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Metrics-Based Incremental Determinization of
Finite Automata
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' Dipartimento di Ingegneria dell’Informazione, Universita degli Studi di Brescia (I)
2 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano (I)

Abstract. Some application domains, including monitoring of active systems in
artificial intelligence and model-based mutation testing in software engineering,
require determinization of finite automata to be performed incrementally. To this
end, an algorithm called Incremental Subset Construction (ISC) was proposed a
few years ago. However, this algorithm was recently discovered to be incorrect
is some instance problems. The incorrect behavior of ISC originates when the
redirection of a transition causes a portion of the automaton to be disconnected
from the initial state. This misbehavior is disturbing in two ways: portions of the
resulting automaton are disconnected and, as such, useless; moreover, a consider-
able amount of computation is possibly wasted for processing these disconnected
parts. To make ISC sound, a metrics-based technique is proposed in this paper,
where the distance between states is exploited in order to guarantee the connec-
tion of the automaton, thereby allowing ISC to achieve soundness. Experimental
results show that, besides being effective, the proposed technique is efficient too.

Keywords: Finite Automata; Incremental Determinization; Incremental Subset
Construction; Model-Based Reasoning.

1 Introduction

For efficiency reasons, determinization of finite automata is essential to a wide range of
applications, from pattern matching based on regular expressions [8] to analysis of pro-
tein sequences [4]. The determinization of a nondeterministic finite automaton (NFA)
into an equivalent deterministic finite automaton (DFA) is commonly performed by
Subset Construction (SC), an algorithm introduced several decades ago [18].

However, some application domains, including monitoring and diagnosis of active
systems [12, 17, 15] in artificial intelligence, and model-based mutation testing [1-3, 9]
in software engineering, require determinization to be carried out incrementally, where
the NFA expands over time and determinization is required at each expansion.

Specifically, in [12], principles and techniques of diagnosis of active systems are
presented. A technique for incremental processing of temporal observations in model-
based reasoning is proposed in [17]. Despite being specific for automata derived from
temporal observations, this technique contains the seeds of a more general-purpose al-
gorithm for automata determinization. In [15], the notion of monotonic monitoring of
discrete-event systems is introduced, which is supported by specific constraints on the
fragmentation of the temporal observation, leading to the notion of stratification.



In model-based mutation testing, a test model is mutated for test case generation,
thereby becoming a mutant. The resulting test cases are able to detect whether the faults
in the mutated models have been implemented in the system under test. For this pur-
pose, a conformance check between the original and the mutated model is required. An
approach is proposed for conformance checking of action systems in [1], which relies
on constraint solving techniques. This approach is extended in [2, 3] by two techniques:
a strategy to efficiently handle a large number of mutants and incremental solving. An
extensive approach to model-based mutation testing can be found in [9], where input-
output conformance check [19] is shown to benefit from incremental determinization.

The rest of the paper is organized as follows. In Section 2, the classical technique
for NFA determinization is recalled, and the problem of incremental determinization is
defined. Section 3 provides some hints on the application domain in which incremental
determinization originated. Section 4 introduces the basic notions of the metrics-based
incremental determinization technique, while a detailed specification of the algorithm
is outlined in Section 5. A discussion on why avoiding disconnection is provided in
Section 6. Experimental results are shown in Section 7. Section 8 concludes the paper.

2 Determinization of Finite Automata

According to the SC algorithm, each state in the DFA is identified by a subset of the
states of the NFA. SC yields the DFA starting from the e-closure of the initial state of
the NFA, which becomes the initial state of the DFA, and by progressively generating
the successor states of each state N (subset of NFA states) as the e-closure of the set of
NFA states reached by a label £ from the NFA states in N, called the £-closure of N.

Example 1 Traced in Figure 1 is the determinization of the NFA outlined in the left
side. Gray states indicate that further processing is required. Next to the NFA is the
sequence of intermediate DFAs leading to the equivalent DFA outlined in the right side.

1. The initial state of the DFA is the e-closure of the initial state of the NFA, {0, 1}.
b
2. Considering {0, 1}, two transitions are created, {0, 1} 4 {1,2}and {0, 1} — {2, 3},
which are obtained by considering each symbol of the alphabet marking a transition
exiting either O or 1. With a, two transitions are applicable in the NFA, 0 % land

03 2. Thus, the target state for the transition exiting {0, 1} and marked by « in the

Fig. 1. Determinization by SC: the NFA on the left side is determinized into the equivalent DFA
on the right side, starting from the initial state {0, 1}.



DFA is the e-closure of {1, 2}, namely {1, 2}. With b, we come up with transition
b
{0,1} — {2,3}.

3. Considering {2, 3}, since we have 2 % 3 in the NFA (while no transition marked
by a symbol in the alphabet exits state 3) and the e-closure of {3} is {2, 3}, an auto-

.. a . . . o
transition {2, 3} — {2, 3} is created. Notice how this transition does not cause the
creation of a new state.

b
4. Considering {1, 2}, since 1 — 3 and 2 % 3 are in the NFA and the e-closure of {3}

b
is {2, 3}, two transitions are created in the DFA, {1, 2} 4 {2,3}and {1,2} — {2, 3},
without the generation of any new state.

The final states of the DFA are those including a state which is final in the NFA, in
our example, {1, 2} and {2, 3}.

Definition 1 (Incremental Determinization Problem). Ler N be an NFA and D the
DFA equivalent to N (as generated by SC). Let AN be an expansion of N yielding
N', a new NFA. Generate the DFA D' equivalent to N’ based on N, D, and AN .

Definition 1 refers to a single determinization step, following a single expansion of
the NFA. When the NFA expands over time, incremental determinization is required
several (possibly many) times, after each expansion. In principle, the incremental de-
terminization problem can be solved by means of SC by determinizing N’ while ne-
glecting N, O, and AN . However, this naive approach is bound to poor performances,
especially when N’ becomes increasingly large, as the incremental nature of &' is not
exploited. To solve the incremental determinization problem efficiently, an Incremental
Subset Construction algorithm (ISC) was proposed [16]. ISC was recently discovered
to be incorrect in some instances, as it generates spurious states which are disconnected
from the initial state, as shown in [10]. What may be problematic in the processing is
not that the final DFA is disconnected (which is however unsound) but, rather, the pos-
sibly large amount of irrelevant processing uselessly wasted on the disconnected part.
To cope with this problem, a revisitation of ISC is presented in [5], called RISC, where
three variants of the algorithm are proposed. In this paper, we provide details on the
most elegant variant, which exploits a specific metrics in the DFA.

3 Originating Application Domain

The need for incremental determinization stems from the domain of model-based di-
agnosis (MBD) of active systems [12], specifically, monitoring-based diagnosis [13,
14,17]. MBD aims to diagnose a physical system based on the model of the system
and relevant observations. The discrepancy between the normal behavior of the sys-
tem and the observation allows the diagnostic engine to generate candidate diagnoses,
where each candidate is a set of faulty components. MBD can be applied to discrete-
event systems (DESs) [7], whose behavior is modeled as networks of components, with
each component being a communicating automaton [6]. Active systems are a special
class of asynchronous DESs, where components may exchange events to one another



by means of links. During operation, the active system reacts to external events by per-
forming system transitions, which possibly trigger new transitions by generating events
toward neighboring components through links. The active system evolves according
to its model, which incorporates both normal and faulty behavior, by performing a
sequence of component transitions within its behavioral space. The evolution of the
system is a sequence of transitions, called the trajectory of the system.

The problem lies in the ambiguity of the mode in which the system is evolving,
because only a subset of component transitions are visible by the diagnosis engine. If
the transition is visible, it generates an observable label. Consequently, the trajectory is
perceived by the engine as a sequence of observable labels, called the trace.

The diagnosis engine performs consistent reasoning and eventually provides the
candidate diagnoses, where each candidate is a set of faulty transitions, and corresponds
to one or several candidate trajectories, each one equally possible. In large, distributed
systems, the problem is complicated by the way observable labels are conveyed to the
observer, which may involve multiple (possibly noisy) channels. This causes a distor-
tion of the trace, where each label is perceived as a set of candidate labels, while the
total temporal ordering among labels is relaxed to partial temporal ordering. The result
is an uncertain temporal observation [11], which is represented by a directed acyclic
graph, where nodes are marked by candidate labels, while edges define partial temporal
ordering among nodes.

However, the observation graph, namely 9, is inconvenient for processing as is. A
surrogate of it, namely Isp(@), the index space of O, is used instead. The index space
is a DFA whose regular language is the whole set of candidate traces of the relevant
observation. The point is, Isp(©) is derived via subset-construction by an NFA called
prefix space, denoted Psp(©), which is directly derived from @. Thus, three transfor-
mations occur for a trace 7: 7 ~ O = Psp(O) = Isp(O), where the former (~>)
depends on the nature of both the communication channels and the observer, and, as
such, is beyond the scope of the diagnostic engine, while the others (=) are artificially
performed by the diagnostic engine for computational purposes.

In monitoring-based diagnosis, candidate diagnoses must be generated each time a
piece of observation is received. Typically, the observation graph is received as a se-
quence of fragments, with each fragment carrying information on one node and the arcs
coming from its parents. These are called fragmented observations. At the reception of
each fragment, the index space is to be updated based on the extension of the prefix
space. Since generating the sequence of index spaces via SC may become computa-
tionally prohibitive in real applications, as each index space is generated from scratch
at each new fragment, a better solution is to make SC incremental, so that each index
space in the sequence is generated as an update of the previous one, thereby pursuing
computational reuse.

4 Metrics-Based Incremental Subset Construction

According to the incremental determinization problem (Definition 1), based on an NFA
N, the equivalent DFA D, and an expansion AN of N, the determinization D’ of the
expanded NFA N/ = N U AN is required. What makes intriguing the problem is



the possible exploitation of O instead of starting from scratch the determinization of
N’. Rather than applying SC to N’ (disregarding altogether &, D, and AN), D’ is
determined by updating & based on AN . This idea is substantiated by algorithm /SC.

Let d be the identifier of a state of the automaton D being processed by ISC, ¢
a symbol of the alphabet, and N the f-closure of the NFA states incorporated in d.
The triple (d, £, N) is a bud for O. A bud indicates that further processing needs to be
performed to update the transition exiting d and marked by £ in D.

ISC produces the same results as SC by exploiting a stack of buds. Roughly, the
bud-stack parallels the stack of DFA states in SC. Just as new DFA states are inserted
into the stack by SC and thereafter processed, so are the new buds accumulated into the
bud-stack of ISC and processed one by one. In SC, the first state pushed onto the stack
is the initial state of the DFA. In ISC, the bud-stack is initialized by a number of buds
relevant to the states exited by the new transitions in the NFA.

The algorithm loops, by popping a bud at each iteration, until the bud-stack becomes
empty. While processing each bud, new buds are possibly inserted into the bud-stack.
The processing of each bud depends on both the bud and the current DFA.

In order to make the algorithm sound by avoiding the disconnection of the DFA,
a metrics is introduced, as formalized in Definition 2, where D is the DFA being pro-
cessed by ISC.

Definition 2 (Distance). Let d be a state in D and dy the initial state of D. The dis-
tance of d, written 5(d), is the minimal number of transitions connecting do with d.

Example 2 Considering the DFA displayed in the right side of Figure 1, we have
8({0, 1}) = 0 (for the initial state), and §({1,2}) = §({2,3}) = 1.

Note that, even if the DFA is cyclic, the distance of each state d is always less than
the (finite) number of states of the DFA, as the minimal path of transitions connecting
the initial state to d cannot include cycles.

S Detailed Specification of Metrics-Based ISC

A pseudo-coded formalization of metrics-based ISC is outlined below (lines 1-90). ISC
takes as input an NFA N, the equivalent DFA O (as being generated by SC), and an
extension AN of N. D is updated based on AN so as to make it equivalent to the
extended NFA N’ = N U AN (as if it were generated by SC). We assume that each
state d in O is qualified by the relevant distance §(d ), as specified in Definition 2.

ISC is supported by bud-stack B. Buds in B are implicitly grouped by the first two
fields: if a new bud B = (d,{, N) is pushed onto 8 and a bud B’ = (d,{,N’) is
already in 8, then B’ will be absorbed by B, thereby becoming B = (d, ¢, N U N’).

Throughout the pseudo-code, we keep a distinction between the identifier of a state
in O and its content, where the former is a symbol (e.g. d), while the latter is a set of
nodes in N’ (e.g. N). The content of a node d is written ||d ||. During execution, the
content may change, while the identifier cannot.

The algorithm makes use of two auxiliary procedures, Relocate and Expand. Proce-
dure Relocate (lines 8-26) takes as input a state d and a distance §, and possibly updates



the distance of d and the distance of a finite set of states reached by d. Specifically, &
represents the upper bound for the distance of d as a consequence of an update in the
topology of D, typically by the creation of a new transition entering d .

Example 3 Outlined in the left side of Figure 2 is a fragment of £ where states are
associated with relevant distances before the insertion of transition from d; to d (while
transition labels are omitted). Since §(d1) = 2 and §(d) = 5 (we assume other transi-
tions entering d but not displayed in the figure), the distance of d cannot be larger than
§ = 8(dy) + 1 = 3. Since §(d) > §, the distance §(d) becomes §, while the distances
of successive states d», d3, and d4 change as shown in the right side of the figure.

After the possible change of §(d) (lines 12-13), relocation of distances of succes-
sive nodes of d is required. This is accomplished by means of breadth-first distance-
propagation. First a list D of candidate states is initialized by the singleton [d] (line
14). Then, a loop is iterated until ) becomes empty (lines 15-24). At each iteration,
the first candidate % (head) is removed from I and the children D, of & are considered.
For each child d, € D., the relevant distance is possibly updated (lines 19-20) and, if
so, d. is appended to D (line 21), in order to propagate this change to its successors.

Example 4 In Example 3, the update of the distance of d is propagated as follows:

1. Initial configuration: D = [d], §(d) = 3, 8(d2) = 6, 6(d3) = 6,and §(dy) = 7.

2. First iteration: d is removed from D and the distance of the children of d are
updated, thereby 6(d;) = 8(d3) = 4, while D = [d3, d3].

3. Second iteration: d, is removed from D, however the distance of d3 (the only child
of d,) is not updated, as §(d3) # 8(d2) + 1, in fact §(d>) = 8(d3) = 4.

4. Third iteration: d3 is removed from I and the distance of child d4 is updated,
8(ds) = 5. Since d4 has no child, D remains empty and the propagation terminates.

Procedure Expand (lines 30-50) takes as input a state d in O and adds to its content
the subset NV of states in &. The bud-stack B is extended by the buds relevant to d and
the labels exiting nodes in (N —||d||) in N”’. If the content of the extended node d equals
the content of a node d’ already in D, then the two nodes are merged into a single node
(lines 36-49). Before the merging, if the distances of d and d’ differ, the distance of
the state with maximal distance is updated with the distance of the other state by means
of Relocate (which also propagates the distance change to successor nodes). Then, all
transitions entering (exiting) d are redirected to (from) d’. Finally, after the removal
of d, all buds relevant to d are renamed to d’. The redirection of transitions exiting d
may cause nondeterminism exiting d’ (two transitions exiting d’ that are marked by the
same label £). However, such nondeterminism is transient and disappears at the end of
the processing.

@~ ~D——D)

2 5 6 6 7

Fig. 2. Relocation of distances after the insertion of the new transition entering d.



Considering the body of ISC (lines 51-90), after determining the subset N of states
in N that are exited by transitions in AN, N is extended by AN . Bud-stack B is ini-
tialized with buds (d, £, N), where N is the £-closure of ||d|| N N. A loop is then iter-
ated until B becomes empty (lines 55-89). At each iteration, a bud (d, £, V) is popped
from B. Depending on the content of the bud, one of seven action rules, Ry --- R7, is
applied, in the form of [ Condition | = Action, as specified below.

(R1) [£ =¢]= d isexpanded by N (line 58).

L
(R2) [ £ # &, no L-transition exits d, Id’ such that ||d’|| = N ] = A transition d — d’
is inserted into & and distance relocation is applied to d’ (lines 61-62).
(R3) [ £ # &, no {L-transition exits d, Ad’ such that ||d’|| = N ] = An empty state d’

and a transition d —Z> d’ are created; then, after assigning the distance of d’, the
latter is expanded by N (lines 64-66).

(R4) [ L # &, an L-transition ¢ exits d, the state d’ entered by ¢ is not the initial state, no
other transition enters d’ ] = d’ is expanded by NN (line 71).

(Rs) [£ # e, an L-transition ¢ exits d, either the state d’ entered by ¢ is the initial state or
another transition different from ¢ enters d’ from a state d, such that §(dp) < §(d),
3d” such that ||d”|| = ||d’|| U N ] = t is redirected toward d” and distance
propagation is applied to d” (lines 74-75).

(Re) [L # &, an [-transition ¢ exits d, either the state d’ entered by d is the initial state or
another transition different from ¢ enters d’ from a state d, such that §(dp) < §(d),
Ad” such that ||d”|| = ||d’|| U N ] = d’ is duplicated into d” (along with exiting
transitions and buds), 7 is redirected toward d”, distance propagation is applied to
d”, the latter is expanded by N (lines 77-80).

(R7) [ L # &, an L-transition ¢ exits d, either the state d’ entered by ¢ is the initial state
or another transition different from ¢ enters d’ and the distances of the states exited
by these other transitions entering d” are all greater than §(d) ] = all transitions
entering d’ other than ¢ are removed and surrogated by newly created buds, d’ is
expanded by N (lines 83-85).

Rules R4, R5, R¢, and R7 correspond to a single bud (line 56), but may be applied
several times, depending on the number of {-transitions exiting d (as stated above, a
temporary nondeterminism in £ may be caused after merging two states by Expand).

Rules Rs, Rg, and R7 requires some additional explanation as far as the connec-
tivity of & is concerned, as they all remove at least one transition entering d’, which
in principle may cause a disconnection. Considering R5 and Rg, since there exists a
transition, other than ¢, entering d’ from d, such that §(d,) < 8(d), if the removal of
t from d’ causes a disconnection, also d, will be disconnected, but in this case, being
a successor of d, we will have §(dp) > 8(d), a contradiction. Hence, no disconnection
occurs. Moreover, the distance of d’ cannot increase, as it is at most §(d) + 1.

Considering R, since all other transitions entering d’ are such that the state they
exit has distance greater than §(d), the removal of ¢ from d’ is not safe because all
parent states of d’ other than d might be connected to the initial state by means of
t. On the other hand, based on the same reasoning adopted for Rs and R, all these
other transitions entering d’ can be safely removed because they are not essential to the
connection of d (which has shorter distance). Hence, the removal of all other entering



transitions leaves d’ still connected to the initial state. Moreover, the distance of d’
cannot increase, as it is §(d) + 1.
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algorithm ISC (N, D, AN)

N = (N, X, Ty, ng, F,): an NFA,
D = (D, X, Ty,dy, Fy): the DFA equivalent to N (as generated by SC),
AN = (AN, AT,, AF,): an extension of N
side effects

N is extended by AN,

D is updated, becoming the DFA equivalent to (N’ = N U AN) (as by SC);
auxiliary procedure Relocate(d, §)

d: a state in D,

§: the upper-bound distance for d;
begin (Relocate)

if §(d) > § then

8(d) :=6;
D :=[d];
repeat

Remove the first element / (head) from D;
Let D, be the set of child states of 4 in D;
foreach d. € D, do
if §(d.) > §(h) + 1 then
8(de) :=68(h) + 1;
Append d.. to D
endif
endfor
until Empty(D)
endif
end (Relocate);
auxiliary procedure Expand (d, N)
d: a state in D,
N: a subset of states in N’;
begin (Expand)
if N Z ||d| then
B :={(d.,L,N") | L e X,N'" = L-closure(N — ||d|), N # @},
Push buds B’ onto B;
Enlarge ||d|| by N;
ifd ¢ Fg, N N F, # 0 then Insert d into Fy endif;
if D includes a state d’ such that |d’|| = ||d || then
if 6(d) > 8(d’) then
Relocate(d, 5(d"))
elsif §(d) < §(d’) then
Relocate(d’, 5(d))
endif’
Redirect to d’ all transitions entering d and remove duplicates;
Redirect from d’ all transitions exiting d and remove duplicates;



44.
45.
46.
47.
49.
49.
50.
51.
52.
53.

54.
55.
56.
57.
58.
59.
60.

61.
62.

63.

64.
65.
66.
67.
68.

69.
70.
71.

72.
73.
74.
75.
76.
7.
78.
79.
80.
81.
82.

83.
84.

if d is the initial state do then dy := d’ endif;,
if d € F4 then Remove d from Fy endif;
Remove d from D;
Convert to d’ the buds in B relevant to d
endif
endif
end (Expand);
begin (ISC)
N := the set of states in N exited by transitions in AT};
Extend N by AN

B:={d,L,N)|deD,ne|d|NN,n Lo e AT, N = L-closure(||d || N N)};

repeat
Pop bud (d, £, N') from the top of bud-stack B;
(Ry) if £ = ¢ then
Expand (d, N)
elsif no {-transition exits d then
(R2) if D includes a state d’ such that ||d’|| = N then

4
Insert a new transition d — d’ into D;
Relocate(d’,5(d) + 1)
(R3) else

Create a new state d’ and insert d _e) d’ into D;
8(d) :=46(d) +1;
Expand (d’', N)
endif
else

14
foreach transitiont = d — d’ suchthat N € ||d’|| do

(R4) if d’ # do and no other transition enters d’ then
Expand (d', N)

elsif O includes a transition d, E) d’ # t such that §(d,) < 6(d) then
(Rs) if D includes a state d” such that ||d”|| = ||d’|| U N then
Redirect ¢ toward d”’;
Relocate(d”,5(d) + 1)
(Re) else
Create a copy d” of d’ along with the buds relevant to d”;
Redirect ¢ toward d”’;
8(d”y:=68(d) + 1;
Expand (d",N)
endif
(R7) else
Remove all transitions entering d’ other than ¢;
Update 8 with the buds for the starting state of the removed transitions;



85. Expand (d', N)

86. endif

87. endfor

88. endif

89. until bud-stack 8 becomes empty

90.  end (ISC).

Definition 3 (Configuration). Let D; be the automaton D after the processing of i
buds, and B; the corresponding instance of B. The pair o; = (D;, B;) is a configura-
tion, where ag = (Do, Bo) is the initial configuration, with Dy being the DFA in input
and By the initial instance of B. The path of ISC is the sequence [, . .., &, Q41 .. .]
of configurations.

Example 5 Outlined in plain lines in the left side of Figure 3 is an NFA . An expan-
sion of N, namely &' = N U AN, is represented in dashed lines, where AN includes
a new state and three transitions. The DFA D’ equivalent to N’ (generated by SC) is
shown in the right side of Figure 3. We now show how the same result is generated by
means of ISC, starting from N, O, and AN . Depicted in Figure 4 is the corresponding
path of ISC, namely [cg, &1, . . ., &¢7] (the last configuration ag = £D’, not shown in Fig-
ure 4, equals the DFA placed on the right-hand side of Figure 3). Distance of each state
is indicated, while each bud (d, £, V) is represented as a dashed arc exiting d, marked
by £, and entering a filled node marked by N.

Initially, according to ISC (line 54), four buds are generated for ag = (Do, Bo),
where Dy = D and N = {2} (line 52). Therefore, the initial buds are relevant to
nodes incorporating state 2, namely {1,2} and {2, 3}, giving rise to bud-stack By =
[Bl, Bz, B3, B4], where Bl = ({2, 3}, b, {2, 3, 4}), Bz = ({2, 3},&, {0, 1, 2, 3}), B3 =
({1,2},b,{2,3,4}), and B4y = ({1,2},a,{0,1,2,3}). Then, the main loop (lines 55—
89) is started and buds are precessed one by one. Each processed bud is indicated in
Figure 4 by a dashed filled node. The path of ISC is described below.

(o) B = ({1,2},a,{0,1,2,3}) = rule R¢: since transition {1, 2} 4 {2, 3} is not es-
sential to the connectivity of state {2, 3}, state {2, 3} is duplicated (along with ex-

Fig. 3. Determinization of the expanded NFA N/ = & U AN by SC (the dashed part is AN).
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Fig. 4. Path of algorithm ISC for incremental determinization of the expanded NFA in Figure 3.



iting transitions and buds), transition {1, 2} 5 {2, 3} is redirected toward the new
state, with the latter being expanded to {0, 1, 2, 3}.

(¢1) B = ({0,1,2,3},a,{0,1,2,3}) = rule R3: a new empty state entered by a new
transition is created; then, the expansion of the empty state by N = {0, 1,2, 3}
causes a merging with an equivalent state, creating {0, 1, 2, 3} 5 {0,1,2,3}.

() B = ({0,1,2,3},b,{2,3,4}) = rule R3: a new empty state entered by a new
transition is created; then, the expansion of the empty state by N = {2, 3, 4} causes
the creation of buds ({2, 3,4}, a,{0,1,2,3}) and ({2, 3,4}, 5, {2, 3, 4}).

(3) B = ({2,3,4},a,{0,1,2,3}) = rule R3: a new empty state entered by a new
transition is created; then, the expansion of the empty state by N = {0, 1,2, 3}
causes a merging with an equivalent state, creating {2, 3, 4} A {0,1,2,3}.

(xg) B = ({2,3,4},b,{2,3,4}) = rule R3: a new empty state entered by a new tran-
sition is created; then, the expansion of the empty state by N = {2, 3, 4} causes a

b
merging with an equivalent state, creating {2, 3,4} — {2, 3, 4}.

b
(xs5) B = ({1,2},b,{2,3,4}) = rule Rs: since transition {1, 2} — {2, 3} is not essen-
tial to the connectivity of {2, 3}, it is redirected toward existing state {2, 3, 4}.
(xg) B = ({2,3},a,{0,1,2,3}) = rule Rs: since transition {2, 3} 4 {2,3} is not es-
sential to the connectivity of {2, 3}, it is redirected toward state {0, 1, 2, 3}.

b
(x7) B = ({2,3},0,{2,3,4}) = rule R,: transition {2, 3} — {2, 3, 4} is created.

The processing of the last bud in configuration a7 makes the bud-stack empty,
thereby ISC terminates. As required, the automaton obtained after o7 equals the DFA
generated by SC as a determinization of N’ (see Figure 3).

6 Why Avoiding Disconnection?

At this point one may ask why maintaining each state of £ connected with the initial
state is so important in incremental determinization. After all, this attention is not ap-
plied to possible nondeterminism caused by the merging of two states in the Expand
function. So, why worrying about disconnection? What differentiates nondeterminism
from disconnection in D is that possible nondeterminism generated by Expand is al-
ways transient, as it invariably disappears before the end of ISC. By contrast, the dis-
connection of a state (along with a possibly large portion of DFA rooted in this state)
can be permanent. The detrimental effect of disconnection is twofold:

1. The resulting DFA embodies a (possibly large) set of unreachable states;
2. Being not aware of the disconnection, ISC is bound to waste computational re-
sources in processing these disconnected states.

Example 6 Drawn in plain lines in the left side of Figure 5 is an NFA. An expansion
of the NFA is represented in dashed lines (four auto-transitions). The DFA equivalent
to the NFA (generated by SC) is shown in the right side of Figure 5. We now trace
the processing of incremental determinization as specified in [16], where connection
of states is not checked. Depicted in Figure 6 is the path of of the algorithm, namely



Fig. 5. Determinization of the expanded NFA by SC, with the dashed part being the expansion.

[@g, @1, ...,a9]. Each bud (d, £, N) is represented as a dashed arc exiting d, marked
by £, and entering a filled node marked by N.

At the beginning, four buds are generated for oy = (D, By), where Dy = D and
Bo = [({0},a,{0,1}), ({1}, a,{1,2}), ({2}.a.{2.3}). ({3}, a, {1,3}) ]. The next pro-
cessed bud is dashed in the figure. Intermediate configurations are described below.

(o) B = ({3},a,{1,3}): since state {1} is also entered by transition {0} 5 {1}, the
latter is removed and surrogated by bud ({0}, a, {0, 1}) (which is already in the bud
stack), while state {1} is expanded to {1, 3}, accompanied by the update of the rel-
evant bud, which becomes ({1, 3}, a, {1, 2, 3}). Note how D is now disconnected.

(¢1) B = ({1,3},a,{1,2,3}): state {2} is expanded to {1, 2, 3}, causing the expansion
of the relevant bud to ({1, 2, 3}, a, {1, 2, 3}).

(2) B =({1,2,3},a,{1,2,3}): state {3} is expanded to {1, 2, 3}, causing the merging
with the equivalent state and the generation of the new bud ({1, 2, 3}, @, {1, 2, 3}).

(x3) B = ({1,2,3},a,{1,2,3}): since two relevant transitions exit {1, 2, 3}, based on
{1,2,3} 4 {1, 3}, state {1, 3} is extended to {1, 2, 3}, thereby causing a merging
and the generation of bud ({1, 2, 3}, a, {2, 3}); at this point, the second transition is
{1,2,3} 2 {1, 2, 3}, therefore no other expansion of state {1, 2, 3} is generated.

(x4) B = ({1,2,3},a,{2,3}): no effect is produced by the processing of this bud.

(xs) B = ({0},a,{0,1}): transition {0} A {0, 1} is created along with state {0, 1}, and
bud ({0, 1},a, {0, 1, 2}) is generated.

(eg) B = ({0,1},a,{0,1,2}): transition {0, 1} A {0, 1,2} is created along with state
{0, 1,2}, and bud ({0, 1, 2},a,{0, 1, 2, 3}) is generated.

(¢7) B = ({0,1,2},a,{0,1,2,3}): transition {0, 1,2} 4 {0,1,2,3} is created along
with state {0, 1,2, 3}, and bud ({0, 1, 2, 3}, 4, {0, 1, 2, 3}) is generated.

(xg) B =({0,1,2,3},a,{0,1,2,3}): transition {0, 1,2, 3} 5 {0, 1,2, 3} is created.

(a9) Since the bud stack is empty, this is the final configuration of D.

Note how the resulting DFA in «y is still disconnected, although the part connected
with the initial state equals the expected DFA generated by SC and displayed in the
right side of Figure 5. As anticipated, what is disturbing in the resulting DFA is not
only the disconnection, which may be removed by eventual garbage collection: the real
disturbing point is the wasted processing on the disconnected part, which may cause
considerable expenditure of computational resources.



Fig. 6. Incremental determinization with disconnection.

7 Implementation and Results

Both algorithms SC and ISC were implemented in C++ on a laptop, under GNU/Linux.
In the first stage of the project, we adopted a more naive approach based on classi-
cal search techniques. Before removing (redirecting) a transition entering state d’ we
test the essentiality of such a transition: the transition is essential if, after its removal
(redirection), d’ is no longer connected with the initial state. If essential, the transi-
tion is not removed (redirected); instead, all other transitions entering ¢’ are removed
and surrogated by buds. By contrast, if not essential, the transition can be removed
(redirected). The problem with this technique lies in the complexity of the connectivity
check: in the worst case, a complete traversing of the processed automaton is required.
Early experimentation showed that an overwhelming percentage of the processing time
was devoted to connectivity checking, in many cases with the result of making ISC
and SC comparable, thereby nullifying altogether the advantage of incrementality. That
is why we started searching for a more efficient alternative approach, which led us to
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Fig.7. Comparison between SC and ISC . Outlined in the diagram is also the gain, defined as
((time(SC) — time(ISC)) /time(SC)) * 100.

the metrics-based technique presented in this paper. Based on this new technique, we
can efficiently check the inessentiality of a transition based on the distance of involved
states: we removed (redirect) the transition only if it is not essential.

Results from subsequent experimentation based on metrics-based ISC show that
memory allocation is equivalent in the two algorithms. Instead, in CPU time, ISC out-
performs SC: the larger the NFA, the more favorable the performances of ISC. Here-
after we present average results, based on one reference experiment, with the follow-
ing parameters: the initial NFA includes 1000 states, the alphabet includes 30 labels,
and the percentage of e-transitions is 10%. The NFA is extended up to 25000 states
by 1000 states each time. Outlined in Figure 7 is the graphical representation of the
comparison between SC and ISC. Besides, the gain is indicated (right-side y-axis),
that is, the percentage of time saving when using lazy ISC rather than SC, defined as
((time(SC) — time(ISC)) /time(SC)) * 100. The gain grows with the size of the NFA: in
the last determinization, the gain is 97.00% (0.89 for ISC vs. 29.89” for SC).

8 Conclusion

In contrast with the first algorithm introduced in [16], metrics-based ISC is sound in
the sense that it generates the same DFA which is produced by SC, with the additional
advantage of being considerably more efficient than SC. To do so, ISC exploits a met-
rics based on the distances of states from the initial state. This metrics allows ISC to
efficiently check the connectivity of the processed automaton when conflicts arise in
removing (or redirecting) transitions.

A goal for future research is the proof of formal correctness (termination, sound-
ness, and completeness) of ISC. The extension of the incremental approach to mini-
mization of DFAs, where the DFA equivalent to the NFA is required to include a mini-
mal set of states at each expansion, is a further interesting research topic.
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