N

N

A Novel Page Replacement Algorithm for the Hybrid
Memory Architecture Involving PCM and DRAM

Kaimeng Chen, Peiquan Jin, Lihua Yue

» To cite this version:

Kaimeng Chen, Peiquan Jin, Lihua Yue. A Novel Page Replacement Algorithm for the Hybrid Mem-
ory Architecture Involving PCM and DRAM. 11th IFIP International Conference on Network and
Parallel Computing (NPC), Sep 2014, Ilan, Taiwan. pp.108-119, 10.1007/978-3-662-44917-2_10 .
hal-01403070

HAL Id: hal-01403070
https://inria.hal.science/hal-01403070
Submitted on 25 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01403070
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Novel Page Replacement Algorithm for the Hybrid
Memory Architecture Involving PCM and DRAM

Kaimeng Chen', Peiquan Jin*?, Lihua Y ue*?
School of Computer Science and Technology, University of Science and Technology of China,
Hefei, China
2K ey Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences, Hefei,
China
j pq@ust c. edu. cn

Abstract. Recently, the development of phase change memory (PCM)
motivates new hybrid memory architectures that consist of PCM and DRAM.
An important issue in such hybrid memory architectures is how to manage the
pages resisting in heterogeneous memories. For example, when a requested
page is missing in the hybrid memory and the memory has no free spaces, what
pages in which type of memory (PCM or DRAM) should be replaced? This
problem is much different from traditional buffer replacement management,
where they do not consider the specia properties of different types of
memories. In particular, differing from DRAM, PCM is non-volatile but it has
lower access speeds than DRAM. Further, PCM has a limited write endurance
which implies that it cannot be written endlessly. Therefore, we have to design
anew page replacement algorithm that can not only maintain a high hit ratio as
traditional algorithms do but also can avoid frequent writes to PCM. In this
paper, aiming to provide a new solution to the page replacement problem in
PCM/DRAM-based hybrid memories, we propose a new agorithm called
MHR-LRU (Maintain-hit-ratio LRU). The objective of our agorithm is to
reduce PCM writes while maintaining a high hit ratio. Specialy, it keeps
recently updated pages in DRAM and performs page migrations between PCM
and DRAM. The migrations take into account both page access patterns and the
influences of page faults. We conduct trace-driven experiments and compared
our proposal with some existing algorithms including LRU, LRU-WPAM, and
CLOCK-DWF. The results show that our proposal is able to efficiently reduce
PCM writes without degrading the hit ratio. Thus, our study offers a better
solution for the page replacement issue in PCM/DRAM-based hybrid memory
systems than previous approaches.

Keywords: Page replacement, Phase change memory, Hybrid memory

1 I ntroduction

Phase change memory (PCM) is one of the most promising non-volatile memories.
PCM is byte-addressable and a type of random-access memories. Compared with
DRAM, PCM has the advantages of durability, scalability, and low energy
consumption. Thus, many researchers have proposed to incorporate PCM into the
memory hierarchy of computer systems [1-3]. However, two problems of PCM make
it difficult to totally replace DRAM in current computer systems. First, the write
latency of PCM is about 6 to10 times slower than that of DRAM. Second, PCM has a
worn-out problem because each PCM cell has limited write endurance. Thus, PCM is

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

not suitable for update-intensive applications. As a summary, Table 1 shows a
comparison between DRAM and PCM.

Table. 1. Comparison between PCM and DRAM

Attributes DRAM PCM
Durability Volatile Non-volatile
Read Latency 50 ns 50 ns
Write latency 20-50ns 350 — 1000 ns
Read Energy ~0.1nJb ~0.1nJb
Write Energy ~0.1nJb ~0.5nJb
Idle Power ~1.3W/GB ~0.05W
Density Low High (~ 4X DRAM)
Endurance) 108 for write

Therefore, a more practical way to utilize PCM in memory architectures is to use
PCM and DRAM and thus to construct a hybrid memory architecture [4, 5].
Generally, there are two architectures to integrate PCM in DRAM-based main
memory, namely DRAM cache architecture and hybrid memory architecture, as
shown in Fig. 1. The DRAM cache architecture uses PCM as main memory and uses
DRAM as the cache of PCM [4]. The DRAM cache is hidden to the operation system,
like the L1 and L2 caches for CPU. The hybrid memory architecture puts PCM and
DRAM at the same level in main memory [5]. The hybrid memory is regarded as the
union of DRAM and PCM, and both of their storage capacities are used as main
memory. In this situation, all the pages in DRAM and PCM are managed by the
operation system.

CPU CPU
DRAM cache
PCM
Storage Devices Storage Devices
a) DRAM cache architecture b) Hybrid memory architecture

Fig. 1. Memory ar chitectures consists of PCM and DRAM

This paper focuses on the hybrid memory architecture. In particular, we
concentrate on the page replacement problem for the hybrid memory architecture.
Traditional page replacement algorithms are designed for DRAM-only main memory
architecture. They are not suitable for the hybrid memory architecture because PCM
and DRAM have different characteristics and the page replacement algorithms have
to be aware of these differences. So far, a few page replacement algorithms for the
hybrid memory architecture are proposed; some of them focus on PCM and DRAM
[6, 7] while others are on flash memory and HDD [10, 11]. The similar idea of the
existing algorithms is to keep write-intensive pages in DRAM and to let read-

intensive pages in PCM so that DRAM can absorb most writes. For this purpose,
specific page migration schemes are introduced in previous agorithms. The basic
process of a page migration is as follows: when a page request comes to the memory,
the page migration algorithm determines whether the requested page needs to be
moved according to its access pattern. The read-intensive page in DRAM is moved to
PCM and the write-intensive page in PCM is moved to DRAM.

However, there are two problems in the existing algorithms for hybrid memory
systems. First, these algorithms always place pages read from disk in PCM and move
read-intensive pages in DRAM to PCM. Because page placement and migration also
incur writes to PCM, aways caching read-intensive pages in PCM may lead to
additional writes to PCM especially under read-intensive workloads. Second, moving
a page between PCM and DRAM has to consider the problem that the memory isfull.
To accommodate the moved page in the target medium, the previous algorithms have
to choose a victim page to release its space [6, 7]. This has an impact on the hit ratio
of memory request. Thus, compared with conventiona algorithms, the existing
algorithms for hybrid memory usualy introduce more page faults when processing
memory requests.

Request: P1 write, P4 read

PCM |Pl|) P3| |P:I|IP5| IP6] DRAM
Algorithm without migration : P1 hit, P4 hit
migration
PCM |P1 I P2 P3 |P4 | IP5 P6| DRAM
release
Algorithm with migration: P1 hit, P4 miss

Fig. 2. A page fault occur s because of page migration

Fig. 2 shows an example that how page migration can affect the hit ratio. Initialy,
both PCM and DRAM are full. For the algorithm with page migration for hybrid
memory, when apage P1 in PCM is migrated to DRAM, P4 in DRAM is selected asa
victim to make space for Pl. Then, the read request to P4 misses. For the
conventional algorithm without page migration, both requests to P1 and to P4 hit in
the memory. Because the access latency of hard disk is much slower than the write
access latency of PCM, decreasing hit ratio to reduce write access count on PCM may
lower the overall performance of hybrid memory.

In this paper, we present an efficient page replacement algorithm called MHR-LRU
(Maintain-hit-ratio LRU) for PCM/DRAM-based hybrid memory. The agorithm aims
to maintain a high hit ratio and to reduce PCM writes for the hybrid memory.
Differing from previous agorithms, our algorithm does not move pages between
PCM and DRAM when page requests arrive. Instead, we perform page migrations
when page faults occur. Thus, the page migrations in our agorithm need not to
release extra pages. Thisis helpful to maintain a high hit ratio, because releasing extra

pages will lower the hit ratio. Besides, MHR-LRU places write-intensive pages in
DRAM to reduce PCM writes. Under read-intensive workloads, DRAM s efficiently
used to absorb most read reguests and to limit the number of writesto PCM triggered
by page placement and page migration.

We perform trace-driven experiments in a hybrid memory simulation environment
to evaluate the performance of MHR-LRU. We use different types of workloads and
conduct comparisons with other algorithms including LRU, LRU-WPAM [6], and
CLOCK-DWEF [7]. The results show that our algorithm is able to maintain a high hit
ratio for different workloads and outperform the other three competitors considering
PCM writes.

The remainder of this paper is organized as follows. In Section 2, we sketch the
related work. In Section 3, we present the MHR-LRU page replacement algorithm for
the hybrid memory architecture. Section 4 describes the details about the experiments
and the performance evaluation results. Finally, Section 5 concludes the paper.

2 Related Work

Conventiona page replacement algorithms have been designed for DRAM-based
main memory with uniform access latency and unlimited write endurance. Hit ratio is
the key metric to evaluate the performance.

LRU (Least Recently Used) is a conventiona page replacement algorithm that has
been widely used. LRU dligns all pages in memory in order of their most recent
reference times. When a page fault occurs and the buffer pool is full, the least recently
used page in memory is selected as a victim. LRU has also been widely used for
buffer management over new types of storage media such as flash memory [12, 13].

Page replacement algorithms for hybrid main memory as shown in Fig. 1(b) should
consider not only the hit ratio but also the number of PCM writes because PCM has
the long write latency and limited endurance.

LRU-WPAM (LRU-With-Prediction-And-Migration) is an LRU-based page
replacement algorithm for hybrid main memory [6]. The algorithm aligns al pagesin
hybrid main memory as a LRU queue, and use four monitoring queues. a DRAM read
queue, a DRAM write queue, a PCM read queue and a PCM write queue. Each page
is retained into both LRU list and one of the four queues according to its access
pattern and located memory type. To measure the access pattern of a page in hybrid
memory, the algorithm provides a weight value for each page. Each time a page hits
in the memory, the page’'s weight is calculated again according to the type of this
access request, if its weight value is above the threshold, the page will be migrated. If
the memory need to choose a victim to release for receiving the migrated page,
DRAM choose the least recently used page in DRAM read queue and PCM choose
the least recently used page in PCM write queue.

CLOCK-DWEF is a CLOCK-based page replacement algorithm for hybrid main
memory [7]. When a page fault occurs, if the request is read, the page is put on PCM;
otherwise the page is put on DRAM. When a page on PCM hits by write request, the
page is migrated to DRAM. To get a free page frame while the memory is full, PCM
use conventional CLOCK algorithm to select a victim page to release [8], but DRAM
migrates alow write frequency page to PCM.

Both LRU-WPAM and CLOCK-DWF release pages in page migration, this would
causes hit ratio degradation. Both of the two algorithms force read-bound pages to
place on PCM, this may incurs higher PCM write count than conventional algorithms.
For these problem, our study present a new method to reduce PCM write count
without sacrificing hit ratio by merging page migration into page replacement process
and just limiting write-bound pages to the DRAM. The details will be given in
Section 3.

3 The MHR-LRU Algorithm

In this section, we present the details of the MHR-LRU algorithm for hybrid main
memory. MHR-LRU aims to reduce the writes to PCM without degrading hit ratio so
asto improve the overall performance of hybrid main memory. In order to accomplish
this goal, we design the scheme that performs the page migration when page
replacement occurs to make write-intensive pages on PCM.

3.1 TheMain ldea

The main idea of MHR-LRU algorithm is described as follows:

(1) The algorithm use LRU list to manage pages together in hybrid main memory.
All pages in hybrid memory are aligned in order of their most recent reference time.
When a page fault occurs, the page in the LRU position will be selected as victim no
matter where it locates.

(2) The agorithm uses a specia data structure called DWL (DRAM Write-aware
LRU list) to manage pages in DRAM. DWL aligns all pages in DRAM in order of
their most recent write reference time.

(3) When a page fault occurs and the victim has been selected, MHR-LRU check
the page access type and the victim's location, if the page's access request is write and
the victim is located on PCM, MHR-LRU perform page migration: the victim on
PCM isreleased and the page in the LRU position of DWL is migrated to PCM, then
the requested page is put on DRAM. By doing so, MHR-LRU can get the following
benefits. First, the page migration does not cause extra page release, so it does not
affect the hit ratio; Second, since putting a page from disk on PCM and migrating a
page in DRAM to PCM incur the same amount of write on PCM, compared with
putting the requested page on PCM then performing write operation on it, migrating
an in-DRAM page to PCM and putting the requested page on DRAM for write
operation can immediately reduce the amount of write on PCM; Third, according to
principle of temporal locality, page with the most recently write reference has a
higher possibility to be write again than the page in the LRU position of DWL, this
page migration can reduce the number of future write operation on PCM.

3.2 TheDetailed Algorithm

Fig. 3 shows the detailed algorithm of MHR-LRU. If arequested page is found in
DRAM, the page is also maintained in both the LRU list and DWL. Hence, we check
the type of this page request. If it is a read request, we move the page to the MRU
position of the LRU list. If it is a write request, we move the page to the MRU
position of the LRU list and the MRU position of DWL (Line 1 ~ 7). If the requested

page is in PCM, the page is maintained in LRU list, we move the page to the MRU
position of the LRU list (Line 8 ~ 10).

Algorithm MHR-LRU(request q)

Input: apage request q

Output: areference to the requested page

Preliminary: (1) L isthe LRU list of the memory, DWL isthe DRAM write-aware list.
(2) p isthe requested page.

1. if pisin DRAM then
2: if qisaread request then
3 move p to MRU position of L
4: else
5: move p to MRU position of L;
6: move p to MRU position of DWL;
7 return areferenceto p;
8 eseif pisin PCM then
9 move p to MRU position of L;
10: return areferenceto p;
[* page fault occurs*/
11: ese
12: if thereis afree frame in hybrid main memory then
13: put p into the free frame;
14 else
15: get victim from LRU position of L;
16: if victimisin PCM and q is awrite request then
17 get page mfrom LRU position of DWL;
18: release victim and migrate mto PCM;
19: put p into the free frame of DRAM;
20: ese
21: release victim and put p into the free frame;
22: insert pinto MRU position of L;
23: if pisin DRAM then
24: if gisawrite request then
25: insert p into MRU position of DWL;
26: ese
27 insert p into LRU position of DWL;

28: return areferencetop;

Fig. 3. The detailed algorithm of MHR-LRU

If apageis missing, we have to find afree frame to cache the requested page. If the
memory has free spaces, we put the requested page into a randomly-selected free
frame (Line 12 ~ 13). If the memory is full, we select the page in the LRU position of
the LRU list as victim, if the victim is in PCM and the page's request is a write
regquest, the victim is released. We do not put the requested page in PCM but move
the page in the LRU position of DWL to PCM, and put the requested page into

DRAM. Otherwise, we just evict the victim for the requested page (Line 14 ~ 21).
After putting the requested page into the hybrid memory, we insert the requested page
to the MRU position of the LRU list. If the requested pageisin DRAM, we insert it to
the DWL according to its request type. If the page's request is a write request, it is
inserted to the MRU position of DWL, elseit isinserted to the LRU position of DWL
(Line22 ~ 28).

MRU LR
“:' [Pt P4 [Ps
LIST = as

I)\\'[, P4 [P
DD Enia)

PCM MEMORY DRAM MEMORY
(a) Buffer initial situation for MHR-LRU algorithm

Request: P2 read. P3 write. P4 write. P5 read

MRU LRU MRU LRU
w0 [EHEHEHEHEH:] 2 EHEHEHEHEH]
P2 read MRU LRU 3 write MRU LRU

pwL[p1] ps | —> pwr [P1 P4 Hps
(0] Il (] fe] () (] (] [5])

PCM MEMORY DEAM MEMORY PCM MEMORY DRAM MEMORY
LRU MRL LRL! MRLU LRL!
-)) ;) LRU)))
LIST 0] LIST P4 (e H{ P2 o ro H{ e
P4 write MRU LRU MRU LRU
M redd
— pwi|P4] — DWL P |

Lol EOldl] (]I C) R G

PCM MEMORY DEAM MEMORY PCM MEMORY DEAM MEMORY

(b) The situation that pages in PCM and DRAM hit by read request and
write request

Request: P6 write, P7 read, P8 read, P9 write

) MRU LRU : MRU LRU

e 7| T o T e 0 e 7 0 o D o T A 2D

P6 write MRU LRU p7read MRU LRU
pwi B Hr] = pwr [#s e HET]

PCM MEMORY DRAM MEMORY PCM MEMORY DRAM MEMORY

MRU LRU MRU LRU

rior EE(P7 {Ps [H{Po [P [H{P2 | LR[OI Pe {7 [P [{ro [P |

MRU LRU MRU LRU

Ca] B [C el [(] s (o] (o ()

PCM MEMORY DRAM MEMORY PCM MEMORY DRAM MEMORY

c¢) The situation that page replacementand page migration occur.

Fig. 4. An example of the MHR-LRU algorithm

Fig. 4 gives an example of MHR-LRU. Fig. 4 (a) shows the initia state of the
hybrid memory. The buffer contains PO, P1, P2, P3, P4, P5. PO, P2, P3 are in PCM,
and P1, P4, and P5 are in DRAM. All pages are in LRU list and P1, P4, P5 are in
DWL. Fig. 4 (b) shows the situation of page hits, and Fig. 4 (c) shows the situation of
page faults.

Fig. 4 indicates that, when page faults occur, MHR-LRU selects and releases the
least recently used page, which is similar to the LRU algorithm. This ensures that our
algorithm can have the similar hit ratio as LRU. However, our agorithm does not
release pages when page hits occurs, which is different from LRU-WPAM and
CLOCK-DWF.

4 Performance Evaluation

In this section, we compare our algorithm with LRU, LRU-WPAM, and CLOCK-
DWF. LRU is the reprehensive of traditiona page replacement algorithms. LRU-
WPAM and CLOCK-DWF are the recently proposed agorithms for the hybrid
memory architecture.

41 Experimental Setup and Datasets

We use simulation experiments to evaluate our algorithm. We design the simulator
for the hybrid memory architecture. In the experiments, the DRAM-to-PCM ratio is
set to 1:4 because PCM density is expected to be four times higher than that of
DRAM. Based on the simulator, the compared page replacement agorithms are
implemented and trace-driven experiments are performed for performance evaluation.
The parameters used in LRU-WPAM and CLOCK-DWF are the same as those in the
origina papers[6, 7].

We perform our simulation experiments with six types of synthetic traces. These
traces are generated by DiskSim [9]. The characteristics of these traces are given in
Table 2. Thelocality in Table 2, for example 80% / 20%, means that eighty percent of
total references are focused on twenty percent of the pages.

4.2 Hit Ratios

Hit ratio is a key metric for the performance of page replacement algorithms. First,
we compare the hit ratio of our algorithm with other three ones by varying the size of
memory. We use the number of page faults to measure hit ratio. The results are shown
inFig. 5.

Table. 2. Six types of synthetic traces

Type Total Different Pages Read/Write L ocality
Reference Accessed Ratio
T9182 300,000 10,000 90% / 10% 80% / 20%
T9155 300,000 10,000 90% / 10% 50% / 50%
T5582 300,000 10,000 50% / 50% 80% / 20%
T5555 300,000 10,000 50% / 50% 50% / 50%
T1982 300,000 10,000 10% / 90% 80% / 20%

T1955 300,000 10,000 10% / 90% 50% / 50%

As Fig. 5 shows, when measures under the workloads with low localities (T9155,
T5555, T1955), the hit ratios of LRU-WPAM and CLOCK-DWF are almost the same
as the hit ratio of LRU and MHR-LRU. Because all algorithms are based on temporal
locality, alow locality access pattern leads to very similar hit ratios of four algorithms.
When using the high-locality workloads (T9182, T5582, T1982), with the increase of
the ratio of write operations in workloads, LRU-WPAM and CLOCK-DWF show
higher number of page faults than LRU and MHR-LRU do.

T9182
350000 T T 350000
MHR-LRU
5] 5]
= 300000 - R =1 300000
3 3
9] 9]
o 250000 R o 250000
b b
S 200000 { 3 200000
© ©
150000 | {1 150000
))
© 100000 + R © 100000
oy - oy
50000 okt : NS 50000 ! ;
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
Memory size (page) Memory size (page)
T5582 T5555
350000 T T 350000 T T T
MHR-LRU MHR-LRU
JSEJ) 300000 - LRU JSEJ) 300000 LRU
3 5 LRU-WPAM
0] o] CLOCK-DWF
o 250000 o 250000 Qe
b b
S 200000 S 200000
© ©
150000 | 150000 |
))
© 100000 © 100000
oy oy
50000 . 50000 - .
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
Memory size (page) Memory size (page)
T1982 T1955
350000 T T 350000 T T T
MHR-LRU MHR-LRU
=1 LRU =1 LRU
5 300000 LRU-WPAM < 1 § 300000 LRU-WPAM
9 CLOCK-DWF & o] CLOCK-DWF &
o 250000 o 250000 3
b b
S 200000 S 200000
© ©
150000 | 150000 |
))
© 100000 © 100000 +
oy oy
50000 50000 .
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
Memory size (page) Memory size (page)

Fig. 5. Number of page faultsunder the six synthetic traces

LRU-WPAM and CLOCK-DWF usualy release pages when they perform page
migration. As shown in Fig. 2, this page release can introduce page fault. To show the
relationship between page fault and page release, during the experiment, we collect
page release count of LRU-WPAM and CLOCK-DWF under high-locality workloads
that LRU-WPAM and CLOCK-DWF show higher number of page fault. When page
migration occurs and one page in the target medium has been released, the page

release count increases. The result is shown in Fig. 6. As Fig. 6 shows, for LRU-
WPAM and CLOCK-DWF, workloads with high ratio of write operations cause more
pages to be released because of page migrations. This consequently leads to a higher
number of page faults.

120000 T T T T ; T 450000

T9182 —8— T9182 —8—
i) T5582 @ B 400000 | T5582 @ 4
5 100000 | T1982 s] g T1982 s
3 s 3 350000 - [P S S
o e 8 e
80000 | o 300000 &
o 9 250000
S 60000 | e B
— — 200000 | . JP— P e Y
[0} T S— ° O | @
S 40000 T S 1s0000f @ *
&
g P Q100000 |
© 20000 ;/VE—HN i g
o o 50000 L o o5 oa g og
0 0 , ,
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Memory size (page) Memory size (page)
(& LRU-WPAM (b) CLOCK-DWF

Fig. 6. Number of pagereleasestriggered by page migrations
43 Writesto PCM

The writes count to PCM is related to the overall write performance of the hybrid
memory and the lifetime of PCM. In this section, we measure the number of write
operations on PCM incurred by MHR-LRU in comparison with LRU, LRU-WPAM,
and CLOCK-DWF.

Fig. 7 shows the number of PCM writes for LRU, LRU-WPAM, CLOCK-DWF,
and MHR-LRU. MHR-LRU obtains less PCM writes than LRU-WPAM and
CLOCK-DWF do in most cases. Compared with LRU, MHR-LRU reduces 17.45% of
PCM writes on average, and reduces up to 34.1% of PCM writes. The write count
reduction of LRU-WPAM is 1.01% on average, and the best result for write reduction
is 8.69%. CLOCK-DWEF is able to reduce averagely 9.82% more writes than LRU.
Specially, MHR-LRU can till reduce 6.5% of PCM writes averagely in the worst
case (under the workload T9155).

5 Conclusions

PCM has emerged as one of the most promising memories to be used in main
memory hierarchy. A lot of studies propose to construct hybrid memory architectures
involving PCM and DRAM to utilize the advantages of both media. In this paper,
based on such hybrid memory architecture, we propose a new page replacement
algorithm called MHR-LRU to handle the problems incurred by the hybrid memory
architecture. MHR-LRU is able to maintain a high hit ratio and is able to reduce PCM
writes effectively. We conduct trace-driven experiments in a simulation environment
using six types of synthetic traces, and compare our algorithm with three competitors
including LRU, LRU-WPAM, and CLOCK-DWF in terms of different metrics. The
results show that our algorithm outperforms al the other algorithms.

T9182 T9155
T 350000 T T

350000

LRU LRU
i LRU-WPAM D LRU-WPAM
g 300000 - CLOCK-DWF 1 g 300000 F CLOCK-DWF
3 MHR-LRU 3 . MHR-LRU
O 250000 F 1 O 250000 f
[0} [0}
D 200000 | 4L 200000 -
- -
4 4
3 150000 4 3 150000 {
& &
§ 100000 f 1 & 100000 |
50000 k2 L :] 50000 : : 5
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
Memory size (page) Memory size (page)
T5582 T5555
350000 . 450000 . .
LRU LRU ——
2 300000 - LRU-WPAM |5 400000 - LRU-WPAM
o CLOCK-DWF o CLOCK-DWF
3 MHR-LRU 3 350000 MHR-LRU w1
O 250000 - O 300000 -
[0} [0}
200000 2 250000
¥ ~ L
= 150000 [= 200000
% % 150000 |
§ 100000 f & 100000 I
50000 — 50000 :
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
Memory size (page) Memory size (page)
T1982 T1955
500000 . 600000
LRU LRU ——
» 450000 - LRU-WPAM 1) LRU-WPAM
S 400000 | CLOCK-DWF] S 500000 | CLOCK-DWF
3 MHR-LRU 3 = MHRLRU
O 350000 | O 400000 |
& 300000 | I
@ 250000 gy 300000 -
3 200000 F 3 200000
g 150000 5
& 100000 | & 100000 |
50000
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
Memory size (page) Memory size (page)

Fig. 7. PCM writesunder the six synthetic traces

Acknowledgement

This paper is supported by the National Science Foundation of China (No.
61073039, 61379037, and 61272317) and the OATF project funded by University of
Science and Technology of China.

References

1. Geoffrey W. Burr, Bulent N. Kurdi, J. Campbell Scott, et al., Overview of candidate
device technologies for storage-class memory. IBM Journal of Research and Development
52(4-5): 449-464, 2008

2. Richard F. Freitas, Winfried W. Wilcke, Storage-class memory: The next storage system
technology. IBM Journa of Research and Development 52(4-5): 439-448, 2008

3. Benjamin C. Lee, Engin Ipek, Onur Mutlu, et al., Architecting phase change memory as a
scalable dram alternative. In Proc. Of ISCA, PP.2-13, 2009

10.

11.

12.

13.

M. K. Qureshi, V. Srinivasan, J. A. Rivers, Scalable high performance main memory
system using phase-change memory technology. In Proc. Of ISCA, PP.24-33, 2009

G. Dhiman, R. Z. Ayoub, T. Rosing, PDRAM: a hybrid PRAM and DRAM main memory
system. In Proc. of DAC, pp.664-669, 2009

H. Seok, Y. Park, K. W. Park, et al., Efficient page caching algorithm with prediction and
migration for a hybrid main memory. ACM SIGAPP Applied Computing Review 11(4):
38-48, 2011

Soyoon Lee, Hyokyung Bahn, Sam H. Noh, Characterizing Memory Write References for
Efficient Management of Hybrid PCM and DRAM Memory. In Proc. Of MASCOTS,
pp.168-175, 2011

F.J. Corbato, A Paging Experiment with the Multics System. In Honor of P. M. Morse,
MIT Press, pp.217-228, 1969

J. S. Bucy, J. Schindler, S. W. Schlosser, et a., The disksm simulation environment
version 4.0 reference manual (cmu-pdl-08-101). Parallel Data Laboratory: 26, 2008

P. Yang, P. Jn, L. Yue, Hybrid Storage with Disk Based Write Cache. In Proc. of
DASFAA Workshops 2011, pp. 264-275, 2011

P. Yang, P. Jin, S. Wan, L. Yue, HB-Storage: Optimizing SSDs with aHDD Write Buffer.
In Proc. of WAIM Workshops 2013, pp. 28-39, 2013

P. Jin, Y. Ou, T. Haerder, Z. Li, ADLRU: An Efficient Buffer Replacement Algorithm for
Flash-based Databases, Data and Knowledge Engineering (DKE), Elsevier, Vol.72, 83-
102, 2012

Z.Li, P.Jin, X. Sy, K. Cui, L. Yue, CCF-LRU: A New Buffer Replacement Algorithm for
Flash Memory, |EEE Trans. on Consumer Electronics, 55(3), 1351-1359, 2009

