
HAL Id: hal-01403117
https://inria.hal.science/hal-01403117

Submitted on 25 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

PaxStore : A Distributed Key Value Storage System
Zhipeng Tan, Yongxing Dang, Jianliang Sun, Wei Zhou, Dan Feng

To cite this version:
Zhipeng Tan, Yongxing Dang, Jianliang Sun, Wei Zhou, Dan Feng. PaxStore : A Distributed Key
Value Storage System. 11th IFIP International Conference on Network and Parallel Computing
(NPC), Sep 2014, Ilan, Taiwan. pp.471-484, �10.1007/978-3-662-44917-2_39�. �hal-01403117�

https://inria.hal.science/hal-01403117
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

PaxStore：A Distributed Key Value Storage System

Zhipeng Tan, Yongxing Dang, Jianliang Sun, Wei Zhou, Dan Feng

Wuhan National Laboratory for Optoelectronics, School of Computer Science, Huazhong

University of Science and Technology, Wuhan, China

Abstract—Consistency, availability, scalability, and tolerance to the network

partition are four important problems in distributed systems. In this paper, we have

designed a consistent, highly available distributed key value storage system that can

run on lots of general devices and solve the four problems in distributed systems, we

call it as PaxStore. It uses zookeeper to complete leader election. It uses a centralized

Paxos-based protocol to guarantee the strong replica consistency. The system node

can automatically recover in case of failure. Experiments show that PaxStore can

guarantee the strong consistency and only increases 20% overhead compared with

local systems. By using log optimization, such as the circular lock-free queue and

Paxos protocol optimization techniques, PaxStore has a high performance and

recovery speed than the older system which uses a basic Paxos protocol.

1．Introduction

With the rapid development of computer technology and Internet, especially the

emerging of Web 2.0 technology, information grows explosively. Therefore, it is

difficult to improve the system performance by using the scale-up[2] method (provide

larger and more powerful servers). The scale-out[2] method, in the form of clusters of

general machines, is a long-term solution to solve the bottlenecks of storage systems.

However, the problems in distributed systems are far more complex than problems in

a single machine. We have to solve various anomalies, such as node failure, disk

failure, network partition, message missing etc.. It is difficult to build a highly

available distributed storage system under complex conditions.

In distributed systems, consistency, availability and partition tolerance are three

important issues. However, no distributed systems can simultaneously achieve the

three goals according to Brew's CAP Theorem[3]. Stonebraker[4] argued that strong

consistency and availability may be a better design choice in a single datacenter

where network partitions are rare.

Replica consistency is an important issue of distributed systems. For some

application scenarios such as bank, military, and scientific experiment, any

inconsistency in replicas is intolerable. There are some popular replica consistency

protocols such as two phase commit protocol[5], and Paxos protocol[6] etc.

Unfortunately, in hostile system environments, two-phase commit may not guarantee

the strong consistency among multiple replicas and the high system availability. With

three or more replicas, the Paxos family of protocols is considered to be the only

solution to guarantee the strong replica consistency. However it is not widely used in

distributed systems due to its complexity and low efficiency.

Besides consistency, system availability is also one of the key principles in

designing a distributed system. Many internet enterprises, like Google and eBay, often

have to provide reliable service of 24×7 hours for their users. However, the node

failure happens frequently in distributed systems when running on general servers.

Therefore how to continuously provide service after a node is down is the problem

that we should solve.

This paper presents a new distributed key-value storage system, called PaxStore,

which can guarantee the strong replica consistency by using a centralized Paxos-based

protocol. The protocol can significantly reduce the overhead compared with basic

Paxos. In PaxStore, if the leader failed, PaxStore can automatically select a new

leader to provide service uninterruptedly as long as the majority of its replicas are

alive. Furthermore, the system node can automatically recover in case of node failure.

Experiments show PaxStore can guarantee strong consistency among replicas and

only increases 20% overhead compared with local systems. Furthermore, PaxStore is

five times or more as fast as the older which also uses a basic Paxos protocol on write.

The rest of the paper is organized as follows. Section 2 provides a detailed survey

of existing work and the related backgrounds. Section 3 presents the design of

PaxStore. Section 4 is the implementation of PaxStore. Section 5 gives an

experimental evaluation of PaxStore. Section 6 summarizes our work and draws

conclusions.

2．Related Work

Brew's CAP theorem[3] is of great significance in the distributed systems, which

shows that it is impossible for any distributed system to simultaneously provide all of

the three following guarantees: consistency, availability and partition tolerance.

Actually, many distributed storage systems choose two of the above goals based on

their own application characteristics.

Many relational databases use the two-phase commit protocol, such as MySQL,

which has very good C (strong consistency), but it’s A (availability) & P (partition

tolerance) are poor. For example, these systems can prevent data from being lost when

facing with disk failures. But they may not provide service if a node fails or in the

abnormal network conditions.

Dynamo[8], and Cassandra[9] provide high availability and partition tolerance by

using eventual consistency. In CAP terminology, they are typical AP systems.

Dynamo uses the Quorum mechanism to manage replicas, which is a decentralized

system. When facing replicas inconsistency, applications must resolve the conflicts by

using data update timestamp.

The Paxos algorithm was proposed by Leslie Lamport in 1990[7], which is a

consistency algorithm based on message passing. At first, it didn’t attract people’s

attention because it is difficult to understand. However, in recent years, the

widespread use of Paxos algorithm proves its important role in distributed systems.

The basic idea of the Paxos algorithm is that, the successful execution of each request

needs the acceptance and execution of the vast majority of nodes in the systems;

every Paxos instance has a sequence, which executes from small to large and all

nodes have the same instance execution order; if a new node joins systems, it can

recover data through catch-up mechanism to achieve the same status as the existing

nodes. But the basic Paxos protocol is a decentralized protocol which requires

multiple network communications, its efficiency is low. PaxStore uses a centralized

Paxos-based protocol with small network overhead.

Zookeeper[10] uses basic Paxos to select the master node which controls data

update. If the master goes down, it will select a new master. Zookeeper can guarantee

strong consistency. But its design goal is to provide distributed lock service and high

availability service for other distributed systems. It is not a dedicated distributed

storage system, so its performance is poor. Google’s Chubby[11] is also based on Paxos

protocol, which is similar to zookeeper.

Megastore[12] is a distributed storage system based on Paxos protocol developed by

Google, which relies on Bigtable. It has the advantages of both the scalability of a

NoSQL datastore and the convenience of the traditional RDBMS, and provides both

strong consistency guarantees and high availability. However, it uses the Paxos

protocol without being fully optimized, its write performance is not good.

Rao et al designed a scalable, consistent, and highly available data store by using

Paxos protocol, which is called Spinnaker[13]. But it doesn’t analyze the situation that

two leaders may appear in one system. Its read and write performance are not good.

Based on the above, we designed PaxStore by using zookeeper cluster and high

performance Leveldb engine. In addition, we used a number of optimization

techniques, such as log optimization, circular lock-free queue etc. It can not only

guarantee strong consistency, but also improve the system performance, and keep the

system scalability.

3．Design of PaxStore

3.1 Architecture

All data are divided into different ranges based on the key value of every record.

The basic components of PaxStore include client, zookeeper cluster and storage

server which include leader and follower. The architecture of PaxStore is depicted in

Figure 3.1. The replica’s number can be configured, here we set it to be 3. Every

range has a leader and two followers. Client only sends write requests to the leader

which synchronizes data to followers based on our Paxos-based protocol, but both of

the leader and the followers can provide read service. In order to simplify the leader

election process, we use Zookeeper for auxiliary election. At the same time,

Zookeeper can also monitor the system state. PaxStore can elect a new leader

automatically and records the times of leader election as epoch. Each write request is

assigned a number (sequence) to indicate its execution order. When a new node joins

in system, it will run a zookeeper client and connect with zookeeper server, and then

upload its metadata such as epoch, IP, and LSN (the largest write request sequence in

log), into zookeeper server. At last, PaxStore uses an improved and optimized Leveldb

as local storage engine.

Leader election

module

Log system

Recovery moduleWrite module

Proposal module

Read moduleLeader
Leader election

module

Log system

Recovery module

Proposal module

Read module
follower

Local

storage

engine

Local

storage

engine

server server server

Zookeeper cluster

Hash

module

Locate

module

Transmit

module

Client

client

Step 1. write w

2. proposal w

3. ack

4.ret

5. commit

3. ack

2. proposal w

5. commit

leader followerfollower

Figure3.1: PaxStore Architecture Figure 3.2: Protocol Flow Chart

3.2 Protocol Analysis

The basic process of the distributed replica protocol used by PaxStore is shown in

Figure 3.2.

（1）Client sends write request (w) to the leader.

（2）After receiving W, leader firstly serializes W, appends W with epoch and

sequence, then it writes the serialized W into log synchronously. In parallel with the

log force, leader sends the serialized W to all of the followers.

（3）When the followers receive the proposal W message, they write it into log

synchronously and send ACK message to leader.

（4）After writing W into the log and receiving more than 1 ACK message from

followers, leader writes W into local storage engine, and send RET message to client.

（5）Furthermore, Leader periodically sends commit message to the followers to

ask them to apply all pending write requests up to a certain sequence to their local

storage engine.

Until now, the leader and followers have the same and the latest value of W.

From the above descriptions, it is obvious that under normal circumstances, the

protocol overhead is extremely small, and only a RTT (Round-Trip Time) is needed to

commit a write.

The client read protocol is also a Quorum-based protocol. As the follower may

have an inconsistent state with leader for only a short time (leader periodically send

COMMIT message to follower), we can choose either strong consistent read (read

records from leader) or weak consistent read (read records from leader or followers).

When choosing strong consistent read, the system needs first read record from leader

and then read epoch message from a follower of this leader, if the follower has the

same epoch message with leader, it shows that we read data successfully, otherwise

the system errors occur.

4．Implementation

4.1 Component of Storage Node

The basic components of node are shown in Figure 4.1. It includes a log system, a

storage engine and a zookeeper cluster. The replica consistency among multiple nodes

is guaranteed by improved Paxos-base protocol which is described in Section 3.2. We

choose Leveldb as our key-value storage engine, and replace its log module with our

high available log system. The details of the log system and storage engine will be

described in section 4.2.

Client protocol
System client network

System server network

Paxos-based protocol

High available Leveldb

High available log

Elect componet
(Zookeeper) log

Local file system

SSTable

Zookeeper client

Leader Election Leader Recovery

Control Core

Write moduleRead module

Remote Recovery module

CMT Sync module

Proposal module

Write Log module

Leader Modules

Read module

Follower module

Follower Recovery

module

Follower Modules

Log system Leveldb engine

Figure 4.1: Component of Storage Node Figure Figure 4.2: The Software Modules of Node

4.1.1 Software Modules of Node

The software modules of node are depicted in Figure 4.2. Each node has five

functional modules, that is, control core, leader modules, follower modules, log

system and Leveldb storage engine. The control core includes zookeeper client

module, Leader Election module and Leader Recovery module. Leader modules

include Write module, Read module, Proposal module, Remote Recovery module

(help followers to recover data), CMT Sync module and Write Log module. Follower

modules include Read module, Follower module (used to response the proposal

request and CMT request sent by leader) and Follower Recovery module. If a node is

leader, the running modules include control core, leader modules, log system and

storage engine. If it is a follower, the running modules include control core, follower

modules, log system and storage engine.

If the leader goes down, system will elect a new leader from the remaining alive

nodes by their leader election modules. The new elected leader should first stop its old

follower modules, and deal with all of the data that have been written into log but

have been written into leveldb engine. It will write these data into storage engine and

send these data to at least one follower to write into follower’s local storage engine.

Finally, the new elected leader starts all of the leader modules to become a real leader.

Now, system can continue to run normally.

4.1.2 Leader Logic

The basic implementation framework of leader, which handles the client requests

by differentiating read and write.

（1）Leader execution logic

The design of read logic is simple. Read Worker thread manages the establishment

and disconnection of read connection from the client. PaxStore can directly read the

required data from local Leveldb engine. But in order to improve the read

performance, we design a thread pool to use multi-core platform.

Write logic is the core part of the leader. The writing process is described in the

following. First, Write Worker thread receives write request from client, then, it adds

the request into Value Queue and sends a notify message to Proposal thread. Second,

Proposal thread reads request from Value Queue, serializes it (i.e., adds epoch and

sequence message) and then sends it to Proposal Round-robin Queue. The Proposal

Queue is a circular lock-free queue which can reduce the synchronization overhead

among threads. Third, PaxStore sends proposal message to follower, in parallel Write

Log thread reads proposal message from Proposal Queue and then writes it into local

log system. Once receiving at least half of the ACK message from followers (in our

system, it needs to receive an ACK message), the system can write this request into

local Leveldb engine and return Ret message to client. Periodically, Leader will also

send CMT message to followers.

（2）Leader Election

The design principle of Leader election algorithm is to use a simple way to ensure

that only one Leader can run normally at any time. The system cannot lose the

committed write requests in leader election. If there is a majority of nodes alive, there

must be the node containing all of the committed write requests. We only need to elect

the node that has the largest LSN if it has the largest Epoch as leader.

The implementation of leader election needs the help of Zookeeper cluster. Every

node will create an ephemeral file on the zookeeper server to save its metadata such

as LSN, Epoch, and IP, when it joins system. If a node disconnects with zookeeper

because of node failure, network partition or other reasons, its corresponding

ephemeral file will disappear automatically. Once more than half of the nodes join

system, they will compare their Epoch message and LSN message to elect a Leader.

Leader will create an ephemeral Leader file on the zookeeper cluster to save its

metadata. If Leader disconnect with zookeeper, this ephemeral Leader file will

disappear automatically and system will elect a new leader.

In distributed systems, the case that there are two leaders may occur inevitably, as

depicted in Figure 4.3, due to network reasons, A loses connect with zookeeper server,

then system will do leader election again. B and C disconnect with A and C is elected

as new Leader. But A may continue to run, so system has two leaders A and C at this

time. PaxStore can ensure that only C can run normally. As no follower connects with

A, even if it receives write requests, it can’t execute these write requests successfully

because it can’t receive ACK. System will force to stop A until the client and

zookeeper server find that A is in the isolate state. This can deal with the situation of

the two leaders.

A B C

A B C

Network anomaly and
A lost the connection with zookeeper

State1

State2

Leader Follower Follower

Old Leader Follower New Leader

Write request enqueue

proposal queue

Commit sequence LSN

higest promised sequence next unused sequence

Serialize and enqueue proposal queue

key value N

……

key value 2

key value 1

Degree of parallelism

Figure 4.3: Two Leaders appear Figure 4.4: The Proposed Round-robin Queue

（3）Leader Design Optimization

Parallel processing optimization: firstly, leader executes the proposal sending and

log writing in parallel, and then PaxStore executes multiple write requests in parallel.

PaxStore can handle multiple proposal messages simultaneously. As shown in Figure

4.4, the commit sequence represents the largest committed request sequence, the

highest promised sequence represents the largest request sequence that has receive

ACK message, the LSN represents the largest request sequence that has been written

into log system, the next unused sequence represents the smallest sequence number

that has not been used. The requests between commit sequence and highest promised

sequence are not written into Leveldb storage engine; the requests between highest

promised sequence and next unused sequence are not proposed. The next unused

sequence minus commit sequence is the current degree of parallelism. In order to

control the system delays, we set an appropriate degree of proposal parallelism. To

avoid proposal lost, as well as out-of-order problems, PaxStore uses TCP protocol and

sets the TCP’s sending buffer and receiving buffer to an appropriate value.

4.1.3 Follower Logic Design

The basic implementation framework in the follower is depicted in Figure 4.5. The

basic implementation framework of follower is similar to Leader, but follower works

relatively simpler than Leader. The design of read logic of follower is the same as

leader. Follower does not have to deal with the client writes directly. It receives the

proposal message sent by Leader, and then detects whether the sequence of proposal

message is continuous or not; if it is, it receives this proposal and puts this proposal

message into Fproposal Queue, follower writes this proposal into local log system and

sends ACK to Leader. Because the communication between Leader and Follower uses

TCP protocol, it ensures that the sequence of proposal message sent by Leader is

continuous, if the proposal message sequence received by follower isn’t continuous,

Paxos-based protocol will not work normally; then follower will exit from system.

Read thread Follower thread

Fproposal Queue

Log module
Follower Recovery

thread

Leveldb

Block 1

Block 2

……

Block N

Block 1

Block 2

……

Block N

Block 1

Block 2

……

Block N

……

Log

Local File System

Log 1 Log 2 Log N

File I/O

Start_seq

1

1235

x

end_seq

1234

123213

y

1

2

N

Manifest file

Commit file

end_seq

1234

123213

y

epoch

1

2

N

Logical Truncated Table file

Figure 4.5: Follower Execution Logic Figure 4.6: Log System Figure

If a new follower joins in system, it starts the follower recovery thread to finish

recovery, which includes local recovery and remote recovery. The follower recovery

mechanism will be depicted in section 4.4.

4.2 Implementation of Log and Storage Engine

The Log System is an important component of PaxStore. It stores both the data and

metadata required by the normally running of PaxStore. Furthermore, log can also

ensure that system can automatically complete the recovery.

The log structure is shown in Figure 4.6. The Log System is designed based on

local file system. The threshold of each log file size can be configured. When reading

data, we use block as a unit and the block size can be configured. The manifest file

records the metadata of each log file and helps us to locate log file when reading data.

Logical Truncated Table file records the largest corresponding commit sequence of

each Epoch, which can help determine which record can be read, and which record

needs to be discarded when in recovery.

The above files constitute the basic log system. In order to meet the requirements

of the strong system consistency, every write operation is synchronous, so the disk

overhead is relatively large. In order to improve system performance, we use the

overwrite method to optimize the log system, that is, we pre-allocate a fixed size of

log file and clear all of the data content of the file, and then write all of the records

into the file by using fdatasync() function instead of fsync. The fdatasync function has

a much high performance than fsync because it needn’t to update metadata of file.

This method can improve log system performance.

Memtable

Leveldb

Immutable

 SSTable

du
m

p

Chekpoint

Block 1

Block 2

……

Block N

Block 1

Block 2

……

Block N

……

Log 1 Log N

System log

Recovery

Write into storage engine

Storag
e

engine

checkpoint CMT LSN

Leader

Recovery from leader

4.7: Paxtore Storage Engine Figure 4.8: Log Layout

Leveldb log module is used to do local recovery for itself. PaxStore has its local

log system, and Leveldb can get all of its needed data from PaxStore log system. So

we modify Leveldb and remove its log module. As shown in Figure 4.7, Leveldb can

get all of the data from PaxStore log system when in local recovery.

4.3 Recovery

4.3.1 Follower Recovery

Follower recovery is different from ordinary database recovery; it contains local

recovery and remote recovery.

As shown in Figure 4.8, the records before checkpoint have been written to storage

engine, so we need to recover these records. The records between checkpoint and

CMT have been committed, so we can read them from local log system directly. The

records between CMT and LSN are not yet confirmed, we need to do remote recovery,

and they may have been committed and may be stale. In order to ensure complete

recovery, follower should send remote recovery request to leader, receive recovery

data and write these data into Leveldb (storage engine).

4.3.2 Leader Recovery

When the leader goes down, system will elect a new leader; then the new leader

should do leader recovery work. New leader should re-propose the requests between

CMT and LSN because these data may return to client already or haven’t been

committed. After at least one follower and new leader both write these data into

storage engine, system can run normally.

5．Performance Evaluation

5. 1 Write Latency

Write delay is an important parameter of evaluating our system and protocol. We

optimize our log system, that is, we pre-allocate a fixed size of log file in order to use

the overwrite method rather than append write method to write records. We inject

10,000 records with the same size into system. The size of write requests ranges from

512 Bytes to 8192 Bytes every time and all of the write log operations are

synchronous. We compare the write latency of PaxStore between overwrite and

append write method. As shown in Figure 5.1, the write latency increases with the

increase of write requests size. In addition, the performance of overwrite method is

much higher than append write method. This is because when it uses overwrite

method, the log data block has been previously allocated, every write operation

doesn’t require the high overhead of disk seek operation, and every synchronous log

write operation doesn’t need to write metadata of log file by using fdatasync. The

results show that our optimization of log can significantly improve PaxStore

performance.

Figure 5.1: Write Latency Figure 5.2: Protocol Overhead

5. 2 Protocol Overhead

As shown in Figure 5.2, we firstly set the replica’s number is1, that is, leader

doesn’t send any data to other nodes to measure the latency of local operations. The

log uses asynchronous write mode. Then we set replica’s number is 3 to measure the

write latency of PaxStore, and the log uses the same write mode too. The figure shows

that the overhead of our Paxos-based protocol is small which increases by about 20%

overhead over the local operation. There are many reasons, for example, the execution

of every write request only needs one RTT; write disk operation and network

communication work in parallel when dealing with a write request; we use a circular

lock-free queue which can reduce overhead caused by locking.

5. 3 Comparison with Zookeeper

As shown in Figure 5.3, we compare the write performance of PaxStore with the

older system which also uses a kind of Paxos-based protocol. Both of their logs use a

synchronous write mode. When the size of write request is more than 2000 Bytes,

PaxStore is five times or more as fast as the older. This is because the older is not a

specialized storage system. Furthermore, we use a variety of methods to optimize

PaxStore, such as overwrite log system, round-robin queue, disk and network works

in parallel etc. The results show that PaxStore has a very high write performance.

Figure 5.3: Compare PaxStore with the older Figure 5.4: System Scalability

5. 4 System Scalability

System can divide all of the data into some ranges based on the key, and each write

request can only be written into one range. Every range has its own leader and

followers. As shown in Figure 5.4, we test the system performance based on different

data range number. In order to achieve optimal performance, every node runs only

one PaxStore instance. Obviously, the system performance has a linear growth with

the increase of data range number regardless of how much the size of write requests is.

The results show that PaxStore has a linear scalability.

5.5 System Recovery

For distributed systems built on the commodity machine, node failure is frequent.

In PaxStore, we set replica’s number as 3, if one follower goes down, system can run

normally, but if two nodes failure, system will stop service. System will elect a new

leader from the remaining two nodes when the leader goes down. This process is very

fast. The system can complete the leader election using less than 3s latency, which

doesn’t have a huge impact on the normal running of system. This is because once the

leader goes down, zookeeper cluster will immediately perceive this situation and

notify the other nodes, and system can elect a new leader by comparing the metadata

of existing followers. Because zookeeper needs time to clean up obsolete information

and receive new information, it may has 3s delay.

It is important to measure the recovery speed of our system when new follower

joins in system and recovers to the current state of the system. As shown in Figure 5.5,

we first write 10,000 records into system, and then new follower joins in system and

recovers these 10,000 records. The size of write request is range from 512 to 8192

Bytes. The experiments show that the recovery of 10000*512 Bytes size records only

needs 8s and 10000*8192 only needs 15s.

Figure 5.5: Follower Recovery Time Figure 5.6: Read Latency

5.6 Read Latency

Because the read operation is not related to the complicated protocol, we only need

to read data from local Leveldb engine, so the system read performance is basically

the same as Leveldb. As shown in Figure 5.6, we firstly write 500,000 records into

PaxStore, and then read the data based on random key. The records size ranges from

512 to 8192 Bytes. Results show that the read delay is only 150μs when records size

app:ds:s

is 512 Bytes, and the read delay increases as the records size increases. Besides, we

test the read performance of the older. It is obvious that the read latency of PaxStore is

much smaller than the older regardless of how much the size of request is.

5.7 Summary and Result

From the above testing, it is clear that PaxStore has a high performance. The log

optimization technology improves the system performance significantly. Our protocol

overhead is small which increases 20% overhead over local operation. The write

performance is five times over Zookeeper. PaxStore also has a quick recovery speed.

6．Conclusion and Future Work

This paper designs and implements a consistency, high availability, distributed key

value storage system, called PaxStore. In the PaxStore, we optimize its log system,

circular lock-free queue and Paxos protocol. PaxStore has a high performance and

lower protocol overhead. The results show that Paxos-based protocol is a good tool to

implement this kind of system[15-16]. By using high available service module,

including Chubby and Zookeeper, to do leader election, it can not only improve

system performance and avoid a single point of failure, but also simplify the design of

PaxStore. The practical experience of PaxStore has constructive value for other

high-availability storage system designs.

In future work, we will use write batching method[17] to improve disk utilization

and chained push method[18-19] to reduce the network overhead of leader.

Acknowledgments

This work is supported by 973 project 2011CB302301, the National Basic

Research 973 Program of China under Grant by National University’s Special

Research Fee (C2009m052, 2011QN031, 2012QN099), Changjiang innovative group

of Education of China No. IRT0725, is supported by Electronic Development Found

of Information Industry Ministry.

REFERENCES

[1] William J. Bolosky, Dexter Bradshaw, Randolph B. Haagens. Paxos replicated

state machines as the basis of a high-performance data store. In: NSDI'11.

Proceedings of the 8th USENIX conference on Networked systems design and

implementation. Berkeley: USENIX Association, 2011. 11~11

[2] Maged Michael, José E. Moreira, Doron Shiloach. Scale-up x Scale-out: A Case

Study using Nutch/Lucene. Parallel and Distributed Processing Symposium, 2007.

IPDPS 2007. IEEE International. Page(s): 1-8. March 2007.

[3] E. A. Brewer. Towards Robust Distributed Systems. In PODC, pages 7–7, 2000.

[4] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and D.

Wood. Implementation Techniques for Main Memory Database Systems. In

SIGMOD, pages 1–8,1984.

[5] Yoav Raz (1995): "The Dynamic Two Phase Commitment (D2PC) protocol

",Database Theory — ICDT '95, Lecture Notes in Computer Science, Volume

893/1995, pp. 162-176, Springer, ISBN 978-3-540-58907-5.

[6] L. Lamport. Paxos Made Simple. ACM SIGACT News, 32(4):18–25, December

2001.

[7] http://research.microsoft.com/users/lamport/pubs/pubs.html#lamport-Paxos

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly

Available Key-Value Store. In SOSP, pages 205–220, 2007.

[9] Avinash Lakshman, Prashant Malik, Cassandra: a decentralized structured

storage system. ACM SIGOPS Operating Systems Review archive Volume 44

Issue 2, April 2010 Pages 35-40.

[10] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: Wait-Free

Coordination for Internet-scale Systems. In USENIX, 2010.

[11] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos Made Live: An Engineering

Perspective. In PODC, pages 398–407, 2007.

[12] J. Baker et al. Megastore: Providing Scalable, Highly Available Storage for

Interactive Services. In Conf. on Innovative Data Systems Research, 2011.

[13] Jun Rao, Eugene J. Shekita, Sandeep Tata. Using Paxos to Build a Scalable,

Consistent, and Highly Available Datastore. VLDB, 2011.

[14] Leveldb: A fast and lightweight key/value database library by Google.

http://code.google.com/p/leveldb/.

[15] Atul Adya, William J. Bolosky, Gerald Cermak, etal. Farsite: federated, available,

and reliable storage for an incompletely trusted environment. In: OSDI'02.

Proceedings of the 5th symposium on Operating systems design and

implementation. New York: ACM, 2002.1~14

[16] C. Coulon, E. Pacitti, and P. Valduriez. Consistency management for partial

replication in a high Performance database cluster. In: ICPADS 2005.

Proceedings of 11th International Conference on Parallel and Distributed Systems.

USA:IEEE, 2005. 809~815

[17] N. Santos and A. Schiper, Tuning Paxos for high-throughput with batching and

pipeliing. In: ICDCN'12. Proceedings of the 13th international Conference on

Distributed Computing and Networking. Berlin: Springer, 2012:153~167

[18] P. Marandi, M. Primi, N.Schiper, etal. Ring Paxos: A high-throughput atomic

broadcast protocol. Dependable Systems and Networks, 2010,7129:153~167

[19] R. van Renesse and F. B. Schneider. Chain replication for supporting high

throughput and availability. In: OSDI'04. Proceedings of the 6th conference on

Symposium on Opearting Systems Design And Implementation. San Francisco,

CA, USA: USENIX Association, 2004. 7~8

http://research.microsoft.com/users/lamport/pubs/pubs.html#lamport-paxos

