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Abstract. Recently, the development of phase change memory (PCM) 
motivates new hybrid memory architectures that consist of PCM and DRAM. 
An important issue in such hybrid memory architectures is how to manage the 
pages resisting in heterogeneous memories. For example, when a requested 
page is missing in the hybrid memory and the memory has no free spaces, what 
pages in which type of memory (PCM or DRAM) should be replaced? This 
problem is much different from traditional buffer replacement management, 
where they do not consider the special properties of different types of 
memories. In particular, differing from DRAM, PCM is non-volatile but it has 
lower access speeds than DRAM. Further, PCM has a limited write endurance 
which implies that it cannot be written endlessly. Therefore, we have to design 
a new page replacement algorithm that can not only maintain a high hit ratio as 
traditional algorithms do but also can avoid frequent writes to PCM. In this 
paper, aiming to provide a new solution to the page replacement problem in 
PCM/DRAM-based hybrid memories, we propose a new algorithm called 
MHR-LRU (Maintain-hit-ratio LRU). The objective of our algorithm is to 
reduce PCM writes while maintaining a high hit ratio. Specially, it keeps 
recently updated pages in DRAM and performs page migrations between PCM 
and DRAM. The migrations take into account both page access patterns and the 
influences of page faults. We conduct trace-driven experiments and compared 
our proposal with some existing algorithms including LRU, LRU-WPAM, and 
CLOCK-DWF. The results show that our proposal is able to efficiently reduce 
PCM writes without degrading the hit ratio. Thus, our study offers a better 
solution for the page replacement issue in PCM/DRAM-based hybrid memory 
systems than previous approaches. 
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1 Introduction 

Phase change memory (PCM) is one of the most promising non-volatile memories. 
PCM is byte-addressable and a type of random-access memories. Compared with 
DRAM, PCM has the advantages of durability, scalability, and low energy 
consumption. Thus, many researchers have proposed to incorporate PCM into the 
memory hierarchy of computer systems [1-3]. However, two problems of PCM make 
it difficult to totally replace DRAM in current computer systems. First, the write 
latency of PCM is about 6 to10 times slower than that of DRAM. Second, PCM has a 
worn-out problem because each PCM cell has limited write endurance. Thus, PCM is 
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pages will lower the hit ratio. Besides, MHR-LRU places write-intensive pages in 
DRAM to reduce PCM writes. Under read-intensive workloads, DRAM is efficiently 
used to absorb most read requests and to limit the number of writes to PCM triggered 
by page placement and page migration.  

We perform trace-driven experiments in a hybrid memory simulation environment 
to evaluate the performance of MHR-LRU. We use different types of workloads and 
conduct comparisons with other algorithms including LRU, LRU-WPAM [6], and 
CLOCK-DWF [7]. The results show that our algorithm is able to maintain a high hit 
ratio for different workloads and outperform the other three competitors considering 
PCM writes. 

The remainder of this paper is organized as follows. In Section 2, we sketch the 
related work. In Section 3, we present the MHR-LRU page replacement algorithm for 
the hybrid memory architecture. Section 4 describes the details about the experiments 
and the performance evaluation results. Finally, Section 5 concludes the paper. 

2 Related Work 

Conventional page replacement algorithms have been designed for DRAM-based 
main memory with uniform access latency and unlimited write endurance. Hit ratio is 
the key metric to evaluate the performance.  

LRU (Least Recently Used) is a conventional page replacement algorithm that has 
been widely used. LRU aligns all pages in memory in order of their most recent 
reference times. When a page fault occurs and the buffer pool is full, the least recently 
used page in memory is selected as a victim. LRU has also been widely used for 
buffer management over new types of storage media such as flash memory [12, 13]. 

Page replacement algorithms for hybrid main memory as shown in Fig. 1(b) should 
consider not only the hit ratio but also the number of PCM writes because PCM has 
the long write latency and limited endurance. 

LRU-WPAM (LRU-With-Prediction-And-Migration) is an LRU-based page 
replacement algorithm for hybrid main memory [6]. The algorithm aligns all pages in 
hybrid main memory as a LRU queue, and use four monitoring queues: a DRAM read 
queue, a DRAM write queue, a PCM read queue and a PCM write queue. Each page 
is retained into both LRU list and one of the four queues according to its access 
pattern and located memory type. To measure the access pattern of a page in hybrid 
memory, the algorithm provides a weight value for each page. Each time a page hits 
in the memory, the page’s weight is calculated again according to the type of this 
access request, if its weight value is above the threshold, the page will be migrated. If 
the memory need to choose a victim to release for receiving the migrated page, 
DRAM choose the least recently used page in DRAM read queue and PCM choose 
the least recently used page in PCM write queue.  

CLOCK-DWF is a CLOCK-based page replacement algorithm for hybrid main 
memory [7]. When a page fault occurs, if the request is read, the page is put on PCM; 
otherwise the page is put on DRAM. When a page on PCM hits by write request, the 
page is migrated to DRAM. To get a free page frame while the memory is full, PCM 
use conventional CLOCK algorithm to select a victim page to release [8], but DRAM 
migrates a low write frequency page to PCM. 



Both LRU-WPAM and CLOCK-DWF release pages in page migration, this would 
causes hit ratio degradation. Both of the two algorithms force read-bound pages to 
place on PCM, this may incurs higher PCM write count than conventional algorithms. 
For these problem, our study present a new method to reduce PCM write count 
without sacrificing hit ratio by merging page migration into page replacement process 
and just limiting write-bound pages to the DRAM. The details will be given in 
Section 3. 

3 The MHR-LRU Algorithm 

In this section, we present the details of the MHR-LRU algorithm for hybrid main 
memory. MHR-LRU aims to reduce the writes to PCM without degrading hit ratio so 
as to improve the overall performance of hybrid main memory. In order to accomplish 
this goal, we design the scheme that performs the page migration when page 
replacement occurs to make write-intensive pages on PCM. 

3.1 The Main Idea 

The main idea of MHR-LRU algorithm is described as follows: 
(1) The algorithm use LRU list to manage pages together in hybrid main memory. 

All pages in hybrid memory are aligned in order of their most recent reference time. 
When a page fault occurs, the page in the LRU position will be selected as victim no 
matter where it locates. 

(2) The algorithm uses a special data structure called DWL (DRAM Write-aware 
LRU list) to manage pages in DRAM. DWL aligns all pages in DRAM in order of 
their most recent write reference time.  

(3) When a page fault occurs and the victim has been selected, MHR-LRU check 
the page access type and the victim's location, if the page's access request is write and 
the victim is located on PCM, MHR-LRU perform page migration: the victim on 
PCM is released and the page in the LRU position of DWL is migrated to PCM, then 
the requested page is put on DRAM. By doing so, MHR-LRU can get the following 
benefits: First, the page migration does not cause extra page release, so it does not 
affect the hit ratio; Second, since putting a page from disk on PCM and migrating a 
page in DRAM to PCM incur the same amount of write on PCM, compared with 
putting the requested page on PCM then performing write operation on it, migrating 
an in-DRAM page to PCM and putting the requested page on DRAM for write 
operation can immediately reduce the amount of write on PCM; Third, according to 
principle of temporal locality, page with the most recently write reference has a 
higher possibility to be write again than the page in the LRU position of DWL, this 
page migration can reduce the number of future write operation on PCM. 

3.2 The Detailed Algorithm 

Fig. 3 shows the detailed algorithm of MHR-LRU. If a requested page is found in 
DRAM, the page is also maintained in both the LRU list and DWL. Hence, we check 
the type of this page request. If it is a read request, we move the page to the MRU 
position of the LRU list. If it is a write request, we move the page to the MRU 
position of the LRU list and the MRU position of DWL (Line 1 ~ 7). If the requested 



page is in PCM, the page is maintained in LRU list, we move the page to the MRU 
position of the LRU list (Line 8 ~ 10).  

Algorithm MHR-LRU(request q) 

Input: a page request q 
Output: a reference to the requested page 
Preliminary: (1) L is the LRU list of the memory, DWL is the DRAM write-aware list. 
                       (2) p is the requested page. 

1:      if p is in DRAM then 
2:           if q is a read request then 
3:                 move p to MRU position of L 
4:           else 
5:                 move p to MRU position of L; 
6:                 move p to MRU position of DWL; 
7:           return a reference to p; 
8:      else if p is in PCM then 
9:           move p to MRU position of L; 
10:         return a reference to p; 

/*page fault occurs*/ 
11:    else  
12:         if there is a free frame in hybrid main memory then 
13:                put p into the free frame; 
14:         else  
15:                get victim from LRU position of L;  
16:                if victim is in PCM and q is a write request then 
17:                    get page m from LRU position of DWL; 
18:                    release victim and migrate m to PCM; 
19:                    put p into the free frame of DRAM; 
20:                else 
21:                    release victim and put p into the free frame; 
22:         insert p into MRU position of L; 
23:         if p is in DRAM then 
24:                if q is a write request then 
25:                    insert p into MRU position of DWL; 
26:                else 
27:                    insert p into LRU position of DWL; 
28:     return a reference to p; 

Fig. 3. The detailed algorithm of MHR-LRU 

If a page is missing, we have to find a free frame to cache the requested page. If the 
memory has free spaces, we put the requested page into a randomly-selected free 
frame (Line 12 ~ 13). If the memory is full, we select the page in the LRU position of 
the LRU list as victim, if the victim is in PCM and the page's request is a write 
request, the victim is released. We do not put the requested page in PCM but move 
the page in the LRU position of DWL to PCM, and put the requested page into 
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Fig. 4 gives an example of MHR-LRU. Fig. 4 (a) shows the initial state of the 
hybrid memory. The buffer contains P0, P1, P2, P3, P4, P5. P0, P2, P3 are in PCM, 
and P1, P4, and P5 are in DRAM. All pages are in LRU list and P1, P4, P5 are in 
DWL. Fig. 4 (b) shows the situation of page hits, and Fig. 4 (c) shows the situation of 
page faults.  

Fig. 4 indicates that, when page faults occur, MHR-LRU selects and releases the 
least recently used page, which is similar to the LRU algorithm. This ensures that our 
algorithm can have the similar hit ratio as LRU. However, our algorithm does not 
release pages when page hits occurs, which is different from LRU-WPAM and 
CLOCK-DWF. 

4 Performance Evaluation 

In this section, we compare our algorithm with LRU, LRU-WPAM, and CLOCK-
DWF. LRU is the reprehensive of traditional page replacement algorithms. LRU-
WPAM and CLOCK-DWF are the recently proposed algorithms for the hybrid 
memory architecture. 

4.1 Experimental Setup and Datasets 

We use simulation experiments to evaluate our algorithm. We design the simulator 
for the hybrid memory architecture. In the experiments, the DRAM-to-PCM ratio is 
set to 1:4 because PCM density is expected to be four times higher than that of 
DRAM. Based on the simulator, the compared page replacement algorithms are 
implemented and trace-driven experiments are performed for performance evaluation. 
The parameters used in LRU-WPAM and CLOCK-DWF are the same as those in the 
original papers [6, 7]. 

We perform our simulation experiments with six types of synthetic traces. These 
traces are generated by DiskSim [9]. The characteristics of these traces are given in 
Table 2. The locality in Table 2, for example 80% / 20%, means that eighty percent of 
total references are focused on twenty percent of the pages. 

4.2 Hit Ratios 

Hit ratio is a key metric for the performance of page replacement algorithms. First, 
we compare the hit ratio of our algorithm with other three ones by varying the size of 
memory. We use the number of page faults to measure hit ratio. The results are shown 
in Fig. 5. 

Table. 2. Six types of synthetic traces 

Type 
Total 

Reference 
Different Pages 

Accessed 
Read/Write 

Ratio 
Locality 

T9182 300,000 10,000 90% / 10% 80% / 20% 
T9155 300,000 10,000 90% / 10% 50% / 50% 
T5582 300,000 10,000 50% / 50% 80% / 20% 
T5555 300,000 10,000 50% / 50% 50% / 50% 
T1982 300,000 10,000 10% / 90% 80% / 20% 
T1955 300,000 10,000 10% / 90% 50% / 50% 



As Fig. 5 shows, when measures under the workloads with low localities (T9155, 
T5555, T1955), the hit ratios of LRU-WPAM and CLOCK-DWF are almost the same 
as the hit ratio of LRU and MHR-LRU. Because all algorithms are based on temporal 
locality, a low locality access pattern leads to very similar hit ratios of four algorithms. 
When using the high-locality workloads (T9182, T5582, T1982), with the increase of 
the ratio of write operations in workloads, LRU-WPAM and CLOCK-DWF show 
higher number of page faults than LRU and MHR-LRU do.  

 

Fig. 5. Number of page faults under the six synthetic traces 

LRU-WPAM and CLOCK-DWF usually release pages when they perform page 
migration. As shown in Fig. 2, this page release can introduce page fault. To show the 
relationship between page fault and page release, during the experiment, we collect 
page release count of LRU-WPAM and CLOCK-DWF under high-locality workloads 
that LRU-WPAM and CLOCK-DWF show higher number of page fault.  When page 
migration occurs and one page in the target medium has been released, the page 
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release count increases. The result is shown in Fig. 6. As Fig. 6 shows, for LRU-
WPAM and CLOCK-DWF, workloads with high ratio of write operations cause more 
pages to be released because of page migrations. This consequently leads to a higher 
number of page faults. 

 

                               (a)  LRU-WPAM                  (b) CLOCK-DWF 

Fig. 6. Number of page releases triggered by page migrations 

4.3 Writes to PCM 

The writes count to PCM is related to the overall write performance of the hybrid 
memory and the lifetime of PCM. In this section, we measure the number of write 
operations on PCM incurred by MHR-LRU in comparison with LRU, LRU-WPAM, 
and CLOCK-DWF. 

Fig. 7 shows the number of PCM writes for LRU, LRU-WPAM, CLOCK-DWF, 
and MHR-LRU. MHR-LRU obtains less PCM writes than LRU-WPAM and 
CLOCK-DWF do in most cases. Compared with LRU, MHR-LRU reduces 17.45% of 
PCM writes on average, and reduces up to 34.1% of PCM writes. The write count 
reduction of LRU-WPAM is 1.01% on average, and the best result for write reduction 
is 8.69%. CLOCK-DWF is able to reduce averagely 9.82% more writes than LRU. 
Specially, MHR-LRU can still reduce 6.5% of PCM writes averagely in the worst 
case (under the workload T9155). 

5 Conclusions 

PCM has emerged as one of the most promising memories to be used in main 
memory hierarchy. A lot of studies propose to construct hybrid memory architectures 
involving PCM and DRAM to utilize the advantages of both media. In this paper, 
based on such hybrid memory architecture, we propose a new page replacement 
algorithm called MHR-LRU to handle the problems incurred by the hybrid memory 
architecture. MHR-LRU is able to maintain a high hit ratio and is able to reduce PCM 
writes effectively. We conduct trace-driven experiments in a simulation environment 
using six types of synthetic traces, and compare our algorithm with three competitors 
including LRU, LRU-WPAM, and CLOCK-DWF in terms of different metrics. The 
results show that our algorithm outperforms all the other algorithms. 
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Fig. 7. PCM writes under the six synthetic traces 
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