N

N

System and Application Scenarios for Disaster
Management Processes, the Rainfall-Runoff Model Case
Study
Antoni Portero, Stépan Kuchat, Radim Vaviik, Martin Golasowski, Vit
Vondra

» To cite this version:

Antoni Portero, Stépan Kucha¥, Radim Vavifk, Martin Golasowski, Vit Vondra. System and Applica-
tion Scenarios for Disaster Management Processes, the Rainfall-Runoff Model Case Study. 13th IFIP
International Conference on Computer Information Systems and Industrial Management (CISIM),
Nov 2014, Ho Chi Minh City, Vietnam. pp.315-326, 10.1007/978-3-662-45237-0_30 . hal-01405602

HAL Id: hal-01405602
https://inria.hal.science/hal-01405602
Submitted on 30 Nov 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01405602
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

System and Application Scenarios for Disaster
Management Processes, the Rainfall-Runoff
Model Case Study

Antoni Portero, Stépan Kuchaf, Radim Vavifk, Martin Golasowski, Vit
Vondrak

VSB - Technical University of Ostrava, IT4Innovations, Ostrava, Czech Republic
{antonio.portero, stepan.kuchar,radim.vavrik,martin.golasowski,
vit.vondrak}@vsb.cz

Abstract. In the future, the silicon technology will continue to reduce
following the Moore’s law. Device variability is going to increase due to
a loss in controllability during silicon chip fabrication. Then, the mean
time between failures is also going to decrease. The current methodologies
based on error detection and thread re-execution (roll back) can not be
enough, when the number of errors increases and arrives to a specific
threshold. This dynamic scenario can be very negative if we are executing
programs in HPC systems where a correct, accurate and time constrained
solution is expected. The objective of this paper is to describe and analyse
the needs and constraints of different applications studied in disaster
management processes. These applications fall mainly in the domains of
the High Performance Computing (HPC). Even if this domain can have
differences in terms of computation needs, system form factor and power
consumption, it nevertheless shares some commonalities.

Keywords: HPC Systems, disaster management, reliability models

1 Introduction

Application requirements, power, and technological constraints are driving the
architectural convergence of future processors towards heterogeneous many-cores.
This development is confronted with variability challenges, mainly the suscepti-
bility to time-dependent variations in silicon devices. Increasing guard-bands to
battle variations is not scalable, due to the too large worst-case cost impact for
technology nodes around 10 nm. The goal of next generation firmware is to enable
next-generation embedded and high-performance heterogeneous many-cores to
cost-effectively confront variations by providing Dependable-Performance: cor-
rect functionality and timing guarantees throughout the expected lifetime of
a platform under thermal, power, and energy constraints. An optimal solution
should employ a cross-layer approach. A middle-ware implements a control en-
gine that steers software/hardware knobs based on information from strategically
dispersed monitors. This engine relies on technology models to identify/exploit

2 A. Portero, S. Kucha¥, R. Vavifk, M. Golasowski, V. Vondrak

various types of platform slack - performance, power/energy, thermal, lifetime,
and structural (hardware) - to restore timing guarantees and ensure the expected
lifetime and time-dependent variations.

Dependable-Performance is critical for embedded applications to provide tim-
ing correctness; for high-performance applications, it is paramount to ensure load
balancing in parallel phases and fast execution of sequential phases. The lifetime
requirement has ramifications on the manufacturing process cost and the number
of field-returns. The future firmware novelty must rely in seeking synergies in
techniques that have been considered virtually exclusively in the embedded or
high-performance domains (worst-case guaranteed partly proactive techniques
in embedded, and dynamic best-effort reactive techniques in high-performance).
This possible future solutions will demonstrate the benefits of merging concepts
from these two domains by evaluating key applications from both segments run-
ning on embedded and high-performance platforms. The intent of this paper
is to describe the characteristics and the constraints of disaster management
(DM) applications for industrial environments. When defining the requirements
and their evaluation procedure, a first analysis of the DM applications modules
(HW platform, OS and RT engines, monitors and knobs, reliability models) is
provided.

From this perspective, this paper focuses on the description of system and
application scenario for disaster management processes. The paper is divided
in five main sections. Section 2 explains related work and the mitigation tools,
basically, two environments for error attenuation. Section 4 provides information
about System Scenarios for Disaster Management Processes, section 5 presents
application scenarios in HPC environment. Final section 6 shows some results
and conclusions, results.

2 Related Work

System scenarios classify system behaviours that are similar from a multi di-
mensional cost perspective, such as resource requirements, delay, and energy
consumption, in such a way that the system can be configured to exploit this
cost. At design-time, these scenarios are individually optimized. Mechanisms for
predicting the current scenario at run-time and for switching between scenarios
are also derived. These are derived from the combination of the behaviour of the
application and the application mapping on the system platform.

These scenarios are used to reduce the system cost by exploiting informa-
tion about what can happen at run-time to make better design decisions at
design-time, and to exploit the time-varying behaviour at run-time. While use-
case scenarios classify the application’s behaviour based on the different ways
the system can be used in its over-all context, system scenarios classify the be-
haviour based on the multi-dimensional cost trade-off during the implementation
trajectory [1]. The following sections present system scenarios based on the map-
ping of an HPC application. The application is stressed with injection of faults

System and Application Scenarios for Disaster Management Processes 3

and a trade-off between number of mitigated errors and overhead of the used
mechanics (Operating System [2] and run-time [3]) is presented.

3 Mitigation Tools

Transient errors are a major concern for the reliable operation of modern digital
systems. A new environment is needed for performance evaluation of a software
mitigation technique on an industrial grade in many-core computation platform.
Error mitigation is performed by re-computing erroneous data in a demand-
driven manner with minimal hardware support. Monitoring the runtime perfor-
mance [3] application is performed illustrating the mitigation overhead without
violating the application real time constraints.

3.1 Runtime Environment - RTE

The runtime specifies a firmware that detects transient errors in the executed
application. A possible way to detect transient errors is using parity detectors
or the use of costly Error-correcting code (ECC) in memories. When a transient
error is detected in the execution of a thread, a re-execution of such thread can
happen. There are small cache memories where data and instructions are loaded
without transient errors. The idea behind this runtime is the fast fine-grain faulty
threads re-execution. The runtime daemon has to detect the execution threads
with errors in micro seconds. The current state of the art detects the errors at
program level and the re-execution time is in the order of milliseconds. In case
the number of errors is high, the fine grained mitigation has to provide better
performance in terms of executed time and power consumption. In the case when
the runtime detects permanent errors in the infrastructure, the re-execution of
the threads is performed in other healthy parts of the system. We define the
runtime environment as HARPA RTE [4].

3.2 Operating System with RTRM

The HARPA framework [2],[4] is the core of a highly modular and extensible
run-time resource manager which provides support for an easy integration and
management of multiple applications competing on the usage of one (or more)
shared MIMD many-core computation devices. The framework design, which
exposes different plug in interfaces, provides support for pluggable policies for
both resource scheduling and the management of applications coordination and
reconfiguration.

Applications integrated with this framework get a suitable instrumentation
to support Design-Space-Exploration (DSE) techniques, which could be used to
profile application behaviours to either optimize them at design time or support
the identification of optimal QoS requirements goals as well as their run-time
monitoring. Suitable platform abstraction layers, built on top of Linux kernel
interfaces, allow an easy porting of the framework to different platforms and

4 A. Portero, S. Kucha¥, R. Vavifk, M. Golasowski, V. Vondrak

its integration with specific execution environments. We define this operating
System as HARPA OS [4]. The Operating System [2] with an efficient Run-Time
Resource Manager (RTRM) exploits a Design-Time Exploration (DSE), which
performs an optimal quantization of the configuration space of run-time tunable
applications, identifying a set of configurations. The configuration of a run-time
tunable application is defined by a set of parameters. Some of them could impact
the application behaviour (for example the calibration of Rainfall-Runoff (RR)
models can produce different accuracy for different situations) while other have
direct impact on the amount of required resources. For example, the amount of
Monte Carlo iterations in uncertainty modelling and the time between batches
of simulations lead to different requirements for allocating system resources.

3.3 Error Mitigation Environment

Different combinations of tools produce different trade-offs between the amount
of errors mitigated and the computation overhead. The overhead can be mea-
sured in terms of extra execution time and power consumption compared with
the same system without HARPA. The HPC application without any error mit-
igation tool can then be used as the baseline scenario to which all other sce-
narios will be compared. When hardware errors are injected into the platform
[5], the results of the simulations are going to be incorrect with a high percent-
age of confidence. Figure 1 shows an example of the expected results. Where
a methodology schema, trade-off between quantity of errors mitigated versus
computational overhead and energy versus execution time is shown. The confi-
dence thresholds are provided by the number of injected errors that the system
is able to support; below the threshold the framework is able to run the ap-
plication without providing wrong results with a high percentage of confidence.
This confidence threshold can be different for each system scenario and also their
computation overhead. When the number of injected errors is higher than this
threshold, the framework is not able to provide exact results and/or violates the
time constraints. The threshold without error attenuation tools is relatively low
compared to the situation when the runtime daemon, the Operating System or
both are running on the platform at the same time. We expect an attenuation
of the errors which are injected by the model of faults. There is the trade-off
between the amount of errors that the platform can support and the overhead in
terms of computation. The computation overhead means more lines of executed
code, more re-execution of threads, and more re-mapping of threads in healthy
parts of the system. This overhead leads to the increase in execution time and
power consumption, but the additional code can be used to support better bal-
ancing of the workload and a better management of the temperature. Following
sections describe different scenarios from the baseline scenario, baseline with er-
ror injection, roll-back case with error injection when HARPA runtime is used,
the HARPA Operating System case for error mitigation and finally using both
HARPA tools (Operating System and runtime) at the same time.

System and Application Scenarios for Disaster Management Processes 5

4 System Scenarios for Disaster Management Processes:
Rainfall-Runoff Model Case

We can simulate different system scenarios to obtain different trade-offs. The
first scenario is baseline or normal execution. This execution provides the correct
values after a period of time and without any hardware injected error. But what
happens if we start to inject errors to the normal execution. Then, without
any attenuation tool the system will crash. We have to run the HARPA tools
to attenuate these errors and still obtain correct results. The following system
scenarios will be used for evaluating individual requirements of applications in
the HARPA our environment.

4.1 Methodology

The starting point is a parallel code of the DM application running in multiple
processes and threads [6, 7]. A hybrid OpenMP and MPI [8] is used to deploy the
computation to an HPC cluster. The cluster contains a set of x86-64 multi core
computers, connected in a fat tree organization, infiniband technology network.
The DM application runs under a specific real time operating system and a
runtime engine (suggested structure shown in Fig. 1). Both tools manage the
workload of the application and help in the attenuation of hardware errors.

Applications (DM)

Error Injection &
& !
5
@q.ﬁ Real Time Operating System
&QO‘ Appl. RT+0S 1 Mitigation of
)
0“& Runtime B Performance
& APPL+ OS Variability
“(v? — ¥
- +
Baseline| APPL*RT Knobs and Monitors f
Modeli
SW Overhead Performance Variability odeling
Energy Injection Performance
Variability
Node Node Node
Node | [Node Node
| Node Node Node
S HPC Cluster

Execution time

Fig. 1. Methodology Schema, Trade-off: Quantity of errors mitigated vs computational
overhead and Energy vs Execution time.

The Real Time Operating System is in charge of managing the resources. It
can benefit from the performance counters in order to take advantage of both

6 A. Portero, S. Kucha¥, R. Vavifk, M. Golasowski, V. Vondrak

workload execution time and energy consumption. The response time of the
operating system has to be lower than one second.

The Runtime Engine engine actuates the knobs to bias the execution flow as
desired, based on the state of the system and the performance (timing / through-
put) requirements of the application. It is the runtime engine that implements
the various control strategies, aiming to provide dependable-performance in the
presence of (highly) unreliable time-dependent variations. The goal is to exploit
different manifestations of what we call as platform slack (i.e., slack in per-
formance, power, energy, temperature, lifetime, and structures/components), in
order to ascertain timing guarantees throughout the lifetime of the device (in
spite of time-dependent variability) and maintain the expected lifetime of the
system. The runtime engine must respond to the different knobs, monitors and
operating system request in order of one microsecond.

The knobs and monitors in the platform allow to modify and control parts
of the system like temperature sensors, program counters and provide useful
information to the upper layers (RT OS and RTE) about where to map the
workload more efficiently. Finally, Performance variability injection is a daemon
that simulates the system as it would be built in a technology of 10nms. This
submicron technology has a higher variability and then much more hardware
errors appears during the application required execution time. The trade-off
between the RTOS and RT engine is that produces an overhead (Fig. 1 up
left) in the software, but this new environment will on the other hand enable a
higher level of error mitigation. At the design time, we are able to detect which
points are optimal in terms of energy vs execution time (Pareto Points[9]). The
multi-threaded solution has not to be run on the HPC cluster at the best-effort.
A set of intermediate solutions can provide similar solution with lower power
consumption and at the same time finish before the pre-established deadline.

Description of Baseline or Normal Execution. It is based on the execution
of the HPC application with parallel libraries but without error injection and
without any HARPA configuration. This is the default scenario (standard op-
eration of the system before utilization of any HARPA engine). This execution
with all the values defines our baseline solution.

Description of Normal Case with Error Injection. In this case, hardware
errors are injected to the platforms (HPC system and embedded platform for
comparison if possible) while running the application on it. The system oper-
ation description is a model of errors used to emulate hardware errors in the
platforms under study. The framework has to model errors in the memories,
errors in the core CPUs and in the buses. Monitoring of the application when
errors are injected: When the number of injected hardware errors increases then
the percentage of incorrect solution also increases. Thus, a supervision of the
platforms has to be considered under this scenario to find out the threshold of
injected errors that still leads to a correct solution provided by the system.

System and Application Scenarios for Disaster Management Processes 7

Description of HARPA Runtime: Rollback Case with Errors Injection.
In this scenario, errors are injected to the application, but the runtime HARPA
daemon is able to detect hardware errors. This runtime daemon also rollbacks
the execution of each faulty thread and re-executes it rollback and re-execution
of the faulty threads increase the global execution time of the application. There
is a threshold level of errors that are acceptable in the system before the re-
quired execution time of the program exceeds the threshold. The description of
system operation is related with the HARPA runtime daemon that is in charge
of rollback and re-execution of faulty threads. It is also possible to change the
clock frequency to the maximum in the part of the system (cores) and during
re-execution. System becomes more tolerant in comparison to the system sce-
narios without rollback. When more errors are injected, more mitigation has to
be performed by the daemon. There is a threshold where the output solution
provided by the system is still correct (Fig. 1).

Description of HARPA Operating System Case. In this case, applica-
tion is running in the HARPA OS with the RTRM environment that manages
the workload and resource allocation for error mitigation in the system. When
errors are injected into the application, the HARPA environment identifies and
manages them, decreasing the number of re-executions in the platform. An im-
provement of this scenario is using procrastination scheduling technique, where
task execution is delayed to maximize the duration of idle intervals. This tech-
nique [10] has been proposed to minimize leakage energy drain. We will address
dynamic slack retrieval techniques under procrastination scheduling to minimize
the static and dynamic energy consumption. The description of system opera-
tion in this scenario is similar to the baseline scenario with error injection but
Run-time Resource Management of the HARPA OS is used as a middleware
when the application is running. This middleware allocates the workload of the
system at runtime and it works in two steps:

1. design time, a suitable Design Space Exploration (DSE) activity identifies
a set of resource requirements that are worth to be considered at runtime,
namely Application Working Modes (AWM), and a set of application specific
parameters defining different QoS levels, namely Operating Points (OP).

2. run-time, resource management is enforced in a hierarchical and distributed
way: For each running application, the RTRM assigns the most promising
AWM, as a result of a system-wide multi-objective optimization. The appli-
cation can optionally perform a QoS fine tuning by switching among its OPs.
Platform specific mechanisms (e.g. DVFS) are exploited to avoid risky con-
ditions. Delaying task execution and maximizing idle periods (i.e. decreasing
global power consumption) [10].

Description of HARPA OS + HARPA Runtime with Dynamic Slack
Case. This new scenario is the combination of the rollback with error injec-
tion scenario with the features from HARPA OS. HARPA OS serves as a base

8 A. Portero, S. Kucha¥, R. Vavifk, M. Golasowski, V. Vondrak

for running the application in this extended environment with the rollback dae-
mon that re-executes faulty threads with maximum clock frequency and with
dynamic slack. In previous sections, we showed the need to work in different
working points to align computation with resources. Fig. 2 shows a node of x86-
86 cores with memory and accelerators. With OpenMP pragmas, we can decide
the resources used to compute the HPC application. There are diverse Pareto
points [9] from a sequential execution to an execution with all resources avail-
able (16 cores and the accelerators). In some cases, resources do not have to be
available due to temporal or permanent hardware errors (greyed out in Fig. 3).
The attenuation tools are able to detect this situation and remap the application
in a new Pareto point from a new Pareto curve

One node HPC Energy
X86-64 | | X86-64 | |X86-64 | | X86-64 16 w, ACC
core core core core
|
X86-64 X86-64 X86-64 X86-64 16w
core core core core
8
DRAM Y aw

X86-64 X86-64 X86-64 X86-64 1 2w
core core core core —
X86-64 X86-64 X86-64 X86-64 Execution time
core core core core

w: workers

ACC: GPU, Phi

ACC (GPGPU, PHI)

Fig. 2. HPC Node Schema without errors injection and Pareto curves (Energy vs
Execution time)

One node HPC Energy
| 16 w, ACC
X86-64 X86-64 X86-64 X86-64 ;

core core core core |
16w
X86-64 X86-64 X86-64 X86-64 8w
core core X core X core . ‘ 4w
DRAM t 1
X86-64 X86-64 X86-64 X86-64 ‘ ! E—
core core X core core 2w
X86-64 X86-64 X86-64 X86-64 Execution time
core core core core
w: workers
ACC: GPU, Phi

ACC (GPGPU, PHI)

Fig. 3. HPC Node Schema with errors injection and Pareto curves (Energy vs Execu-
tion time)

System and Application Scenarios for Disaster Management Processes 9
5 Application Scenarios

Application scenarios describe different triggers and states of the application that
influence the system responsiveness and operation (e.g. critical flooding level,
critical state of patient’s health, voice & data, etc.). Based on these scenarios,
the system can be in different states with different service level requirements.

5.1 Critical Modules and Their Operation in HPC Environment.
Case: Rainfall-Runoff Modelling

One of the applications that are used to develop, test and validate the HARPA
architecture is the Floreon+ system [11,12]. It is an automatized flood pre-
diction system for the Moravian-Silesian region in Czech Republic developed
at IT4Innovations National Supercomputing Centre. One type of flood predic-
tion models that we are working with are rainfall-runoff (RR) models. Hydro-
meteorological data for these models are collected from a network of gages and by
methods of remote sensing (e.g. radar estimation of precipitation rates) together
with the precipitation forecast. Meteorological inputs include the amount of pre-
cipitation in particular, air temperature and data about snow pack (thickness
and water equivalent) during winter seasons. Hydrological inputs cover data on
discharge volumes and water levels from the hydrologic gages. RR models com-
pute how the precipitation over a specified area influences the stream flow over
a specified period of time. These results is described by a function of discharge
change over time (also called as hydrograph, example in Fig. 4). The complex-
ity of RR models comes with a wide range of problems, one of them being a
static setting of model parameters. This setting is done by hydrologists dur-
ing the creation of model schematization for each modelled geographical area.
This process cannot correctly support automatic runs in the system that have
to behave accordingly to dynamic changes in weather and current state of the
river and its catchment areas. The correct setting of model parameters can be
done by inverse modelling and calibration methods, but these methods require
repeated executions of the model with different parameters that converge to op-
timal configuration of these parameters in the model for current situation [12].
Taking these specifics into account, we identified two main application scenarios
that support the different workload of the system based on the flood emergency
situation.

Standard Operation. In this scenario, weather is favourable and the flood
warning level is below the critical threshold. Here, the computation can be re-
laxed; some kind errors and deviations can be allowed. The system should only
use as much power as needed for standard operation; one automatic batch of
simulations only has to be finished before the next batch starts. The results do
not have to be available as soon as possible, so no excess use of resources is
needed. Fig. 4 shows a possible working point (energy vs execution time) where
only 8 cores in one node of the HPC cluster are used for the standard operation.

10 A. Portero, S. Kucha¥, R. Vavifk, M. Golasowski, V. Vondrak

It is not necessary to use the accelerators of the system (GPU, and/ or Intel
Phi). But resource allocation can be much larger in an emergency operation.

Multi node HPC .
O Energy
One node HPC
Energy

O

X86-64 X86-64 X86-64 X86-64
core core core core

X86-64 | | X86-64 X86-64 | | X86-64
core core core core

X86-64 X86-64 X86-64 X86-64
core core core core
o

X86-64
ore

T =
X86-64 | | X86-64 X86-64 | |

core core core
DRAM

X86-64 | | X86-64 X86-64 | |
core core core
T
X86-64 | | X86-64 |¢ | X86-64 | | X86-64
core core core core

ACC (GPGPU, INTELPHI) M ACC (GPGPU, INTEL PHI)
(infiniband) 2

Scenario 1- Normal Execution Scenario 2- Emergency Operation
s

Execution time

Execution time

1500

Threshold level

/] UoReNdsaid

Measured Model Precipitation

Fig. 4. Scenarios: Normal execution and Emergency Operation

Emergency Operation. Several days of continuous rain raise the water in
rivers or a very heavy rainfall on a small area creates new free-flowing streams.
These conditions are signalled by the discharge volume exceeding the flood emer-
gency thresholds or precipitation amount exceeding the flash flood emergency
thresholds. Much more accurate and frequent computations are needed in this
scenario and results should be provided as soon as possible even if excess re-
sources have to be allocated. The Fig. 4 shows real results from a real case [11],
where the black curve presents the measured discharge and the orange curve
shows the simulated discharge. The threshold level for switching to the emer-
gency scenario depends on the location of the measurement station and is defined
by flood activity degrees at the station that are specified by local catchment au-
thorities. The figure also shows that several simulated values at the middle of
the simulation exceed the threshold level for a short period while the measured
values do not reach the threshold at all.

6 Preliminary Experiments and Conclusions

We have executed several experiments of the baseline scenario (see section 4) to
see how the standard runs of RR models perform. Experiments were done on a

System and Application Scenarios for Disaster Management Processes 11

Table 1. Durations of Experimental Runs of the Baseline Scenario Models

OMP Simulation Simulation with calibration
threads without 1 MPI 2 MPI 4 MPI 8 MPI 16 MPI
per process calibration process processes processes processes processes

1 0.5316s 691.5s 404.5s 196.7s 96.5s 59.3s
2 0.3854s 492.4s 288.6s 140.6s 70.0s 46.1s
4 0.2747s 339.5s 200.2s 98.3s 50.2s 33.6s
8 0.2609s 321.1s 185.2s 93.2s 48.6s 47.1s
16 0.3746s 488.2s 307.2s 234.1s 132.3s 143.1s

RR schematization of Ostravice river basin (Czech Republic) with our in-house
developed RR model [11] that was parallelized by OpenMP [6] and its calibra-
tion parallelized by MPI [7]. The measured input data used for this model were
provided by the measurement gages operated by the Czech Odra basin manage-
ment office [13] and the Medard model [14] was used for precipitation forecast.
This configuration serves as the basis for further experimentation with other
introduced system scenarios. All experiments were performed on the Anselm
supercomputer operated by IT4Innovations. This cluster contains 209 compu-
tational nodes where each node is a x86-64 computer, equipped with 16 cores,
at least 64GB RAM, and local hard drive. These nodes are interlinked by high
speed InfiniBand (3600MB/s) and Ethernet networks. All nodes share a Lustre
parallel file system with a throughput of 6 GB/s. The durations of experimental
runs of the baseline scenario models are shown in Table 1.

There are several conclusions in the results concerning the parallelization.
The first one is the fact that durations for 16 OMP threads per process are
significantly higher than for 8 threads. This shows that the overhead of creating
and managing more threads along with the NUMA architecture for each node
of the cluster (each node contains 2 independent processors, each with 8 cores)
hinders the performance and scalability of the algorithm. Another interesting
result is that the gain from 4 to 8 threads is very small and it is not enough
to cover the overhead for configurations with more MPI processes. These re-
sults show that parallelization of the calibration process is very important for
our operational execution of RR models, because there are 4 main basins in the
Moravian-Silesian region and we plan to run 3 different RR models for each of
these basins automatically every hour. This could not be done without paral-
lelization as it would take more than 2 hours (4 x 3 x 11.5 = 138 minutes if all
models would take the same time) to run one batch of simulations, without even
considering error mitigation practices introduced in this paper.

Acknowledgements. This article was supported by Operational Programme
Education for Competitiveness and co-financed by the European Social Fund
within the framework of the project New creative teams in priorities of scientific
research, reg. no. CZ.1.07/2.3.00/30.0055, by the European Regional Develop-
ment Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/

12

A. Portero, S. Kucha¥, R. Vavifk, M. Golasowski, V. Vondrak

02.0070), by the project Large infrastructures for research, development and in-
novation of Ministry of Education, Youth and Sports of Czech Republic with reg.
no. LM2011033, and by 7 ** EU framework programme project no. FP7-612069
HARPA - Harnessing Performance Variability.

References

10.

11.

12.

13.
14.

Ghergita S. V., Palkovic M., Hamers J., Vandecappelle A., Mamagkakis S., Basten
T., Eeckhout L Corporaal H., Catthoor F., Vandeputte F., and K. De Bosschere.
System scenario based design of dynamic embedded systems. Transactions on
Design Automation of Electronic Systems (ToDAES), Volume 14 Issue 1, Article
No. 3, 2009.

Bellasi P., Massari G., and Fornaciari W. A rtrm proposal for multi/many-core
platforms and reconfigurable applications. In ReCoSoC, 2012.

Rodopoulos D., Papanikolaou A., Catthoor F., and Soudris D. Software mitigation
of transient errors on the single-chip cloud computer. In Workshop on Silicon
Errors in Logic - System Effects - SELSE, 2012.

Harpa harnessing performance variability fp7 project, http://www.harpa-
project.eu, 2013.

Broekaert F., Sassi F., Kuchar S., and Portero A. D.5.1.- requirements analysis
and specification of the project application domain. In FP7-612069 , FP7-ICT-
2013-10, 2014.

Openmp: Application program interface, version 4.0, July 2013.

Mpi: A message-passing interface standard version 3.0, 2012.

Portero A., Scionti A., Yu Z., Faraboschi P., Concatto C., Carro L., Garbade
A., Weis S., Ungerer T., and Giorgi R. Simulating the future kilo-x86-64 core
processors and their infrastructure. In SpringSim(ANSS), 2012.

Portero A. et al. Methodology for energy-flexibility space exploration and mapping
of multimedia applications to single-processor platform styles. Circuits and Systems
for Video Technology, IEEE Transactions on, 8(21):1027-1039, 2011.

Jejurikar R. and Gupta R. Dynamic slack reclamation with procrastination
scheduling in real-time embedded systems. In ACM, editor, Proceedings of the
42Nd Annual Design Automation Conference DAC ’05,2005, Anaheim, Califor-
nia, USA, pages:111-116,ACM, New York, NY, USA., pages 111-116, 2005.
Martinovic J., Kuchar S., Vondrak 1., V. Vondrak, Nir B., and Unucka J. Multiple
scenarios computing in the flood prediction system floreon. ECMS 2010: 182-188,
2010.

Vavrik R., Theuer M., Golasowski M., Kuchar S., Podhoranyi M., and Vondrak
V. Automatic calibration of rainfall-runoff models and its parallelization strate-
gie. In Proceedings of International Conference of Numerical Analysis and Applied
Mathematics ICNAAM, Rhodes, Greece (in print), 2014.

Czech odra basin management office, http://www.pod.cz, (August 2014).
Medard model, http://www.medard-online.cz/index.php, (August 2014).

