is probably SETI@home [1]. SETI@home provides a screensaver that users can
freely install, and that downloads and analyzes radio-telescope data for signs
of intelligent life. The project obtains a portion of the computing power of the
users’ computers, and in turn the users are rewarded by the knowledge that they
are participating in a collective research effort, by attractive visualizations of the
data, and by having their contributions publicly acknowledged. This model has
been followed by others, in particular for performing large-scale Internet topol-
ogy data collection [2, 3].

Meanwhile, we have seen the rise of mobile devices at the expense of a drop in
desk-based and notebook computers [4]. Mobile data usage is increasing rapidly
in part due to a growing release of mobile devices and the availability of a wide
variety of mobile phone applications. For instance, a large number of users nowa-
days use their mobile devices to watch video on demand (e.g., YouTube) while
on the move. Naturally, the idea of using crowdsourcing with mobile devices to
measure the Internet has emerged. However, the particularities of those devices
make network measurements a difficult task [5].

? This work is funded by the European Commission funded mPlane ICT-318627
project.

In addition, the Internet infrastructure has strongly evolved. In particular,
we have seen the growing importance of middleboxes (i.e., “an intermediary box
performing functions apart from normal, standard functions of an IP router on
the data path between a source host and destination host” [6]). For instance,
Sherry et al. [7] obtained configurations from 57 enterprise networks and revealed
that they can contain as many middleboxes as routers. Wang et al. [8] surveyed
107 cellular networks and found that 82 of them used NATs. Those middleboxes
has shown to have a negative impact on the evolvability of the TCP/IP protocol
suite [9].

Combining the rise of mobile devices and the importance of middleboxes leads
to a natural question: are the middleboxes a cause of degraded performance in
mobile networks and can we provide tools for monitoring and discovering prob-
lems with end-user Quality of Experience (QoE) due to their presence. The first
part of the question has already been answered. Wang et al. [8] have demon-
strated that middleboxes are, indeed, a brake to mobile network performance in
mobile networks.

In this paper, we tackle the second part of the question by proposing a proof-
of-concept tool called TraceboxAndroid. TraceboxAndroid is based on tracebox [10],
a traceroute extension that is able to reveal the presence of middleboxes along
a path. We have ported tracebox under the Android system, allowing so the
user to detect the presence of a middlebox that could be the cause of a degraded
performance on a path. We describe the architecture of TraceboxAndroid and
deploy it on several mobile devices across the world in order to demonstrate its
potentialities. In addition, TraceboxAndroid is lightweight for mobile devices in
terms of battery and memory consumption. TraceboxAndroid is freely available
(http://androidtracebox.org).

The remainder of this paper is organized as follows: Sec. 2 explains how
tracebox works; Sec. 3 presents TraceboxAndroid, our tracebox port into An-
droid devices; Sec. 4 explains our TraceboxAndroid deployment, data collection,
and results we obtained; Sec. 5 positions this paper regarding the state of the
art; finally, Sec. 6 concludes this paper by summarizing its main achievements.

2 Tracebox

To reveal the presence of middleboxes along a path, we use tracebox [10],
an extension to the widely used traceroute.

tracebox mechanism is illustrated in Fig. 1. It relies on RFC1812 [11] and
RFC792 [12] stating that the returned ICMP time-exceeded message should
quote the IP header of the original packet and respectively the complete payload
or the first 64 bits. tracebox uses the same incremental approach as traceroute,
i.e., it sends packets with different IP, UDP, or TCP fields and options with
increasing TTL values. By comparing the quoted packet to the original, one can
highlight the modifications and the initial TTL value allows us to localize the
two or more hops between which the change took place. In Fig. 1, packet a is
the originally sent one. The first hop, that happens to be a middlebox, modifies

Fig. 1. Example of middlebox detection with tracebox

its TCP Initial Sequence Number (ISN) and sends the rewritten packet b to
the next hop. When the next hop receives the expired packet, it sends back to
the client an ICMP time-exceeded packet c containing packet b as a payload.
When the tracebox client receives it, it is able to compare packet a and the
payload of packet c to detect any changes and the initial TTL value, i.e., 2,
allows tracebox to bound the middlebox location.

It is worth to notice that in 80% of the cases [10], a path contains at least
one router which implement RFC1812 [11], that recommends to quote the entire
IP packet in the returned ICMP. This means that, in most cases, tracebox is
able to detect any modification performed by upstream middleboxes.

3 TraceboxAndroid

tracebox has been originally developed to work on desk-based computers,
on a UNIX-like system. We have ported tracebox on Android mobile devices.
Our application is called TraceboxAndroid.

Fig. 2 illustrates the general TraceboxAndroid architecture. As shown, it is
made of three main components: the system core where the tracebox intelligence
has been included (coded in C, under the front office), the front office (or the
application) corresponding to the Android application (coded in Java) and the
back office (or server – coded in PHP and HTML) that is used to store data
and make offline analysis.

The front office communicates with the server using an XML API that gives
the application the destinations to be probed and allows it to send back the data
collected by the system core. The core itself implements tracebox (as described
in Sec. 2) and sends probes to the destinations using sockets by system calls.

The front office and the system core are freely available1 since mid-2014. In
the subsequent sections, we deepen each component.

1 http://www.androidtracebox.org

40 CHAPTER 5. TRACEBOX ON ANDROID

Figure 5.1: Communication links used by di↵erent parts of the project

The system is represented in figure 5.1.

As shown on the figure 5.1, I developed three modules in three di↵erent
languages (PHP/HTML for the server, JAVA for the App and C for the
Core). The App communicates with the server using an API based in XML
that gives the App the destinations to be probed and allows the App to send
the results from probes. The App communicates to the Core using an API
provided by the Android SDK (using Process and Runtime classes, as de-
scribed further. The Core itself send probes to the destinations using sockets
by system calls.

The Android app is to be available on the Play Store and widely deployed
in order to get results from all over the world and the more cellular carriers
possible. A clear representation of the deployed system is presented in figure
5.2.

The Android app is composed of 2518 lines of code in JAVA, 2556 lines
of PHP create the back o�ce and the core is made of 633 lines in C.

Fig. 2. General overview of the TraceboxAndroid architecture

3.1 System Core

TraceboxAndroid is based on BusyBox [13], a software written in C that
aims at providing Unix tools for operating systems with limited resources. In
particular, it contains a basic networking tool suite (e.g., ping, netstat, netcat,
traceroute, etc). We started from the latter source code to port tracebox into
Android systems.

The main challenge we had to address is that tracebox requires the use of
raw sockets to manually set IP fields, TCP fields, and TCP options, and retrieve
the received headers. As the use of raw sockets is restricted to users that can
grant the CAP_NET_RAW POSIX capability (i.e., super users), we chose to exclude
non-rooted devices and call the TraceboxAndroid BusyBox implementation from
the JAVA app as a super user. While this limitation is crippling for extended use,
as already stated by Faggiani et al. [5], it seems reasonable for a proof-of-concept
implementation.

TraceboxAndroid system core consists in a C applet which is called by a
lightweight BusyBox version. The underlying tracebox implementation is based
on the algorithm described in Sec. 2 and supports TCP/IPv4 and diverse TCP
options (e.g., SelectiveACK, Timestamp, MSS, WindowScale, MultipathTCP).

3.2 Front Office

The front office (or application) purpose is to send tracebox probes to pre-
determined or user-chosen destinations, compute the result, and send it back to
the back office. In some sense, it acts as a proxy between the system core and
the back office.

Fig. 3. Front Office organization

On the first execution or when a new version is released, three actions are
automatically performed: check if the phone is rooted, download and install our
custom lightweight BusyBox version containing the tracebox implementation,
and retrieve an XML file containing the destination set (detailed in Sec. 4.1).

Three probing mechanisms are available in the Front Office menu:

– Background Probing : background probes are sent by a scheduled task that
is executed several times a day while the phone is connected to a network,
even if the user shuts down the application.
The user is able to edit the configuration of the scheduled probing by setting
the number of destinations to be probed during one probing session and the
maximum duration of a session.

– Instant Probing : an Instant probe is a one-time single measurement sent to
a random destination within the destination set. The user can choose to run
an Instant probe at any time and retrieve the results.

– Custom Probing : the Custom probing mode is similar to the Instant Probing
but allows the user to set the destination.

Background Probing is mostly for research purposes. The two others are
much more dedicated to given network monitoring/analysis in case of a drop in
the QoE observed by the user.

The user is also able to check the results, consult the logs, and get information
about the application and all the tools that were used to create it.

The architecture of the front office is displayed in Fig. 3. It is divided in three
packages; (i) the Main package that is mainly composed of Activity classes that
are responsible for drawing the views, monitoring the state of the app, receiving

user commands, and launching AsyncTask to perform various operations (e.g.,
send an Instant Probe, parse an XML file, etc); (ii) the Core package contains
utility and long-lived action managing classes that executes Unix commands
and fetch the results, sends the result to the back office component and runs
the tracebox applet; (iii) finally, the Data package is composed of classes main-
taining information about processes and is responsible of managing an internal
SQLite database.

The database stores information about destinations, probes, routers, packet
modifications, and the logs. In addition to the probed routers inferred character-
istics, the GPS position of the device at the probing time, Internet connection
mode (i.e., WiFi, cellular, or Bluetooth), the cellular mode and carrier name (in
case of a cellular network connection), and the battery consumption are saved
into the local database before being sent to the back office.

3.3 Back Office

The back office is the server-side application that stores data collected by the
mobile devices. It also manages the destinations probed by the application.

The back office has no other purpose than research (i.e., conserving collected
data and off line analysis). The user cannot access the back office directly but
has the opportunity to analyze data if he selected Instant or Custom probing,
or to download the dataset on the website.

4 Evaluation

In this section, we explain our evaluation of TraceboxAndroid. In particular,
we discuss our measurement methodology, describe our dataset, and analyze our
results.

4.1 Methodology

We built an initial probe target set from the Alexa top-500 websites list, that
we pre-resolved using Google Public DNS into 406 unique addresses, avoiding so
a resolution on every mobile device that could consume undue resources and that
could lead to completely different probed paths, making statistics meaningless.
This address set is used by TraceboxAndroid Background Probing and Instant
Probing features. It is, however, obvious that in case of selecting the Custom
Probing feature, the DNS resolution will be done by the app.

Between May, 2014 and September, 2014 TraceboxAndroid has been down-
loaded by 23 users from Belgium, Italy, USA, China, and Nigeria. Measurements
performed by those users during this period reached a total of 1,756 probes sent.
Participating mobile devices were connected to the Internet via WiFI or cellu-
lar data networks via different carriers (Mobistar, O2, Mobile Vikings, E-Plus,
BASE, T-Mobile, Movistar, KPN) using different mobile technologies (HSPA,
HSPAP, HSDPA, LTE, UMTS, and EDGE).

0 5 10 15 20 25 30 35
Path length (# of hops)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

di
st

ri
bu

tio
n

fu
nc

tio
n

WiFi
Cellular

Fig. 4. Path lengths distribution

0 2 4 6 8 10 12
First modification (hop #)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

di
st

ri
bu

tio
n

fu
nc

tio
n

WiFi
Cellular

Fig. 5. Location of first observed mid-
dlebox modification

On the whole set of probes sent, 1,372 (78.13%) were done through WiFi
connections. The remaining 384 probes (21.87%) were sent through cellular con-
nections.

This dataset is limited but sufficient to demonstrate the extent of Trace-
boxAndroid capabilities. Moreover, as the Android app was still under devel-
opment during most measurements, the following results and figures should be
considered as illustrations of the variety of the app capabilities rather than rig-
orous observations.

4.2 Results

We first look at paths collected and, in particular, at their length distribution.
Path lengths are computed on a subset of the paths collected. From the whole set,
we select those that have unique <source;destination> address pairs to compute
their lengths. This subset contains 606 paths, 388 of them were obtained via
WiFi connections (64.9%) and 218 via cellular connections (35.97%).

The results are displayed in Fig. 4. We see that WiFi paths are 1.14 hops
longer on average than cellular networks paths, their respective path length
means being 15.8 and 14.67 hops.

The location of the first observed middlebox, in number of hops away from
the probing source, is shown in Fig. 5. We see that 272 among 361 (75.32%) WiFi
paths and 147 among 215 (68.37%) cellular paths that involves a middlebox had
their first probe modified close to the mobile device, respectively at hops 6 and
4.

WiFi probes have crossed 180 different different ASs (Autonomous Sys-
tems) and cellular probes have crossed 139 different ASs. The AS overlap be-
tween the two types of probes includes 111 ASs. The three autonomous sys-
tems that WiFi probes have traversed the most are HIBERNIA TripartZ,NL,
BELGACOM-SKYNET,BE and TTNET,TR, for cellular probes these are BASE-AS,BE,
KPN Interational,NL and UUNET,US. The types of crossed ASs are somewhat

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10#11#120

1

2

3

4

5

6
C

ro
ss

ed
 d

ev
ic

es
 (%

)
WiFi
Cellular
Total

(a) Modification rates

Label Field

1 IP::ToS
2 IP::TotalLength
3 IP::ID
4 IP::Flags
5 IP::Protocol
6 IP::Checksum
7 TCP::SourcePort
8 TCP::DestPort
9 TCP::SeqNumber
10 TCP::Offset
11 TCP::WindowSize
12 TCP::Checksum

(b) Legend

Fig. 6. Observed middlebox modification in IP and TCP headers

equivalent, whatever the type of network connection of the device (i.e., WiFi or
cellular), consisting mainly in Transit networks.

We next check IP and TCP modifications. They are inferred using the tracebox
algorithm described in Sec. 2. As probes have common subpaths, we counted each
answering device only once based on the source IP addresses. The resulting set
is composed of 3,109 routers, 175 (5.63%) of them exhibit middlebox behaviors.
We have observed that 2,304 routers answered through WiFi connections and
1,392 were probed through cellular connections, among them tracebox respec-
tively detected 103 (4.47%) and 87 (6.25%) middleboxes. Note that 587 routers
have been probed via WiFI and cellular data networks.

The amount of detected middleboxes in this set has to be put in perspec-
tive with their strategic positioning; from the unique paths set explained above,
576 among 606 (95.05%) paths are crossing at least one middlebox that mod-
ifies at least one IP header, TCP header field, or TCP option. 361 among 389
(93.04%) WiFi paths and 215 among 218 (98.62%) cellular network paths in-
volves a rewriting middlebox.

Fig. 6 summarizes those modifications. The TCP checksum is recomputed
by many middleboxes, those that modifies IP pseudo-header fields, TCP fields,
and TCP options. It is natural to see that 3.5% of the total observed routers are
modifying it. Besides the TCP checksum, four fields are rewritten more often:
IP ToS, IP-ID, TCP source port and TCP sequence number. This modification
set exactly matches NATs rewriting behavior.

IP ToS rewriting can either come from routers using its DiffServCodePoints
(DSCP) sub-field to mark packets for differentiated services, or modifying the
last two Explicit Congestion Notification (ECN) bits. The latter modification
can either be the action of legacy routers trying to modify the legacy 8-bits ToS

#13 #14 #15 #16 #170

1

2

3

4

5

6
C

ro
ss

ed
 d

ev
ic

es
 (%

)
WiFi
Cellular
Total

(a) Modification rates

Label TCP option

13 TCP::Option MSS
14 TCP::Option WS
15 TCP::Option Timestamp
16 TCP::Option SACK
17 TCP::Option MPTCP

(b) Legend

Fig. 7. Observed middlebox modification in TCP options

field instead of the 6-bits DSCP field, unintentionally modifying ECN-related
bits, or a systematic clearance of ECN bits [14].

In several operating systems, IP-ID fields of self-forged packets are filled with
the value of a globally-incremented packet counter, which is known to be a side-
channel leaking information about other connections [15]. Security consequences
when endpoints use such a counter to write IP-ID have been discussed multiple
times and involves enabling attackers to perform idle scan attacks, NATted hosts
counting, facilitating TCP injections and more [16–19], but consequences when it
is performed by middleboxes for either self-forged or certain non self-forged pack-
ets have been less discussed. One of the most harmful known exploitation of mid-
dleboxes using a globally-incremented IP-ID is when it is combined with TCP
window-checking, as it enables attackers to gain feedback on in-window/out-of-
window packets to infer the TCP sequence number, and perform off-path TCP
injections [18, 20, 21].

Source port modification is a common practice of Carrier-Grade NATs (CGNs),
which makes it difficult for traffic intended for machines located behind it to pass
through (e.g., active FTP). However, solutions to this problem have been pro-
posed [22]. TCP ports modification by middleboxes also makes it difficult to
achieve transport layer security (e.g., IPSEC) [23].

TCP sequence number modification is mostly due to initial sequence number
(ISN) re-shuffling middlebox policies, which aim at mitigating ISN prediction
attacks [10]. Such policies are known to create inconsistencies with TCP options
using absolute sequence numbers such as Selective ACKnowledgement (SACK),
and to reduce substantially the maximum achievable bandwidth [24, 25].

TCP Options modifications are shown in Fig. 7. We witnessed multiple mid-
dleboxes rewriting the MSS in cellular networks to 1,392 bytes, which is probably

Case Samsung Galaxy SII Arnova 10d G3

Memory 10.8Mb 6.45Mb
CPU (app) < 1 % < 1 %
CPU (instant probe) 12.5 % 12.5%

Table 1. Observed Memory and CPU consumption.

designed to obtain packets of 1,500 bytes taking into account the sizes of the
desired headers. Among the other options, MultiPathTCP have been cleared by
some middleboxes to forbid its use, and is also prone to be blocked by middle-
boxes that are not familiar with it [25]. WindowScale have been modified by a
few middleboxes to custom values, probably for network performance optimiza-
tion purposes. WindowScale is also known to cause connectivity problems with
certain firewalls that do not implement it as defined in RFC1323 [26, 27].

Overall, we showed that TraceboxAndroid can be used efficiently for deducing
certain network disruption causes from inferred middlebox policies. This can be
useful to users for fast on-demand troubleshooting purposes, for researchers that
could analyze the collected dataset to get insights such as the permeability of a
TCP option, and for network managers to understand what is really happening
to packets crossing their networks.

4.3 Impact on Mobile Devices

To test the impact of the use of TraceboxAndroid on mobile phones, we used
the Android Monitoring tool [28]. In more than 99% of the cases, a Background
Probing session with 10 destinations consumes less than one percent of battery.
The same probing session never sent more than 165Kb of data, including the
XML result file sent to the back office. We also did CPU and memory con-
sumption measurements whose results are shown in Table 1. The experiments
were made on a Samsung Galaxy SII (1,4Ghz, 1GB RAM, Android 4.3) and a
Arnova 10d G3 (1,2Ghz, 1GB RAM, Android 4.1.1). Clearly, TraceboxAndroid
is lightweight for mobile devices.

5 Related Work

Since the end of the nineties, the Internet topology discovery has been ex-
tensively studied [29]. In particular, traceroute has been used for revealing
IP interfaces along the path between a source and a destination. Since then,
traceroute has been extended in order to mitigate its intrinsic limitations.
From simple extensions (i.e., the types of probes sent [30]) to much more devel-
oped modifications. For instance, traceroute has been improved to face load
balancing [31] or the reverse path [32]. Its probing speed and efficiency has also
been investigated [33, 34].

Medina et al. [24] report one of the first detailed analysis of the interac-
tions between transport protocols and middleboxes. They rely on active probing
with tbit and contact various web servers to detect whether Explicit Conges-
tion Notification (ECN), IP options, and TCP options can be safely used. The
TCPExposure software developed by Honda et al. [9] is closest to tracebox. It
also uses specially crafted packets to test for middlebox interference. Wang et
al. [8] analyzed the impact of middleboxes in hundreds of cellular networks. This
study revealed various types of packet modifications. More recently, Craven et
al. [35] proposed TCP HICCUPS to reveal packet header manipulation to both
endpoints of a TCP connection. HICCUPS works by hashing a packet header
and by spreading the resulting hash into three fields (in case one is changed).
Finally, Xu et al. [36] analyzed the behavior of proxies deployed by four major
US cellular carriers. They looked at the HTTP traffic between their clients and
their own server. They exhibited mostly application-level proxy features such as
caching, HTTP redirection, image transcoding and connection persistence, and
quantified their effectiveness.

These tools provide great results, but they are limited to specific paths as
both ends of the path must be under control or must implement particular
techniques in the TCP/IP stack and, except for Wang et al. and Xu et al.,
are not dedicated to mobile devices. On the contrary, TraceboxAndroid does
not require any cooperation with the service and only the source must install
TraceboxAndroid. It allows one to detect middleboxes on any path, i.e., between
a source and any destination.

6 Conclusion

In this paper, we introduced TraceboxAndroid, a tracebox port under the
Android system, allowing so the user to detect the presence of a middlebox that
could be the cause of degraded performance on a path. We showed the extent of
TraceboxAndroid capabilities for detection and location of middleboxes rewriting
IP and TCP headers fields and TCP options as well as for AS path analysis and
traceroute-like path displaying.

The main limitation of TraceboxAndroid is the impossibility to forge net-
work and transport headers and read ICMP control messages in non-rooted
environments. We need raw sockets to achieve this and their use is restricted to
users that can grant the CAP_NET_RAW POSIX capability (i.e., super users). As a
workaround, we chose to develop a proof-of-concept app for rooted devices only
and call the TraceboxAndroid BusyBox implementation from the JAVA app as
a super user, but this requirement is inappropriate for large-scale deployment
because it involves a loss of warranty and risks of system instabilities, among
others [37]. Note that this limit has already been discussed in the literature [5].

The dataset sample that we analyze in this paper is fairly limited and does
not provide particular insight of middleboxes in mobile networks. However, we
believe this dataset is enough to describe the potentialities of TraceboxAndroid.

In the near future, we would like to improve TraceboxAndroid. For instance,
we would like to extend the Custom Probing mechanism to allow the user to
select more IP fields, TCP fields, and TCP options to check and to choose the
probe transport layer between TCP and UDP. We also plan to support additional
TCP options, such as the TCP Authentication Option (TCP-AO) [38] or the
TCP Alternate Checksum Request [39]. Additionally, we would like to improve
the user experience by displaying more information and statistics (RTTs, values
of modified fields, crossed ASs, etc.) within the application itself.

Another interesting improvement would be to implement middlebox TCP
option blocking inference. Mobile devices could send multiple probes with differ-
ent TCP options combinations to infer middlebox blocking behavior and find if
in-path middleboxes are forbidding the use of certain option. This would allow
user to perform more complete on-demand connectivity tests and the research
community would benefit from the compiled results dataset.

References

1. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@home:
An experiment in public-resource computing. Communications of the ACM 45(11)
(November 2002) 56–61 See http://setiathome.berkeley.edu/.

2. Shavitt, Y., Shir, E.: DIMES: Let the internet measure itself. ACM SIGCOMM
Computer Communication Review 35(5) (October 2005) 71–74 See http://www.

netdimes.org.
3. Chen, K., Choffnes, D., Potharaju, R., Chen, Y., Bustamante, F., Pei, D., Zhao,

Y.: Where the sidewalk ends: Extending the Internet AS graph using traceroutes
from P2P users. In: Proc. ACM SIGCOM CoNEXT. (December 2009)

4. Rivera, J., Van Der Meulen, R.: Forecast: Devices by operating system and user
type, worldwide, 2010–2017. Technical Report 1Q13 Update, Garnter Inc. (April
2013) See http://www.gartner.com/resId=2396815.

5. Faggiani, A., Gregori, E., Lenzini, L., Mainardi, S., Vecchio, A.: On the feasibility
of measurement the Internet through smartphone-based crowdsourcing. In: Proc.
IEEE International Symposium on Modeling and Optimization in Mobile, Ad-Hoc
and Wireless Networks (WiOpt). (May 2012)

6. Carpenter, B., Brim, S.: Middleboxes: Taxonomy and issues. RFC 3234, Internet
Engineering Task Force (February 2002)

7. Sherry, J., Hasan, S., Scott, C., Krishnamurthy, A., Ratnasamy, S., Sekar, V.:
Making middleboxes someone else’s problem: Network processing as a cloud service.
In: Proc. ACM SIGCOMM. (August 2012)

8. Wang, Z., Qian, Z., Xu, Q., Mao, Z., Zhang, M.: An untold story of middleboxes
in cellular networks. In: Proc. ACM SIGCOMM. (August 2011)

9. Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A., Handley, M., Tokuda, H.: Is
it still possible to extend TCP. In: Proc. ACM/USENIX Internet Measurement
Conference (IMC). (November 2011)

10. Detal, G., Hesmans, B., Bonaventure, O., Vanaubel, Y., Donnet, B.: Revealing
middlebox interference with tracebox. In: Proc. ACM/USENIX Internet Measure-
ment Conference (IMC). (October 2013)

11. Baker, F.: Requirements for IP version. RFC 1812, Internet Engineering Task
Force (June 1995)

12. Postel, J.: Internet control message protocol. RFC 792, Internet Engineering Task
Force (September 1981)

13. Vlasenko, D.: BusyBox: the swiss army knife of embedded Linux http://www.

busybox.net.
14. Kühlwind, M., Neuner, S., Trammell, B.: On the state of ECN and TCP options on

the Internet. In: Proc. Passive and Activement Measurement Conference (PAM).
(March 2013)

15. Gilad, Y., Herzberg, A.: Spying in the dark: TCP and tor traffic analysis. In: Proc.
12th International Conference on Privacy Enhancing Technologies (PETS). (July
2012)

16. Bellovin, S.M.: A technique for counting NATed hosts. In: Proc. ACM SIGCOMM
Internet Measurement Workshop (IMW). (November 2002)

17. Zalewski, M.: Silence on the Wire: a Field Guide to Passive Reconnaissance and
Indirect Attacks. No Starch Press (2005)

18. Gilad, Y., Herzberg, A.: Off-path attacking the web. In: Proc. 6th USENIX
Workshop on Offensive Technologies (WOOT). (August 2012)

19. West, M., McCann, S.: TCP/IP field behavior. RFC 4413, Internet Engineering
Task Force (March 2006)

20. Qian, Z., Mao, Z.M.: Off-path TCP sequence number inference aattack - how
firewall middleboxes reduce security. In: Proc. IEEE Symposium on Security and
Privacy (SP). (May 2012)

21. Qian, Z., Mao, Z.M., Xie, Y.: Collaborative TCP sequence number inference attack:
How to crack sequence number under a second. In: Proc. ACM Conference on
Computer and Communications Security (CCS). (October 2012)

22. Wing, D., Cheshire, S., Boucadair, M., Penno, R.: Port control protocol (PCP).
RFC 6887, Internet Engineering Task Force (April 2013)

23. Aboba, B., Dixon, W.: IPsec-network address translation (NAT) compatibility
requirements. RFC 3715, Internet Engineering Task Force (March 2004)

24. Medina, A., Allman, M., Floyd, S.: Measuring interactions between transport
protocols and middleboxes. In: Proc. ACM SIGCOMM Internet Measurement
Conference (IMC). (October 2004)

25. Hesmans, B., Duchene, F., Paasch, C., Detal, G., Bonaventure, O.: Are TCP
extensions middlebox-proof? In: Proc. Workshop on Hot Topics in Middleboxes
and Network Function Virtualization. (December 2013)

26. Jacobson, V., Braden, R., Borman, D., Satyanarayan, M., Kistler, J.J., Mummert,
L.B., Ebling, M.: TCP extension for high performance. RFC 1323, Internet Engi-
neering Task Force (May 1992)

27. Microsoft: Network connectivity fails when you try to use Windows Vista behind
a firewall device. Technical report, Microsoft (2012) http://support.microsoft.

com/kb/934430.
28. Android Developers: Device monitor See http://developer.android.com/tools/

help/monitor.html.
29. Donnet, B., Friedman, T.: Internet topology discovery: a survey. IEEE Commu-

nications Surveys and Tutorials 9(4) (December 2007)
30. Luckie, M., Hyun, Y., Huffaker, B.: Traceroute probe methode and forward IP

path inference. In: ACM SIGCOMM Internet Measurement Conference (IMC).
(October 2008)

31. Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., Friedman, T., Latapy, M.,
Magnien, C., Teixeira, R.: Avoiding traceroute anomalies with Paris traceroute.
In: Proc. ACM/USENIX Internet Measurement Conference (IMC). (October 2006)

32. Katz-Bassett, E., Madhyastha, H., Adhikari, V., Scott, C., Sherry, J., van Wesep,
P., Krishnamurthy, A., Anderson, T.: Reverse traceroute. In: Proc. USENIX
Symposium on Networked Systems Design and Implementations (NSDI). (June
2010)

33. Donnet, B., Raoult, P., Friedman, T., Crovella, M.: Efficient algorithms for large-
scale topology discovery. In: Proc. ACM SIGMETRICS. (June 2005)

34. Beverly, R., Berger, A., Xie, G.: Primitives for active Internet topology mapping:
Toward high-frequency characterization. In: Proc. ACM/USENIX Internet Mea-
surement Conference (IMC). (November 2010)

35. Craven, R., Beverly, R., Allman, M.: Middlebox-cooperative TCP for a non end-
to-end Internet. In: Proc. ACM SIGCOMM. (August 2014)

36. Xu, X., Jiang, Y., Flach, T., Katz-Bassett, e., Choffnes, D., Govindan, R.: Investi-
gating transparent web proxies in cellular networks. In: Proc. Passive and Active
Measurement Conference (PAM). (March 2015)

37. Kingo: Warranty disclaimer (2014) See http://www.kingoapp.com/

root-disclaimer.htm.
38. Touch, J., Mankin, A., Bonica, R.: The TCP authentication option. RFC 5925,

Internet Engineering Task Force (June 2010)
39. Zweig, J., Partridge, C.: TCP alternate checksum options. RFC 1145, Internet

Engineering Task Force (February 1990)

