
HAL Id: hal-01405606
https://inria.hal.science/hal-01405606

Submitted on 30 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Agent-Based Context Management for Service-Oriented
Environments

Adrija Bhattacharya, Avirup Das, Sankhayan Choudhury, Nabendu Chaki

To cite this version:
Adrija Bhattacharya, Avirup Das, Sankhayan Choudhury, Nabendu Chaki. Agent-Based Context
Management for Service-Oriented Environments. 13th IFIP International Conference on Computer
Information Systems and Industrial Management (CISIM), Nov 2014, Ho Chi Minh City, Vietnam.
pp.363-374, �10.1007/978-3-662-45237-0_34�. �hal-01405606�

https://inria.hal.science/hal-01405606
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Agent-Based Context Management for Service-Oriented
Environments

Adrija Bhattacharya, Avirup Das, Sankhayan Choudhury, Nabendu Chaki

University of Calcutta, India
adrija.bhattacharya@gmail.com, avirup0310@gmail.com,

sankhayan@gmail.com, nabendu@ieee.org

Abstract. Context is an important aspect towards service discovery and selec-
tion. It is represented by a set of quality parameters. Any change in value of any
one of the context parameter’s (CP) changes the entire context. Relevance of
the discovered services is often measured by similarity between service context
and user’s context. If these two does not match for a particular user’s query;
then corresponding services cannot be invoked or even if invoked, would per-
form poor. This paper proposes a novel context management framework. This
holds the context information within a domain in a structured way such that the
service discovery mechanism works faster as well as yields better result in
terms of relevance of services specific to the queries from user. Autonomy,
reactivity, and veracity properties of an agent help in achieving improved dy-
namics for the proposed framework. Implementation of the concepts and a
comparative study is also reported. The proposed framework performs well
with respect to search time, population size as well as varieties of queries.

Keywords: context, service discovery, agent programming, search time

1 Introduction

 Context plays a very important role in service engineering. The relevance of discov-
ered services is highly dependent on the context from which the service is being
searched. Context is described as collection of some parameters {Context Parameter
(CP)}, either qualitative or behavioral parameters, and their specific values. The con-
text of a service actually answers some ‘wh’ questions (Who, Where, Which, etc) and
also hold some additional information. In this paper, each context is described as a
tuple that represents a specific instance of those parameters. Any change in any of the
parameter values indicates the change of context. There are two types of contexts;
service context and user’s context. Service context is declared at the time of service
creation. It is included within the description of services and generally static in nature.
In other words, the services have fixed answers with respect to the ‘wh’ questions. A
single service can have multiple service contexts; i.e., that service can be invoked in
multiple specified contexts. Similarly, user’s context is about the circumstance under

mailto:adrija.bhattacharya@gmail.com�
mailto:sankhayan@gmail.com�
mailto:nabendu@ieee.org�

which the user queried or the services would be consumed. User context may be dy-
namic in nature. However, at a single point of time same service can satisfy multiple
user queries with different context requirements.

A service can only be invoked if its service context matches the user’s context of
the query. Alternatively a service’s performance varies over the different user con-
texts. Thus, to serve users more efficiently (by returning more relevant set of servic-
es), there is a need of new context management system. The importance of the system
is both in terms of speed of searching and relevance of search results.

There has been some works [8, 9 and 10] that aim to grab the user’s context and
match with service context. In [8] EASY has been proposed which considers only
QoS (Quality of Service) parameters as key factor to judge at the time of service dis-
covery and selection. This is held incomplete in the sense of searching more appropri-
ate service according to user’s context. The context has more parameters compared to
only quality parameters. A graph matching based context aware system is also devel-
oped in [9] that use non functional information to match service and user’s context by
developing concept graph and their matching. These two methods neither consider all
service contexts that can be queried for, nor these methods can identify relations
among contexts that could be used further to make searching better. In [10], services
are structured by hyperspace analogue to context (HAC) information for identifying
the changes in user context and adapt accordingly. This method also failed to consider
all valid service context and according user context. This approach [10] is also very
application-specific, where changes in contexts are more emphasized.

Agent is an entity which has the property of autonomy, social adeptness, reactivity,
pro-activity, mobility and learning capability [1]. An agent perceives from the envi-
ronment and act on the environment autonomously as well as independently. Sensing
(i.e. perceiving some information from the environment), Reasoning (after perceiving,
the reasoning ability of agent takes decisions) and Action (is about actions on the
environment to interact autonomously) are basic features of agent[2]. An agent senses
its environments by its sensor. Sensors basically collect information in any form from
the environment. An agent determines the current state of the environment based on
sensor provided information and takes decision about suitable actions by the reason-
ing ability. The environment from the perspective of an agent changes continuously.
Even the environment may change within the running time of an agent. However, an
intelligent agent must have the flexibility to interact with the environment at run time
also [3, 4]. Agents can form a community and interoperability among the members of
the community leads to achieve a collective goal.

In this paper, a novel framework is proposed for efficient context management and
service provisioning. This framework contains a model in the form of a hierarchical
structure with some special properties for holding context information. Autonomous
feature and the reasoning ability of an agent is exploited and used in the framework
for service discovery. Agents generally communicate among them by message pass-
ing. This feature helps in finding appropriate matches according to user query by
method of backtracking. Sharing of each combination’s information within the hierar-
chical structure at run time is actually needed. Thus, the adaptability feature of agent
is also needed in the proposed hierarchical model implementation.

Theory behind the hierarchical structure is discussed in brief in section 2 of this
work for the sake of completeness. Section 3 presents a comparative study on agent
based architectures. An emphasis is given to justify the selection of BDI (Belief-
Desire-Intention architecture) for agent based implementation of the framework dis-
cussed in section 2. Section 4 describes the detailed implementation. Section 5 illu-
strates the performance and finally section 6 concludes.

2 Proposed Framework for Context Management

In this section we will discuss the proposed mechanism for context management in
brief. The motivation behind the research work is discussed in previous section. The
framework consists of a model that is nothing but a hierarchical structure. The
framework consists of multiple levels. It holds the contexts information in a structured
way. Each level contains multiple ‘context-node’. Each node may have one or more
parents adjacent to the next level. It helps in searching the all options across the le-
vels. Here comes some sense of hierarchy with respect to contexts. Services within a
closed domain can be arranged according to their described context within the unique
structure.

Fig. 1. Hierarchical Context Structure

At the time of matching user’s context with that of the service; this structure is ex-
plored. This is to note that the structure is constructed previously at design time.
However, it is explored at runtime, i.e., according to user’s query. Figure 1 describes

ABC

AB AC BC

C1

C4 C3 C2

C5 C6 C7

A B C Level 0.5

Level 1

Level 1.5

Level 2

 Level 2.5

Level 3

OR

AND

OR

AND

OR

the structure for three goal levels (1, 2, and 3) and three intermediate levels (0.5, 1.5,
and 2.5). It can be populated further.
At level-0.5, the contexts are specified by only one context parameter. These nodes
are ORed at level-1. There are 3 context-nodes in level-1 and each node has some
service and their context information integrated at a point. After that level-1.5 con-
tains three nodes that are basically produced by ANDing level 0.5 nodes. Again level-
2 has three context nodes and that are related with the level-1.5 nodes by OR. In each
node the contexts are derived by generating combinations of the level 1.5 nodes. Lev-
el 2.5 again contains one intermediate node that is produced by ANDing level-2
nodes. Similarly, level-3 has by default only one node i.e. produced by ORing with
only one previous level node; this node contains all the common contexts of all pre-
vious nodes. This way each level of the hierarchical structure is developed.

The offline formed hierarchical structure is searched based on the context informa-
tion present in the users query online. Thus the structure of the services formed ac-
cording to service context information, must be able to match service and user con-
texts in lesser time. The goal contexts are only at levels (1, 2 and 3). In figure
1context goals are defined by C1 to C7.The efficiency of the service hierarchical
structure is that the valid service contexts are readily available in the structure and the
hierarchy between consecutive level nodes provisions for switching among levels in
case of context mismatch. The structure actually helps to decrease search time and
fine tune the search results with various over varying subsets of contexts.

3 Different Agent Architectures

Reactive, Deliberative, BDI are three broad types of classifications of agent based
architectures. Reactive agents only can sense the environment and respond according-
ly. It can be easily modeled by if-then-else [5]. It can be called as a lower level ab-
straction and gives fast response. Deliberative agent architecture consists of delibera-
tive agent sensing the environment and then to decide the next action using logical
reasoning and pattern matching [11]. Actually this act of adaptively is called delibera-
tion and it helps to design complex systems. A very powerful high level abstraction
tool for designing and implementing a complex multi-agent system is BDI. It uses
practical reasoning to achieve its desired goal. There are three different modules with
respect to agents; that are Beliefs, Desires and Intentions. This architecture supports
deliberation with means-end reasoning [7]. Among all of three plans a comparative
study has been made to judge the most suitable architecture for implementing hierar-
chical structure with agent based programming. Table 1 contains the comparisons
among three basic agent architectures.

Table 1 clearly states the superiority of BDI architecture with respect to reactive
and deliberative agent architecture. The most important factor of BDI is that it enables
the multi agent architecture and thus to build a complex structured system like hierar-
chical structure it held indispensible. At each level of the hierarchical structure there
exists an agent. It will not be possible to design with Reactive or Deliberative agent
architecture. The plan selection and execution process of an agent is completely sepa-

rated and independent which makes it time efficient. The need of hierarchical struc-
ture also lies in optimizing the search time that can be possible through BDI. BDI is
an event-driven architecture and maintains an even queue. Thus, the user query and
each combination search are treated as a new event. All valid contexts are generated.

Table 1. Comparative study among popular agent architectures

 Agent
 Architectures

Features… …………………………
Reactive Deliberative BDI

Building Complex System N Y Y
Plan library exists N N Y
Separation between plan selection and execution N N Y
Event-driven N N Y
Simple Communication N N Y
Supports Multi-agent system N N Y
Supports Deliberation N Y Y
Supports Means-end reasoning N N Y
Supports Deliberation & Means-end reasoning N N Y
Dynamically changes intentions N N Y
Multiple desires active simultaneously N N Y
Strong Negation N N Y
Rules N N Y
Failure Handling N N Y
Internal Actions N N Y

Message passing is another essential feature of agents. Through messages an agent

can shares its beliefs, goals and can ask about the situation of another agents which
helps to implement hierarchical structure; as in the hierarchical structure if match at
one level agent fails then it communicate to its previous level agent. BDI architecture
has flexibility to dynamically update its intentions. That helps in implementing the
backtracking in match algorithm in hierarchical structure. Due to the important rule
that enables BDI agents to derive knowledge from existing knowledge, the Search
mechanism is claimed to be efficient enough. There exists a set of BDI languages that
supports different internal actions. All of the external features for construction of
hierarchical structure as well as exploiting the hierarchical structure based on user
query more or less can be mapped by the internal actions of the BDI language actions.

4 Implementation and Mapping to BDI agents

In general, in BDI architecture an agent consist with four data structures i.e. Be-liefs,
Goals, Plans and Intentions. Beliefs are represented the informative part of an agent
that defines what an agent knows about the environment and itself. Goals or desires
are represented the motivational part of an agent. It defines what an agent wants to
achieve. Plans are represented as set of procedural knowledge and decide how an
agent can achieve a desired goal. Each agent has a plan library that stores all the plans
related to different situations. The plan library is consulted for a specific goal and a

set of plan related to the goal is selected. Then the context part of a plan is checked
using some expression evaluation and depending on beliefs. A specific plan among
the selected set is chosen through the necessary matching of the context part of the
plans and it becomes an Intention. If goal is a new arrived goal then the selected in-
tention creates a new intention stack. But for a sub-goal, the selected intention is
pushed at the top of the existing intention stack. Only then the Intention stack is se-
lected and executed. It is an event-driven architecture since it maintains an event
queue. This queue stores events which are perceived from the environment and sub-
goals which are generated by executing another Goal as an event. A plan is
represented as an event with two parts, a context part and the action part. In this par-
ticular agent paradigm the beliefs are basically the constraints of context parameters.
Collectively some beliefs determine a typical context instance. The rest part of an
event is singleton; that is an action or subgoal. It looks like,

 Event: belief1 & belief2 & …. & beliefn ← actions / sub-goals

Using means-end reasoning an agent decides how to achieve a desired goal and the
output of this reasoning are intentions. Here in the implementation of hierarchical
structure by BDI agent based architecture, each goal level of the hierarchical structure
is considered as agents. The information on context of services is stored in service
database. It is mapped into an agent’s beliefs and the user query into a goal of an
agent. There exists a plan library consisting of different service records with context
specifications, based on which the hierarchical structure is constructed offline (i.e., at
design time). Now by means-end reasoning (incorporated within BDI) a most suit-
able step to response the user query is selected. The hierarchical relations among the
different values of the same context parameter (CP) are expressed by derived knowl-
edge of the BDI agents. Such as location parameter can take both the values ‘Kolkata’
and ‘Westbengal’. But there exists a relationship among these two: Kolkata is a city in
west Bengal. Thus, if a service has location context parameter as ‘Westbengal’; it can
be invoked from Kolkata also, but the reverse is not true. Again, it helps in backtrack-
ing at the time of searching services matching the user context in a query. BDI lan-
guages (such as AgentSpeak) give some internal actions like .print, .send, .broadcast
which helps us to manipulate the output and messaging. In this implementation .print
internal function is used to show the output and .send internal function to send a mes-
sage from one agent to another agent and .broadcast internal function sends one mes-
sage to all of the agents at a time.

Construction of the hierarchical structure is done mainly based on the two basic
operations AND and OR. Agents at each level have information about the context
combinations and their details service containment. Each agent is working as a level
of abstraction for whole service data registry. In the implementation of the structure,
all services in the service repository are represented as a belief of the agents. A ser-
vice is represented in the belief base with N+2 fields (i.e. Id of the service, Context
parameter1, Context parameter2, Context parameter3,…, Context parameter N, Func-
tionality of the service) where N is the no. of context parameters as follows:

ID

CP1

CP2

CP3

…

CPn

Functionality

The following sub section illustrates the design details for service hierarchical struc-
ture and search procedures with the help of agent based programming using BDI.
Each goal node of the structure contains the services which have the same context
parameters as the node have. Services in each node are arranged context wise; this
helps in fast context matching and relevant service retrieval.

Fig. 2. Agent architecture and components

4.1 Basic layout of agent based architecture

The proposed framework is implemented with Multi-agent programming. Here de-
fine N+ 1 agent, when the number of context parameters is N. For example, if there
are 3 CPs, then 4 agents are defined to handle the whole structure. For the hierarchical
structure consisting of 3 CPs (A,B and C) the agents with their functions are depicted
in figure 2. Different context parameter combinations generated are A, B, C, AB, AC,
BC, ABC. At level-3 all context parameters are present (ABC) altogether. i.e. in this
level context is defined by three CPs. In level-2, the responsible agent has information
about the nodes in that levee specifies on CP combination. Here context is declared by
two parameters at time. In this level there are three nodes (AB, AC and BC). Similar-
ly at level 1 only (A, B and C) three nodes are there representing corresponding con-
text (specified by one parameter at a time). The following subsection detailed out the
agent’s working algorithms.

4.2 Discussion on algorithm for different agents

The algorithm for manager agent and other level agents are described in this subsec-
tion. In figure 3 the flow chart for a manager agent is described. When a user query
arrives then, at first, the Agent-manager is initialized with the input parameters of the
query. Then number of context parameters was declared as variable N. In case of
searching at level N, the corresponding agent algorithm differs and becomes complex.
An agent at Level N executes for user requested services at that level only. As shown

Find (A or
B or C)

Finish

Manager

Level 3
Find (A & B & C)

Level 2
Find (AB or
BC or AC)

Finish

Level 1 Finish

Level 3 Fails

in figure 2, if it fails then the search procedure is routed towards the next lower leve
and so on. Similarly in figure 3 the flow of information and how it is all managed by
manager agent is described.

In the manager algorithm, at first each of the CPs supplied by user’s query is
checked. The algorithm goes forward for only the valid CPs. After that the manager
agent routes the search to appropriate level agent depending on the number of para-
meters specified in the query.

Fig. 3. Algorithm for Manager Agent

When the manager agent routes to a particular level agent; the search procedure starts.
At first, the dedicated level agent searches according to the values of CP specified in
the query. If it fails to find out any services matching user’s requirement; it routs the
search information to the next lower level agent. Then that agent also searches in the
same way and so on. Algorithm for a any level agent is described in figure 4. It works
in a generalized way for all level agents. In this algorithm the query CPs are collected
and calculated that how many CPs are involved within the query. Then it collects all
the services from the required node and checks individual CP specification of servic-
es. If the specification is same as in the user’s query then the service is chosen as a
relevant one. After successful completion of all level agents; the set of retrieved rele-

No
Yes

No

Yes

Call Level 1 Call Level 2

NO

Yes Yes

Call Level N

NO
Count=1 Count=2 Count=N

Start

Initialize Agent-manager with the input
parameters of the query

[Initialize] Count=1, set the start time,
N=number of Context parameters

for I=1 to I<=N

Count+=1

user given Ith
parameter is

valid?

vant services goes to the manager agent. Manager agent then decides and sends the
relevant set of service to the user. A few methods and objects are declared in the fig-
ure for the sake of easy understanding of the complex algorithm.

Fig. 4. Flow diagram for searching by any level agent

The definitions of those methods and variables are defined as follows:
CP_num: This is an integer value that denotes total number of CPs
CP_ sum: This is an integer value. It generates unique sum for each set of CP com-

bination
CP_val: This may be any string. It denotes value of each CP. i.e. CP1=”c1”

CP2=”c2” CP3=”c3”,…, CPk=”ck” here all ci’s are considered as CP_val
CP_com: This is a particular cp combination, i.e., CP1 CP2 CPk-1

Node(X): Node whose CP_sum is X
Level (X): It denotes the Level -X
Match(X): Here X is a set of CP_val. This method matches each CP_val of query

with that of services stored previously.
Subcomb(X): X is a CP_com. Subcomb generates all possible sub components

having CP_num-1 elements at a time from X. As for example, if X is ABCD then
Subcomb will generate ABC, ABD, ACD, and BCD.

5 Performance analysis

The construction of the hierarchical structure is done offline. Thus the overhead of
construction is little. The structure is used for context matching and corresponding set
of relevant services for dynamic user query. Complexity of the search mechanism is
reduced by generating unique sum of CPs, i.e., in case of searching a particular CP the
search procedure instantly finds out the CP combination that is matching with the
combination provided in user query. This involves O(n) time complexity where n is
the number of NFPs specified in user query.

A multi agent implementation of hierarchical structure is done with the notion of
Belief-Desire-Intension architecture. The corresponding language used is AgentSpeak
and complied in JASON 1.3.8 [6]. Each level of the hierarchical structure is managed

Yes

No

Calculate
(CP_sum)

Collect all
services from

node (CP_sum)

Query Result
includes the

service

Match (CP_val)

Go to level (CP_num-1) Generate subcomb (CP_com)

All CP_ vals are
equal with the

service?

by individual agents. An additional agent is responsible for coordinating among dif-
ferent level agents.

Table 2. Specifications of the agent based system

Specifications Used components
Agent architecture Belief-Desire-intention
Language used for agent programming AgentSpeak language
Complier JASON ver 1.3.8
Supported codes written JAVA with JDK 7
Form Design VB 6.0
Operating System Windows XP
RAM size (minimum) 512 MB
Disk space required (minimum) 40 GB

A multi agent implementation of hierarchical structure is done with the notion of

Belief-Desire-Intension architecture. The corresponding language used is AgentSpeak
and complied in JASON 1.3.8. Each level of the hierarchical structure is managed by
individual agents. An additional agent is responsible for coordinating among different
level agents. Table 2 describes the system specifications. This experiment has been
worked on almost 3000 Health care services. A portion of the list typically looks like
figure 5, which is a snapshot of the partial belief base used in the agent based system.

Fig. 5. Snapshot of the Belief-Base

A set of 70 queries were prepared (typically looks like Table 3). Here each column
contains context parameter and corresponding value (from second to eighth column).
Each tuple in the table is a query. The functional need of each query is specified by

the value at column 1 and the rest is specified as the context. Randomly selected que-
ries were run and a comparative study has been made between usual process and pro-
posed hierarchical match model performances.

Table 3.Sample query set

A comparison between the two has been done in two manners. In first case, the que-
ries are selected randomly from a wide varying query set. In any case our proposed
mechanism works better with respect relevance of result. Another side of the compar-
ison is time based. With the increasing size of service population; our proposed me-
chanism takes less amount of time. Thus the proposed mechanism works in an opti-
mized way with respect to size of service population, wide varying context scenarios
and off course for search time. The comparison graph is shown in figure 6.

Fig. 6. Comparative Performance Analysis

6 Conclusions

Contexts defined in terms of service parameters for the users as well as services are to
be matched before service provisioning. In this work, an effective Framework to

0

10

20

30

500 1000 1500 2000 2500 3000

Ti
m

e
fo

r s
ea

rc
h

(in
 se

co
nd

s)

Number of services

Time Comparison
Usual search Hierarchical search

Functionality Relia-
bility

Insurance
rights

Where care
needed

Accuracy Cost Waiting
time

Location

Accidental care ”yes” ”yes” ”body” ”high” 20000 25mins Burdwan
Diagnostic ”yes” ”no” ”body” ”medium” 12000 55mins Kolkata
Nursing Care ”yes” ”no” ”arm” ”high” 1200 25mins
Emergency ”yes” ”yes” ”arm” ”high” 1200 1hrs Chennai
Diagnostic ”yes” ”body” 1500 2 hrs Kolkata
Mental care ”yes” ”no” 1500 2hrs Mumbai
 - - - - - - - - - - - - - - - - -- - - - - - - - - - -- - - - - - - - -- - - - - - -- - - - - -- - -- - - - - - -- - -
Neonatal care ”yes” ”no” ”leg” ”high” 1700 1hrs W. Bengal
General Medicine ”yes” ”yes” ”leg” ”high” 1700 25mins Kolkata
Oldcare ”yes” ”high” 12000 Chennai
General Medicine ”yes” ”high” 9000 1 hrs W. Bengal

represent all possible service contexts within its hierarchical structure is proposed.
The offered hierarchical structure is built offline and is utilized for finding the most
relevant services in terms of user context. The performance of the proposed frame-
work is verified by an exhaustive simulation through agent based approach. As for
experiment, the hierarchical structure is populated with service size 3500 and returns
results within a feasible amount of time with respect to the existing alternative solu-
tions. The most important contribution of this paper is that it delivers results consider-
ing all possible sub sets of CPs supplied in query and that will be beneficiary for the
user as it offers the nearest match (may not be the exact match) based on his(her)
choice. Thus the proposed framework should be considered to work in more flexible
way, compared to their counterparts.

References

1. Nicholas, R., Jennings and Michael Wooldridge; “Applications of intelligent agents”, pag-
es 3-28. New York, Inc., Secaucus, NJ, USA, Springer-Verlag (1998)

2. Getchell, Adam. "Agent-based modeling." Physics 22, no. 6 (2008): 757-767.
3. Wiebe van der Hoek, B., van Linder, John-Jules Ch., Meyer: An integrated modal ap-

proach to rational agents. In Proceedings of 2nd AISB Workshop on Practical Reasoning
and Rationality, pages 123-159 (1997)

4. Wiebe van der Hoek, Michael Wooldrige: Towards a logic of rational agency. Logic Jour-
nal of IGPL,11(2):135-159 (2003)

5. Michael Wooldridge, Nicholas R. Jennings.: Intelligent agents: Theory and practice.
Knowledge Engineering Review, vol. 10 (2):115-152. (1995)

6. Rafael, H., Bordini, Jomi Fred Hubner, Michael Wooldridge.: Programming Multi-Agent
System in AgentSpeak using Jason (Wiley Series in Agent Technology). John Wiley &
Sons (2007)

7. Anand S. Rao, Michae,l P., Georgeff.: BDI agents: From theory to practice. In Proceedings
of the 1st International Conference on Multi-Agent Systems (ICMAS-95), pages 312-319,
San Fransisco, USA. (1995)

8. Mokhtar, S.B., Preuveneers, D., Georgantas, N., Issarny, V., Berbers, Y. :Easy: efficient
se-mantic service discovery in pervasive computing environments with qos and context
sup-port. J. Syst.Softw. 81(5), 785–808 (2008)

9. Manuele Kirsch-Pinheiro, Yves Vanrompay, Yolande Berbers.: Context-aware service se-
lection using graph matching 2nd Non Functional Properties and Service Level Agree-
ments in Service Oriented Computing Workshop (NFPSLA-SOC'08), ECOWS. CEUR
Workshop proceedings, volume 411. (2008)

10. Katharina Rasch, Fei Li, Sanjin Sehic, Rassul Ayani , Schahram Dustdar.: Context-driven
personalized service discovery in pervasive environments. Springer Journal on World
Wide Web Volume 14, Issue 4 , pp 295-319. Print ISSN 1386-145X DOI 10.1007/s11280-
011-0112-x. (2011)

11. Castelfranchi, Cristiano, et al.; “Deliberative normative agents: Principles and architec-
ture" Intelligent Agents VI. Agent Theories, Architectures, and Languages. Springer Berlin
Heidelberg, 364-378. (2000)

	Introduction
	Proposed Framework for Context Management
	Different Agent Architectures
	Implementation and Mapping to BDI agents
	Basic layout of agent based architecture
	Discussion on algorithm for different agents

	Performance analysis
	Conclusions

