
HAL Id: hal-01405662
https://inria.hal.science/hal-01405662

Submitted on 30 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Proposal of Algorithm for Web Applications Cyber
Attack Detection

Rafal Kozik, Michal Choraś, Rafal Renk, Witold Holubowicz

To cite this version:
Rafal Kozik, Michal Choraś, Rafal Renk, Witold Holubowicz. A Proposal of Algorithm for Web
Applications Cyber Attack Detection. 13th IFIP International Conference on Computer Information
Systems and Industrial Management (CISIM), Nov 2014, Ho Chi Minh City, Vietnam. pp.680-687,
�10.1007/978-3-662-45237-0_61�. �hal-01405662�

https://inria.hal.science/hal-01405662
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A proposal of algorithm for web applications
cyber attack detection

Rafa l Kozik1,2, Micha l Choraś1,2, Rafa l Renk1,3, Witold Ho lubowicz2,3

1 ITTI Ltd., Poznań, Poland mchoras@itti.com.pl
2 Institute of Telecommunications, UT&LS Bydgoszcz, Poland

rafal.kozik@utp.edu.pl
3 Adam Mickiewicz University, UAM, Poznan, Poland renk@amu.edu.pl

Abstract. Injection attacks (e.g. XSS or SQL) are ranked at the first
place in world-wide lists (e.g. MITRE and OWASP). These types of at-
tacks can be easily obfuscated. Therefore it is difficult or even impossible
to provide a reliable signature for firewalls that will detect such attacks.
In this paper, we have proposed an innovative method for modelling the
normal behaviour of web applications. The model is based on informa-
tion obtained from HTTP requests generated by a client to a web server.
We have evaluated our method on CSIC 2010 HTTP Dataset achieving
satisfactory results.

Keywords: web attacks detection, web applications firewall, machine
learning, data mining

1 Introduction

Currently, providing effective cyber-security solutions for web applications is
very challenging. This happens due to the fact that the commonly used IDS
(Intrusion Detection System) and IPS (Intrusion Prevention System) systems
have problems in recognising new attacks (0-day exploits), since these systems
are based on the signature-based approach. In such a mode, when the system
does not have an attack signature in its database, such attack is not detected.
Therefore, there is a need to develop more sophisticated methods that are both
capable of adapting domain expert knowledge [1][2] as well as emerging cyber
security solutions (e.g. event correlation [3] and data mining).

The list of top 10 most critical risks related to web applications security,
provided by OWASP (Open Web Application Security Project [4]) indicates
”Injection” vulnerabilities as the major vulnerability. The Injection flaws, such as
SQL, OS, and LDAP injection occur when improperly validated data containing
malicious code is sent to an interpreter as part of a command or query.

According to the OWASP ranking, the second on the list are attacks related
to Broken Authentication and Session Management. Incorrectly implemented au-
thentication usually allows attackers to compromise passwords, keys, or session
tokens, or to exploit other implementation flaws to assume other users identities.



2 Rafa l Kozik, Micha l Choraś, Rafa l Renk, Witold Ho lubowicz

Fig. 1. The 2013 vs. 2012 and 2011 Web Application Vulnerabilities Trends(source [5])

According to Application Vulnerability Trends Report [5] the session manage-
ment and authorization vulnerabilities are one of the most frequently identified
problems during the last three years (2010-2013).

The XSS (Cross Site Scripting) take the third place on the OWASP list. The
XSS flaws occur whenever an application takes untrusted data and sends it to
a web browser without a proper validation or escaping. XSS allows attackers to
execute scripts in the victim’s browser which can hijack user sessions, deface web
sites, or redirect the user to malicious sites.

Therefore, in order to counter those top ranked problems,in this paper we
have proposed an innovative method for modelling the normal behaviour of web
application. The model is based on information obtained from HTTP requests
generated by client to a web server.

The remainder of this paper is structured as follows. First, we give an overview
of methods for we application attacks detection. Next, the detailed method de-
scription is presented. The experiments set-ups as well as the results are pre-
sented in following section. Conclusions are given thereafter.

2 Overview of methods for web application attacks
detection

There are several tools and methods for detecting the cyber attacks targeting
web applications.

Some of the frequently used tools use static code analysis approaches in order
to find the vulnerabilities that may be exploited by any cyber attack. Some
examples of such tools include PhpMiner II [6], STRANGER [7], AMNESIA
[8]. However, as it is stated in [9], the difficulty relates to the fact that many



A proposal of algorithm for web applications cyber attack detection 3

kinds of security vulnerabilities are hard to find automatically (e.g. access control
issues, authentication problems). Therefore, currently such tools are only able
to automatically find a relatively small fraction of application security flaws.

One of the most commonly used and popular class of tools for web application
cyber attacks detection adapts signature-based approach to describe (and detect)
cyber attacks. Some examples include PHP-IDS [10], SCALP [11], Snort [12].
The biggest advantage of such tools is their ability to process huge amounts of
data. This is due to the fact that there are efficient algorithms that are able to
check a given piece of text against a pattern (usually expressed as PCRE [13]
regular expressions) in a short time. However, the common drawback is that
an expert knowledge is required to build such patters describing cyber attack.
Moreover, such attacks like SQL injection are easy to obfuscate (e.g. using URL
encoding). This makes the problem of providing a reliable pattern of an attack
very difficult.

3 Proposed method overview

The proposed method overview is shown in Fig.2. It adapts a machine-learning
paradigm, therefore two distinct phases are presented on the diagram. During
the learning phase, the labelled data is required in order to establish the model
parameters of normal application behaviour. As mentioned before, only HTTP
request headers are used for model training and these need to be labelled as
either normal or anomalous.

As it is shown in Fig.2 A, the HTTP requests need to be parsed in order to
extract significant parts. In this approach, first the URL (e.g. https://host/users)
is extracted and concatenated with the HTTP method name (e.g. GET, POST,
PUT, etc.). Those two parameters are used to create a key (address) to entry
in hashmap. During the learning phase, the hashmap is populated only with
a normal (legitimate) HTTP request. This allows us to build a whitelist of re-
sources that are usually requested by users via HTTP protocol. Whenever the
HTTP request has parameters (e.g. parameter1=value1&parameter2=value2),
it is encoded using the method described in section 3.1. However, the method
produces vectors that are of different length. Therefore, to make it possible to
learn a classifier, we transform this vector to histograms of constant length. The
final feature vector is extended with information whenever a given request is on
the whitelist or not.

During the testing phase (or when the algorithm operates in a production
environment), the key is established using the same procedure as before (URL
is concatenated with the HTTP method). If the HTTP request contains the
parameters, it is encoded in order to produce the feature vector that is extended
with information whenever a given request is on the whitelist or not. Such feature
vector is recognized as normal or anomalous with the classifier learnt before.



4 Rafa l Kozik, Micha l Choraś, Rafa l Renk, Witold Ho lubowicz

Fig. 2. The proposed algorithm (A indicates learning phase, while B indicates test-
ing/classification phase)

3.1 Encoding HTTP parameters

In order to encode the HTTP parameters as a feature vector, we use dictionary
D that maps parts of text to a set of natural numbers (see equation (1)).

D : word→ {i : i ∈ N} (1)

The dictionary is established on a learning set using the algorithm (1) that
adapts a modification of LZW compression method (Lempel-Ziv-Welch [14]). In
contrast to the original LZW method we first establish the dictionary D during
the learning phase and then encode the text (we do not extend the dictionary
further when the method operates in the production environment).

The algorithm scans through the input request parameters S for successively
longer substrings until it finds one that is not in the dictionary. If a given sub-
string in not in the dictionary, then it is added and the whole procedure is
repeated until the whole learning data set is processed.



A proposal of algorithm for web applications cyber attack detection 5

Data: Set of HTTP request parameters S
Result: Dictionary D
s = empty string
while there is still data to be read in S do

ch ← read a character;
if (s + ch) ∈ D then

s ← s+ch;
else

D ← D ∪ (s + ch);
s← ch;

end

end
Algorithm 1: Algorithm for establishing dictionary D

Once the dictionary D is established, the HTTP request parameters are
encoded. The algorithm scans again through the input request parameters S for
successively longer substrings until it finds one that is not in the dictionary. The
longest substring is encoded with the natural number that indicates its position
in the dictionary D. The procedure is described by algorithm (2).

Data: Set of HTTP request parameters S, dictionary D
Result: Vector V of natural numbers
s = empty string
while there is still data to be read in S do

ch ← read a character;
V ← 0 ;
if (s + ch) ∈ D then

s ← s+ch;
else

V ← V ∪D(s);
s← ch;

end

end
Algorithm 2: Algorithm for encoding text with dictionary D

4 Experimental set-up

For the experiment the CSIC’10 dataset [15] was used. It contains several thou-
sands of HTTP protocol requests which are organised in a form similar to Apache
Access Log. The dataset was developed at the Information Security Institute of
CSIC (Spanish Research National Council) and it contains the generated traf-
fic targeted to an e-Commerce web application. For convenience the data was
split into anomalous, training, and normal sets. There are over 36000 normal
and 25000 anomalous requests. The anomalous requests refer to a wide range
of application layer attacks, such as: SQL injection, buffer overflow, information
gathering, files disclosure, CRLF injection, XSS, and parameter tampering.



6 Rafa l Kozik, Micha l Choraś, Rafa l Renk, Witold Ho lubowicz

Moreover, the requests targeting hidden (or unavailable) resources are also
considered as anomalies. Some examples from this group of anomalies include
client requests for: configuration files, default files or session ID in URL (symp-
toms of HTTP session take over attempt). What is more, the requests not having
the appropriate format (e.g. telephone number composed of letters) are also con-
sidered anomalous. As the authors of the dataset explained, such requests may
not have a malicious intention, but they do not follow the normal behaviour of
the web application.

According to the authors knowledge, there is no other publicly available
dataset for the web attack detection problem. The datasets like DARPA or
KDD’99 are outdated and do not cover many of the current attacks.

5 Results

For evaluation purposes we have adapted the 10-fold cross-validation technique.
For that approach, the data obtained for learning and evaluation purposes is

divided randomly into 10 parts (sets). For each part it is intended to preserve
the proportions of labels (number of anomalies and normal feature vectors) in
the full dataset. One part (10% of full dataset) is used for evaluation while the
remaining 90% is used for training (e.g. establishing model parameters).

When the classifier is learnt the evaluation data set is used to calculate the
error rates. The whole procedure is repeated 10 times, so each time different
part is used for evaluation and different part of data set is used for training.

The result for all 10 runs (10-folds) are averaged to yield an overall error
estimate.

In these experiments we have evaluated such classifiers as: J48, PART, Ad-
aBoost, and NaiveBayes.

Table 1. Effectiveness for CSIC 2010 HTTP Dataset.

Detection Rate (True Positives) False Positive Rate

Nguyen et al. [16] 93.65% 6.9%

NaiveBayes 88.89% 6.26%
AdaBoost 83.23% 15.45%

PART 93.35% 2.79%
J48 95.97% 3.54%

In Tab.1, a comparison of different classifiers is presented. Moreover, we re-
ported the effectiveness of our method using as a baseline the approach proposed
by Nguyen et al. in [16] (the authors of CSIC 2010 HTTP Dataset).

The ROC curve for different classifiers has been presented in Fig.3. It was
generated with the WEKA tool [17], which varies the threshold on the class
probability estimates. The best results have been observed for J48 tree classifier.
It was possible to achieve a better detection rate while having lower false positive



A proposal of algorithm for web applications cyber attack detection 7

0 2 4 6 8 10

0
20

40
60

80
10

0

False Positive Rate [%]

Tr
ue

 P
os

iti
ve

 R
at

e 
[%

]

J48

PART

NaiveBayes

AdaBoost

Fig. 3. ROC curve for different classifiers.

rate in comparison to the method proposed by Nguyen et al. in [16]. Additional,
we have used t-test to evaluate the statistical significance of the obtained results.
Test showed that the results are statistically significant at 0.95 level.

6 Conclusions

In this paper we have proposed an innovative method for detecting current cyber
attacks targeting web applications.

We have particularly focused on solutions that are using HTTP protocol to
communicate clients with the servers. We have shown that recent cyber incidents
reports prove that there is an increasing number of attacks targeting these web-
based applications.

The analysis show that the attacks exploiting injection vulnerabilities are
still one of the most dangerous and frequently reported by institutions gathering
statistics about the network incidents.

The proposed algorithm for detecting the cyber attacks targeting the web
applications relies on fact that it is more effective to model normal behaviour of
an application (observing the HTTP traffic) than to produce the reliable attack
signature.

We have evaluated the proposed method using CSIC 2010 HTTP Dataset.
The experiments have shown that the proposed method achieves satisfactory
results. Moreover, we have compared our method with method proposed by



8 Rafa l Kozik, Micha l Choraś, Rafa l Renk, Witold Ho lubowicz

CSIC Dataset authors. We report that our method that it is able to achieve the
higher detection rate while having lower false positive rate.

References

1. Choraś M., Kozik R., Flizikowski A., Holubowicz W., Ontology Applied in Decision
Support System for Critical Infrastructures Protection, In N. Garcia-Pedrajas et al.
(Eds.): Trends in Applied Intelligent Systems, IEA/AIE 2010, Part I, LNAI 6096,
pp. 671-680, 2010.

2. Choraś M., Kozik R., Piotrowski R., Brzostek J., Holubowicz W., Network Events
Correlation for Federated Networks Protection System, In: Abramowicz W. et al.
(Eds.): Towards a Service-Based Internet, LNCS 6994, pp. 100-111, Springer 2011

3. Choraś M., Kozik R., Network Event Correlation and Semantic Reasoning for Feder-
ated Networks Protection System, In Chaki N. et al. (Eds.): Computer Information
Systems - Analysis and Technologies, Communications in Computer and Informa-
tion Science CCIS, 48-54, Springer, 2011.

4. OWASP Top 10 2010, The Ten Most Critical Web Application Security Risks. (2010)
5. Application Vulnerability Trends Report http://www.cenzic.com/downloads/

Cenzic_Vulnerability_Report_2014.pdf

6. Shar, LwinKhin, and HeeBengKuan Tan. ”Predicting common web application vul-
nerabilities from input validation and sanitization code patterns.” Automated Soft-
ware Engineering (ASE), 2012 Proceedings of the 27th IEEE/ACM International
Conference on. IEEE, 2012

7. Yu, Fang, MuathAlkhalaf, and TevfikBultan. ”Stranger: An automata-based string
analysis tool for PHP.” Tools and Algorithms for the Construction and Analysis of
Systems. Springer Berlin Heidelberg, 2010

8. Halfond, William GJ, and Alessandro Orso. ”AMNESIA: analysis and monitoring
for NEutralizing SQL-injection attacks.” Proceedings of the 20th IEEE/ACM in-
ternational Conference on Automated software engineering. ACM, 2005.

9. Source Code Analysis Tools. https://www.owasp.org/index.php/Source_Code_

Analysis_Tools

10. PHP-IDS project homepage. https://phpids.org/
11. Apache Scalp Project homepage. http://code.google.com/p/apache-scalp/
12. Snort project homepage. http://www.snort.org/
13. Perl-compatible regular expressions (pcre) http://www.pcre.org

14. LZW algorithm. http://en.wikipedia.org/wiki/LempelZivWelch
15. CSIC 2010 HTTP Dataset. http://users.aber.ac.uk/pds7/csic_dataset/

csic2010http.html

16. Nguyen H., Torrano-Gimenez C., lvarez G., Petrovic S., Franke K. Application of
the Generic Feature Selection Measure in Detection of Web Attacks. In Proc. of
International Workshop in Computational Intelligence in Security for Information
Systems (CISIS 11 ), LNCS 6694, pp. 25-32, 2011.

17. WEKA tool. ROC curve generation. http://weka.wikispaces.com/ROC+curves


