
HAL Id: hal-01403070
https://inria.hal.science/hal-01403070

Submitted on 25 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Novel Page Replacement Algorithm for the Hybrid
Memory Architecture Involving PCM and DRAM

Kaimeng Chen, Peiquan Jin, Lihua Yue

To cite this version:
Kaimeng Chen, Peiquan Jin, Lihua Yue. A Novel Page Replacement Algorithm for the Hybrid Mem-
ory Architecture Involving PCM and DRAM. 11th IFIP International Conference on Network and
Parallel Computing (NPC), Sep 2014, Ilan, Taiwan. pp.108-119, �10.1007/978-3-662-44917-2_10�.
�hal-01403070�

https://inria.hal.science/hal-01403070
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Novel Page Replacement Algorithm for the Hybrid
Memory Architecture Involving PCM and DRAM

Kaimeng Chen1, Peiquan Jin1, 2, Lihua Yue1, 2
1School of Computer Science and Technology, University of Science and Technology of China,

Hefei, China
2Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences, Hefei,

China
jpq@ustc.edu.cn

Abstract. Recently, the development of phase change memory (PCM)
motivates new hybrid memory architectures that consist of PCM and DRAM.
An important issue in such hybrid memory architectures is how to manage the
pages resisting in heterogeneous memories. For example, when a requested
page is missing in the hybrid memory and the memory has no free spaces, what
pages in which type of memory (PCM or DRAM) should be replaced? This
problem is much different from traditional buffer replacement management,
where they do not consider the special properties of different types of
memories. In particular, differing from DRAM, PCM is non-volatile but it has
lower access speeds than DRAM. Further, PCM has a limited write endurance
which implies that it cannot be written endlessly. Therefore, we have to design
a new page replacement algorithm that can not only maintain a high hit ratio as
traditional algorithms do but also can avoid frequent writes to PCM. In this
paper, aiming to provide a new solution to the page replacement problem in
PCM/DRAM-based hybrid memories, we propose a new algorithm called
MHR-LRU (Maintain-hit-ratio LRU). The objective of our algorithm is to
reduce PCM writes while maintaining a high hit ratio. Specially, it keeps
recently updated pages in DRAM and performs page migrations between PCM
and DRAM. The migrations take into account both page access patterns and the
influences of page faults. We conduct trace-driven experiments and compared
our proposal with some existing algorithms including LRU, LRU-WPAM, and
CLOCK-DWF. The results show that our proposal is able to efficiently reduce
PCM writes without degrading the hit ratio. Thus, our study offers a better
solution for the page replacement issue in PCM/DRAM-based hybrid memory
systems than previous approaches.

Keywords: Page replacement, Phase change memory, Hybrid memory

1 Introduction

Phase change memory (PCM) is one of the most promising non-volatile memories.
PCM is byte-addressable and a type of random-access memories. Compared with
DRAM, PCM has the advantages of durability, scalability, and low energy
consumption. Thus, many researchers have proposed to incorporate PCM into the
memory hierarchy of computer systems [1-3]. However, two problems of PCM make
it difficult to totally replace DRAM in current computer systems. First, the write
latency of PCM is about 6 to10 times slower than that of DRAM. Second, PCM has a
worn-out problem because each PCM cell has limited write endurance. Thus, PCM is

not suita
comparis

Theref
PCM an
Generally
memory,
shown in
DRAM a
like the L
DRAM a
union of
memory.
operation

This p
concentra
Tradition
architectu
and DRA
to be aw
hybrid m
[6, 7] wh
existing

able for upda
on between D

Tab

Attr
Dur

Read
Write
Read
Write

Idle
De

Endu

fore, a more p
d DRAM an
y, there are

namely DRA
n Fig. 1. The D
as the cache of
L1 and L2 cac
at the same lev

DRAM and
In this situa

n system.

Fig

paper focuse
ate on the pa
nal page replac
ure. They are

AM have diffe
are of these d

memory archite
hile others are
algorithms is

ate-intensive a
DRAM and PC

ble. 1. Compar

ributes
ability
Latency

e latency 2
Energy ~

e Energy ~
Power ~

ensity
urance

practical way
nd thus to c
two architect
AM cache ar
DRAM cache
f PCM [4]. Th
ches for CPU
vel in main m
PCM, and b

ation, all the p

. 1. Memory arc

es on the hy
age replaceme
cement algori
not suitable f

erent characte
differences. S
ecture are pro
e on flash me
s to keep wr

applications.
CM.

rison between

DRAM
Volatile

50 ns
20 – 50 ns
~ 0.1 nJ/b
~ 0.1 nJ/b

~ 1.3 W/GB
Low ∞

to utilize PCM
construct a h
tures to inte
rchitecture an
architecture u

he DRAM cac
U. The hybrid
memory [5]. Th
both of their s
pages in DRA

chitectures consi

ybrid memor
ent problem f
ithms are desi
for the hybrid
eristics and th
o far, a few p

oposed; some
emory and HD
rite-intensive

As a summ

n PCM and DR

PCM
Non-volat

50 ns
350 – 1000

~ 0.1 nJ/
~ 0.5 nJ/
~ 0.05 W

High (~ 4X D10଼ for wr

M in memory
hybrid memor
grate PCM i
nd hybrid me
uses PCM as
che is hidden t
memory arch
he hybrid mem
storage capac
AM and PCM

ists of PCM and

ry architectu
for the hybrid
igned for DRA
d memory arc
he page replac
page replacem
of them focu

DD [10, 11]. T
pages in DR

ary, Table 1

RAM

tile

0 ns
/b
/b

W
DRAM)

rite

y architectures
ry architectur
in DRAM-ba
emory archite
main memory
to the operatio
hitecture puts
mory is regard
cities are used
M are manag

DRAM

ure. In partic
d memory arc
AM-only main
hitecture beca

cement algorit
ment algorithm
us on PCM an
The similar id
RAM and to

 shows a

s is to use
re [4, 5].
ased main
ecture, as
y and uses
on system,
PCM and

rded as the
d as main

ged by the

cular, we
chitecture.
n memory
ause PCM
thms have
ms for the
nd DRAM
dea of the

let read-

intensive
specific p
process o
the page
moved ac
PCM and

Howev
systems.
read-inten
incur wri
additiona
a page be
To accom
to choose
of memo
algorithm
memory r

Fig. 2
both PCM
memory,
victim to
conventio
the memo
access lat
lower the

In this
(Maintain
to mainta
Differing
PCM and
when pag
release ex

pages in PC
page migratio

of a page migr
migration al

ccording to its
d the write-inte
ver, there are
First, these al
nsive pages in
ites to PCM,

al writes to PC
etween PCM a
mmodate the m
e a victim pag
ory request.

ms for hybrid
requests.

F

shows an exa
M and DRAM
when a page

o make spac
onal algorithm
ory. Because
tency of PCM
e overall perfo

paper, we pre
n-hit-ratio LR
ain a high h

g from previo
d DRAM whe
ge faults occ
xtra pages. Th

CM so that D
on schemes a
ration is as fol
lgorithm dete
s access patter
ensive page in
two problem

lgorithms alw
n DRAM to P
, always cach
CM especially
and DRAM ha
moved page in
ge to release it
Thus, compa
memory usua

Fig. 2. A page fau

ample that how
M are full. Fo
P1 in PCM is

ce for P1. T
m without pag

the access lat
M, decreasing h
ormance of hyb
esent an effici
U) for PCM/D
it ratio and

ous algorithm
en page requ

cur. Thus, the
his is helpful t

RAM can ab
are introduced
llows: when a

ermines wheth
rn. The read-i
n PCM is mov

ms in the exis
ways place pag
PCM. Because
hing read-inte

y under read-in
as to consider
n the target m
ts space [6, 7

ared with con
ally introduce

ult occurs becau

w page migra
or the algorit
s migrated to D
Then, the rea
ge migration,
atency of hard
hit ratio to red

ybrid memory.
ient page repla
DRAM-based
to reduce PC

ms, our algorit
uests arrive. In
e page migra
to maintain a h

bsorb most wr
d in previous
a page request
her the reque
ntensive page

ved to DRAM
sting algorithm
ges read from
e page placem
ensive pages
ntensive work
r the problem

medium, the pr
]. This has an
nventional al
e more page

use of page migr

ation can affec
thm with pag
DRAM, P4 in
ad request to
both requests

d disk is much
duce write acc
.
acement algor
hybrid memo

CM writes fo
thm does not
nstead, we pe

ations in our
high hit ratio,

rites. For this
algorithms. T

t comes to the
sted page ne

e in DRAM is
M.

ms for hybrid
disk in PCM

ment and migr
in PCM ma

kloads. Second
that the memo

revious algorit
n impact on th
lgorithms, the
faults when p

ation

ct the hit ratio
e migration f
DRAM is sel

o P4 misses.
s to P1 and to
h slower than
cess count on P

rithm called M
ory. The algor
or the hybrid
t move pages
erform page m
algorithm ne
because relea

s purpose,
The basic

e memory,
eeds to be
s moved to

d memory
and move

ration also
ay lead to
d, moving
ory is full.
thms have

he hit ratio
e existing
processing

o. Initially,
for hybrid
lected as a
. For the

o P4 hit in
n the write
PCM may

MHR-LRU
rithm aims

memory.
s between
migrations
eed not to
asing extra

pages will lower the hit ratio. Besides, MHR-LRU places write-intensive pages in
DRAM to reduce PCM writes. Under read-intensive workloads, DRAM is efficiently
used to absorb most read requests and to limit the number of writes to PCM triggered
by page placement and page migration.

We perform trace-driven experiments in a hybrid memory simulation environment
to evaluate the performance of MHR-LRU. We use different types of workloads and
conduct comparisons with other algorithms including LRU, LRU-WPAM [6], and
CLOCK-DWF [7]. The results show that our algorithm is able to maintain a high hit
ratio for different workloads and outperform the other three competitors considering
PCM writes.

The remainder of this paper is organized as follows. In Section 2, we sketch the
related work. In Section 3, we present the MHR-LRU page replacement algorithm for
the hybrid memory architecture. Section 4 describes the details about the experiments
and the performance evaluation results. Finally, Section 5 concludes the paper.

2 Related Work

Conventional page replacement algorithms have been designed for DRAM-based
main memory with uniform access latency and unlimited write endurance. Hit ratio is
the key metric to evaluate the performance.

LRU (Least Recently Used) is a conventional page replacement algorithm that has
been widely used. LRU aligns all pages in memory in order of their most recent
reference times. When a page fault occurs and the buffer pool is full, the least recently
used page in memory is selected as a victim. LRU has also been widely used for
buffer management over new types of storage media such as flash memory [12, 13].

Page replacement algorithms for hybrid main memory as shown in Fig. 1(b) should
consider not only the hit ratio but also the number of PCM writes because PCM has
the long write latency and limited endurance.

LRU-WPAM (LRU-With-Prediction-And-Migration) is an LRU-based page
replacement algorithm for hybrid main memory [6]. The algorithm aligns all pages in
hybrid main memory as a LRU queue, and use four monitoring queues: a DRAM read
queue, a DRAM write queue, a PCM read queue and a PCM write queue. Each page
is retained into both LRU list and one of the four queues according to its access
pattern and located memory type. To measure the access pattern of a page in hybrid
memory, the algorithm provides a weight value for each page. Each time a page hits
in the memory, the page’s weight is calculated again according to the type of this
access request, if its weight value is above the threshold, the page will be migrated. If
the memory need to choose a victim to release for receiving the migrated page,
DRAM choose the least recently used page in DRAM read queue and PCM choose
the least recently used page in PCM write queue.

CLOCK-DWF is a CLOCK-based page replacement algorithm for hybrid main
memory [7]. When a page fault occurs, if the request is read, the page is put on PCM;
otherwise the page is put on DRAM. When a page on PCM hits by write request, the
page is migrated to DRAM. To get a free page frame while the memory is full, PCM
use conventional CLOCK algorithm to select a victim page to release [8], but DRAM
migrates a low write frequency page to PCM.

Both LRU-WPAM and CLOCK-DWF release pages in page migration, this would
causes hit ratio degradation. Both of the two algorithms force read-bound pages to
place on PCM, this may incurs higher PCM write count than conventional algorithms.
For these problem, our study present a new method to reduce PCM write count
without sacrificing hit ratio by merging page migration into page replacement process
and just limiting write-bound pages to the DRAM. The details will be given in
Section 3.

3 The MHR-LRU Algorithm

In this section, we present the details of the MHR-LRU algorithm for hybrid main
memory. MHR-LRU aims to reduce the writes to PCM without degrading hit ratio so
as to improve the overall performance of hybrid main memory. In order to accomplish
this goal, we design the scheme that performs the page migration when page
replacement occurs to make write-intensive pages on PCM.

3.1 The Main Idea

The main idea of MHR-LRU algorithm is described as follows:
(1) The algorithm use LRU list to manage pages together in hybrid main memory.

All pages in hybrid memory are aligned in order of their most recent reference time.
When a page fault occurs, the page in the LRU position will be selected as victim no
matter where it locates.

(2) The algorithm uses a special data structure called DWL (DRAM Write-aware
LRU list) to manage pages in DRAM. DWL aligns all pages in DRAM in order of
their most recent write reference time.

(3) When a page fault occurs and the victim has been selected, MHR-LRU check
the page access type and the victim's location, if the page's access request is write and
the victim is located on PCM, MHR-LRU perform page migration: the victim on
PCM is released and the page in the LRU position of DWL is migrated to PCM, then
the requested page is put on DRAM. By doing so, MHR-LRU can get the following
benefits: First, the page migration does not cause extra page release, so it does not
affect the hit ratio; Second, since putting a page from disk on PCM and migrating a
page in DRAM to PCM incur the same amount of write on PCM, compared with
putting the requested page on PCM then performing write operation on it, migrating
an in-DRAM page to PCM and putting the requested page on DRAM for write
operation can immediately reduce the amount of write on PCM; Third, according to
principle of temporal locality, page with the most recently write reference has a
higher possibility to be write again than the page in the LRU position of DWL, this
page migration can reduce the number of future write operation on PCM.

3.2 The Detailed Algorithm

Fig. 3 shows the detailed algorithm of MHR-LRU. If a requested page is found in
DRAM, the page is also maintained in both the LRU list and DWL. Hence, we check
the type of this page request. If it is a read request, we move the page to the MRU
position of the LRU list. If it is a write request, we move the page to the MRU
position of the LRU list and the MRU position of DWL (Line 1 ~ 7). If the requested

page is in PCM, the page is maintained in LRU list, we move the page to the MRU
position of the LRU list (Line 8 ~ 10).

Algorithm MHR-LRU(request q)

Input: a page request q
Output: a reference to the requested page
Preliminary: (1) L is the LRU list of the memory, DWL is the DRAM write-aware list.
 (2) p is the requested page.

1: if p is in DRAM then
2: if q is a read request then
3: move p to MRU position of L
4: else
5: move p to MRU position of L;
6: move p to MRU position of DWL;
7: return a reference to p;
8: else if p is in PCM then
9: move p to MRU position of L;
10: return a reference to p;

/*page fault occurs*/
11: else
12: if there is a free frame in hybrid main memory then
13: put p into the free frame;
14: else
15: get victim from LRU position of L;
16: if victim is in PCM and q is a write request then
17: get page m from LRU position of DWL;
18: release victim and migrate m to PCM;
19: put p into the free frame of DRAM;
20: else
21: release victim and put p into the free frame;
22: insert p into MRU position of L;
23: if p is in DRAM then
24: if q is a write request then
25: insert p into MRU position of DWL;
26: else
27: insert p into LRU position of DWL;
28: return a reference to p;

Fig. 3. The detailed algorithm of MHR-LRU

If a page is missing, we have to find a free frame to cache the requested page. If the
memory has free spaces, we put the requested page into a randomly-selected free
frame (Line 12 ~ 13). If the memory is full, we select the page in the LRU position of
the LRU list as victim, if the victim is in PCM and the page's request is a write
request, the victim is released. We do not put the requested page in PCM but move
the page in the LRU position of DWL to PCM, and put the requested page into

DRAM.
After put
to the MR
the DWL
inserted t
(Line 22

Otherwise, w
tting the reque
RU position o
L according to
to the MRU p
~ 28).

we just evict th
ested page into
f the LRU list
o its request t
osition of DW

Fig. 4. An exa

he victim for
o the hybrid m
t. If the reques
type. If the pa

WL, else it is in

ample of the MH

the requested
memory, we in
sted page is in
age's request
nserted to the

HR-LRU algorith

d page (Line
nsert the reque
n DRAM, we i
is a write req
LRU position

hm

14 ~ 21).
ested page
insert it to

quest, it is
n of DWL

Fig. 4 gives an example of MHR-LRU. Fig. 4 (a) shows the initial state of the
hybrid memory. The buffer contains P0, P1, P2, P3, P4, P5. P0, P2, P3 are in PCM,
and P1, P4, and P5 are in DRAM. All pages are in LRU list and P1, P4, P5 are in
DWL. Fig. 4 (b) shows the situation of page hits, and Fig. 4 (c) shows the situation of
page faults.

Fig. 4 indicates that, when page faults occur, MHR-LRU selects and releases the
least recently used page, which is similar to the LRU algorithm. This ensures that our
algorithm can have the similar hit ratio as LRU. However, our algorithm does not
release pages when page hits occurs, which is different from LRU-WPAM and
CLOCK-DWF.

4 Performance Evaluation

In this section, we compare our algorithm with LRU, LRU-WPAM, and CLOCK-
DWF. LRU is the reprehensive of traditional page replacement algorithms. LRU-
WPAM and CLOCK-DWF are the recently proposed algorithms for the hybrid
memory architecture.

4.1 Experimental Setup and Datasets

We use simulation experiments to evaluate our algorithm. We design the simulator
for the hybrid memory architecture. In the experiments, the DRAM-to-PCM ratio is
set to 1:4 because PCM density is expected to be four times higher than that of
DRAM. Based on the simulator, the compared page replacement algorithms are
implemented and trace-driven experiments are performed for performance evaluation.
The parameters used in LRU-WPAM and CLOCK-DWF are the same as those in the
original papers [6, 7].

We perform our simulation experiments with six types of synthetic traces. These
traces are generated by DiskSim [9]. The characteristics of these traces are given in
Table 2. The locality in Table 2, for example 80% / 20%, means that eighty percent of
total references are focused on twenty percent of the pages.

4.2 Hit Ratios

Hit ratio is a key metric for the performance of page replacement algorithms. First,
we compare the hit ratio of our algorithm with other three ones by varying the size of
memory. We use the number of page faults to measure hit ratio. The results are shown
in Fig. 5.

Table. 2. Six types of synthetic traces

Type
Total

Reference
Different Pages

Accessed
Read/Write

Ratio
Locality

T9182 300,000 10,000 90% / 10% 80% / 20%
T9155 300,000 10,000 90% / 10% 50% / 50%
T5582 300,000 10,000 50% / 50% 80% / 20%
T5555 300,000 10,000 50% / 50% 50% / 50%
T1982 300,000 10,000 10% / 90% 80% / 20%
T1955 300,000 10,000 10% / 90% 50% / 50%

As Fig. 5 shows, when measures under the workloads with low localities (T9155,
T5555, T1955), the hit ratios of LRU-WPAM and CLOCK-DWF are almost the same
as the hit ratio of LRU and MHR-LRU. Because all algorithms are based on temporal
locality, a low locality access pattern leads to very similar hit ratios of four algorithms.
When using the high-locality workloads (T9182, T5582, T1982), with the increase of
the ratio of write operations in workloads, LRU-WPAM and CLOCK-DWF show
higher number of page faults than LRU and MHR-LRU do.

Fig. 5. Number of page faults under the six synthetic traces

LRU-WPAM and CLOCK-DWF usually release pages when they perform page
migration. As shown in Fig. 2, this page release can introduce page fault. To show the
relationship between page fault and page release, during the experiment, we collect
page release count of LRU-WPAM and CLOCK-DWF under high-locality workloads
that LRU-WPAM and CLOCK-DWF show higher number of page fault. When page
migration occurs and one page in the target medium has been released, the page

 50000

 100000

 150000

 200000

 250000

 300000

 350000

500 1000 1500 2000 2500 3000

P
a
g
e

f
a
u
l
t

c
o
u
n
t

Memory size(page)

T9182

MHR-LRU
LRU

LRU-WPAM
CLOCK-DWF

 50000

 100000

 150000

 200000

 250000

 300000

 350000

500 1000 1500 2000 2500 3000

P
a
g
e

f
a
u
l
t

c
o
u
n
t

Memory size(page)

T9155

MHR-LRU
LRU

LRU-WPAM
CLOCK-DWF

 50000

 100000

 150000

 200000

 250000

 300000

 350000

500 1000 1500 2000 2500 3000

P
a
g
e

f
a
u
l
t

c
o
u
n
t

Memory size(page)

T5582

MHR-LRU
LRU

LRU-WPAM
CLOCK-DWF

 50000

 100000

 150000

 200000

 250000

 300000

 350000

500 1000 1500 2000 2500 3000

P
a
g
e

f
a
u
l
t

c
o
u
n
t

Memory size(page)

T5555

MHR-LRU
LRU

LRU-WPAM
CLOCK-DWF

 50000

 100000

 150000

 200000

 250000

 300000

 350000

500 1000 1500 2000 2500 3000

P
a
g
e

f
a
u
l
t

c
o
u
n
t

Memory size(page)

T1982

MHR-LRU
LRU

LRU-WPAM
CLOCK-DWF

 50000

 100000

 150000

 200000

 250000

 300000

 350000

500 1000 1500 2000 2500 3000

P
a
g
e

f
a
u
l
t

c
o
u
n
t

Memory size(page)

T1955

MHR-LRU
LRU

LRU-WPAM
CLOCK-DWF

release count increases. The result is shown in Fig. 6. As Fig. 6 shows, for LRU-
WPAM and CLOCK-DWF, workloads with high ratio of write operations cause more
pages to be released because of page migrations. This consequently leads to a higher
number of page faults.

 (a) LRU-WPAM (b) CLOCK-DWF

Fig. 6. Number of page releases triggered by page migrations

4.3 Writes to PCM

The writes count to PCM is related to the overall write performance of the hybrid
memory and the lifetime of PCM. In this section, we measure the number of write
operations on PCM incurred by MHR-LRU in comparison with LRU, LRU-WPAM,
and CLOCK-DWF.

Fig. 7 shows the number of PCM writes for LRU, LRU-WPAM, CLOCK-DWF,
and MHR-LRU. MHR-LRU obtains less PCM writes than LRU-WPAM and
CLOCK-DWF do in most cases. Compared with LRU, MHR-LRU reduces 17.45% of
PCM writes on average, and reduces up to 34.1% of PCM writes. The write count
reduction of LRU-WPAM is 1.01% on average, and the best result for write reduction
is 8.69%. CLOCK-DWF is able to reduce averagely 9.82% more writes than LRU.
Specially, MHR-LRU can still reduce 6.5% of PCM writes averagely in the worst
case (under the workload T9155).

5 Conclusions

PCM has emerged as one of the most promising memories to be used in main
memory hierarchy. A lot of studies propose to construct hybrid memory architectures
involving PCM and DRAM to utilize the advantages of both media. In this paper,
based on such hybrid memory architecture, we propose a new page replacement
algorithm called MHR-LRU to handle the problems incurred by the hybrid memory
architecture. MHR-LRU is able to maintain a high hit ratio and is able to reduce PCM
writes effectively. We conduct trace-driven experiments in a simulation environment
using six types of synthetic traces, and compare our algorithm with three competitors
including LRU, LRU-WPAM, and CLOCK-DWF in terms of different metrics. The
results show that our algorithm outperforms all the other algorithms.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 500 1000 1500 2000 2500 3000 3500

P
a
g
e

r
e
l
e
a
s
e

c
o
u
n
t

Memory size(page)

T9182
T5582
T1982

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 500 1000 1500 2000 2500 3000 3500
P
a
g
e

r
e
l
e
a
s
e

c
o
u
n
t

Memory size(page)

T9182
T5582
T1982

Fig. 7. PCM writes under the six synthetic traces

Acknowledgement

This paper is supported by the National Science Foundation of China (No.
61073039, 61379037, and 61272317) and the OATF project funded by University of
Science and Technology of China.

References

1. Geoffrey W. Burr, Bülent N. Kurdi, J. Campbell Scott, et al., Overview of candidate
device technologies for storage-class memory. IBM Journal of Research and Development
52(4-5): 449-464, 2008

2. Richard F. Freitas, Winfried W. Wilcke, Storage-class memory: The next storage system
technology. IBM Journal of Research and Development 52(4-5): 439-448, 2008

3. Benjamin C. Lee, Engin Ipek, Onur Mutlu, et al., Architecting phase change memory as a
scalable dram alternative. In Proc. Of ISCA, PP.2-13, 2009

 50000

 100000

 150000

 200000

 250000

 300000

 350000

500 1000 1500 2000 2500 3000

P
C
M

w
r
i
t
e

c
o
u
n
t

Memory size(page)

T9182

LRU
LRU-WPAM

CLOCK-DWF
MHR-LRU

 50000

 100000

 150000

 200000

 250000

 300000

 350000

500 1000 1500 2000 2500 3000

P
C
M

w
r
i
t
e

c
o
u
n
t

Memory size(page)

T9155

LRU
LRU-WPAM

CLOCK-DWF
MHR-LRU

 50000

 100000

 150000

 200000

 250000

 300000

 350000

500 1000 1500 2000 2500 3000

P
C
M

w
r
i
t
e

c
o
u
n
t

Memory size(page)

T5582

LRU
LRU-WPAM

CLOCK-DWF
MHR-LRU

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

500 1000 1500 2000 2500 3000

P
C
M

w
r
i
t
e

c
o
u
n
t

Memory size(page)

T5555

LRU
LRU-WPAM

CLOCK-DWF
MHR-LRU

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

500 1000 1500 2000 2500 3000

P
C
M

w
r
i
t
e

c
o
u
n
t

Memory size(page)

T1982

LRU
LRU-WPAM

CLOCK-DWF
MHR-LRU

 100000

 200000

 300000

 400000

 500000

 600000

500 1000 1500 2000 2500 3000

P
C
M

w
r
i
t
e

c
o
u
n
t

Memory size(page)

T1955

LRU
LRU-WPAM

CLOCK-DWF
MHR-LRU

4. M. K. Qureshi, V. Srinivasan, J. A. Rivers, Scalable high performance main memory
system using phase-change memory technology. In Proc. Of ISCA, PP.24-33, 2009

5. G. Dhiman, R. Z. Ayoub, T. Rosing, PDRAM: a hybrid PRAM and DRAM main memory
system. In Proc. of DAC, pp.664-669, 2009

6. H. Seok, Y. Park, K. W. Park, et al., Efficient page caching algorithm with prediction and
migration for a hybrid main memory. ACM SIGAPP Applied Computing Review 11(4):
38-48, 2011

7. Soyoon Lee, Hyokyung Bahn, Sam H. Noh, Characterizing Memory Write References for
Efficient Management of Hybrid PCM and DRAM Memory. In Proc. Of MASCOTS,
pp.168-175, 2011

8. F.J. Corbato, A Paging Experiment with the Multics System. In Honor of P. M. Morse,
MIT Press, pp.217-228, 1969

9. J. S. Bucy, J. Schindler, S. W. Schlosser, et al., The disksim simulation environment
version 4.0 reference manual (cmu-pdl-08-101). Parallel Data Laboratory: 26, 2008

10. P. Yang, P. Jin, L. Yue, Hybrid Storage with Disk Based Write Cache. In Proc. of
DASFAA Workshops 2011, pp. 264-275, 2011

11. P. Yang, P. Jin, S. Wan, L. Yue, HB-Storage: Optimizing SSDs with a HDD Write Buffer.
In Proc. of WAIM Workshops 2013, pp. 28-39, 2013

12. P. Jin, Y. Ou, T. Haerder, Z. Li, ADLRU: An Efficient Buffer Replacement Algorithm for
Flash-based Databases, Data and Knowledge Engineering (DKE), Elsevier, Vol.72, 83-
102, 2012

13. Z. Li, P. Jin, X. Su, K. Cui, L. Yue, CCF-LRU: A New Buffer Replacement Algorithm for
Flash Memory, IEEE Trans. on Consumer Electronics, 55(3), 1351-1359, 2009

