
HAL Id: hal-01402038
https://inria.hal.science/hal-01402038

Submitted on 24 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Not All Multi-Valued Partial CFL Functions Are
Refined by Single-Valued Functions (Extended Abstract)

Tomoyuki Yamakami

To cite this version:
Tomoyuki Yamakami. Not All Multi-Valued Partial CFL Functions Are Refined by Single-Valued
Functions (Extended Abstract). 8th IFIP International Conference on Theoretical Computer Science
(TCS), Sep 2014, Rome, Italy. pp.136-150, �10.1007/978-3-662-44602-7_12�. �hal-01402038�

https://inria.hal.science/hal-01402038
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Not All Multi-Valued Partial CFL Functions Are
Refined by Single-Valued Functions

(Extended Abstract)

Tomoyuki Yamakami

Department of Information Science, University of Fukui
3-9-1 Bunkyo, Fukui 910-8507, Japan

Abstract. We give an answer to a fundamental question, raised by Kon-
stantinidis, Santean, and Yu [Act. Inform. 43 (2007) 395–417], of whether
all multi-valued partial CFL functions can be refined by single-valued
partial CFL functions. We negatively solve this question by presenting a
special multi-valued partial CFL function as an example function and by
proving that no refinement of this particular function becomes a single-
valued partial CFL function. This contrasts an early result of Kobayashi
[Inform. Control 15 (1969) 95–109] that multi-valued partial NFA func-
tions are always refined by single-valued NFA functions. Our example
function turns out to be unambiguously 2-valued, and thus we obtain a
stronger separation result, in which no refinement of unambiguously 2-
valued partial CFL functions can be single-valued. Our proof consists of
manipulations and close analyses of underlying one-way one-head nonde-
terministic pushdown automata equipped with write-only output tapes.

Keywords: multi-valued partial function, CFL function, NFA function,
refinement, pushdown automaton, context-free language, stack history

1 Resolving a Fundamental Question

Since early days of automata and formal language theory, multi-valued partial
functions,⋆ which are also known as transductions, computed by various types
of automata equipped with supplemental write-only output tapes have been
investigated extensively. Among them, we intend to spotlight CFL functions
(also known as algebraic transductions), which are computed by one-way one-
head nondeterministic pushdown automata (succinctly abbreviated as npda’s)
with write-only output tapes. These functions naturally inherit certain distinctive
traits from context-free languages; however, their behaviors are in essence quite
different from the behaviors of the language counterpart. Intriguing properties
of those functions have been addressed in the past literature (e.g., [1–3, 6, 14]).

When the number of output values is restricted to at most one, we ob-
tain single-valued functions. Concerning a relationship between multi-valued and
single-valued partial functions, multi-valued partial functions in general cannot

⋆ We often call those multi-valued partial functions just “functions.”

be single-valued; therefore, it is more appropriate to ask a question of whether
multi-valued partial functions can be refined by single-valued partial functions,
where “refinement” refers to a certain natural restriction on the outcomes of
multi-valued functions. To be more precise, we say that a function g is a refine-
ment of another function f [7] (which was also called “uniformization” [6]) if and
only if (i) f and g have the same domain and (ii) for every input x in the domain
of f , all output values of g on x are also output values of f on the same input x.
When g is particularly single-valued, g acts as a “selecting” function that picks
exactly one value from a set of output values of f on x. This refinement notion
is known to play a significant role in language recognition. In a polynomial-time
setting, for instance, if we can effectively find an accepting computation path of
any polynomial-time nondeterministic Turing machine, then every multi-valued
partial NP function (computed by a certain polynomial-time nondeterministic
Turing machine) has a refinement in the form of single-valued NP function. The
“no-refinement” claim therefore leads to a negative answer to the long-standing
P =?NP question.

We intend to discuss the same refinement question regarding CFL functions.
In this line of research, the first important step was taken by Kobayashi [5] in
1969. He gave an affirmative answer to the refinement question for multi-valued
partial NFA functions, which are computed by one-way one-head nondetermin-
istic finite automata (or nfa’s, in short) with write-only output tapes; namely,
multi-valued partial NFA functions can be refined by certain single-valued partial
NFA functions. Konstantinidis, Santean, and Yu [6] discussed the same question
for CFL functions. They managed to obtain a partial affirmative answer but left
the whole question open, probably due to a technical limitation of their algebraic
treatments of CFL functions.

This paper is focused on CFL functions whose output values are particularly
produced by npda’s running in linear time⋆⋆ (that is, all computation paths ter-
minate in time O(n), where n is the size of input) with write-only output tapes.
By adopting succinct notations from [12], we express as CFLMV a collection of
all such CFL functions and we also write CFLSV for a collection of all single-
valued functions in CFLMV. As a concrete example of our CFL function, let us
consider f defined by setting f(1n#x) to be a set of all substrings of x of length
between 1 and n exactly when 1 ≤ n ≤ |x|. This function f is a multi-valued
partial CFL function and the following function g is an obvious refinement of f :
let g(1n#x) consist only of the first symbol of x whenever 1 ≤ n ≤ |x|. Notice
that g belongs to CFLSV.

Given two classes F and G of multi-valued partial functions, the notation
F ⊑ref G means that every function in F can be refined by a certain function
in G. Using these notations, the aforementioned refinement question regarding
CFL functions can be neatly rephrased as follows.

⋆⋆ This linear time-bound ensures that every CFL function produces only at most an
exponential number of output values and it therefore becomes an NP function. This
fact naturally extends a well-known containment of CFL ⊆ NP.

Question 1 Is it true that CFLMV ⊑ref CFLSV?

Various expansions of CFLMV are possible. Yamakami [14], for instance,
introduced a hierarchy {ΣCFL

k MV,ΠCFL
k MV | k ≥ 1} of multi-valued partial

functions built upon CFL functions by applying Turing relativization and a
complementation operation. Its single-valued version is customarily denoted by
{ΣCFL

k SV,ΠCFL
k SV | k ≥ 1}. Our focal question, Question 1, can be further

generalized to the following.

Question 2 Does ΣCFL
k MV ⊑ref ΣCFL

k SV hold for each index k ≥ 1?

Yamakami [14] also shed partial light on this general question when k ≥ 3.
He showed that, for every index k ≥ 3, ΣCFL

k−1 = ΣCFL
k implies ΣCFL

k MV ⊑ref

ΣCFL
k SV, where ΣCFL

k is the kth level of the CFL hierarchy [13], which is a natu-
ral analogue of the well-known polynomial(-time) hierarchy. Since the collapse of
the CFL hierarchy is closely related to that of the polynomial hierarchy, an an-
swer to Question 2 (when k ≥ 3) could be quite difficult to obtain. Nevertheless,
the remaining cases of k = 1, 2 have been left unsolved.

In this paper, without relying on any unproven assumptions, we solve Ques-
tion 2 negatively when k = 1; therefore, our result completely settles Question
1. Our solution actually gives an essentially stronger statement than what we
have discussed so far. To clarify this point, we first introduce a function class
CFL2V as a collection of all functions f in CFLMV satisfying the condition that
the number of output values of f on each input should be at most 2.

Theorem 3. CFL2V ̸⊑ref CFLSV.

Since CFLSV ⊆ CFL2V ⊆ CFLMV holds, Theorem 3 clearly leads to a nega-
tive answer to Question 1. The proof of the theorem is essentially a manifestation
of the following intuition: an npda relying on limited functionality of its memory
device cannot simulate two independent computation paths simultaneously.

Instead of providing a detailed proof for Theorem 3, we wish to present a
simple and clear argument to demonstrate a slightly stronger result regarding a
subclass of CFL2V. To explain such a subclass, we first address that even if a
function f is single-valued, its underlying npda may have numerous computation
paths producing the same value of f on each input. Let us call an npda N with a
write-only output tape unambiguous if, for every input x and any output value y,
N has exactly one accepting computation path producing y. Let UCFL2V denote
a class of all 2-valued partial functions computed in linear time by unambiguous
npda’s with output tapes. Succinctly, those functions are called unambiguously
2-valued. Obviously, UCFL2V ⊆ CFL2V holds.

Throughout this paper, we wish to show the following stronger separation
result (than Theorem 3), which is referred to as the “main theorem.”

Theorem 4 (main theorem). UCFL2V ̸⊑ref CFLSV.

Following a brief explanation of key notions and notations in Section 2, we
give in Section 3 the proof of Theorem 4, completing the proof of Theorem 3 as

well. Our proof starts in Sections 3.1 with a presentation of our example function
h3, a member of UCFL2V. The proof then proceeds, by contradiction, with an
assumption that a certain refinement, say, g of h3 belongs to CFLSV. In Section
3.2, the proof requires an introduction of “colored” automaton—a new type of
automaton having no output tape—which simulates any npda equipped with an
output tape that computes g. To lead to the desired contradiction, the proof
further exploits special properties of such a colored automaton by analyzing the
behaviors of its stack history (i.e., time transitions of stack contents) generated
by this colored automaton. The detailed analysis is presented in Sections 3.3–3.6.
All proofs omitted here will appear in a forthcoming complete paper.

2 Preliminaries

We wish to explain key notions and notations necessary to read through the rest
of this paper.

Let N denote a set of all nonnegative integers and define N+ = N−{0}. Given
a number n ∈ N+, the notation [n] expresses an integer set {1, 2, 3, . . . , n}. An
alphabet is a finite nonempty set of “symbols” or “letters.” Given alphabet Σ,
a string over Σ is a finite series of symbols taken from Σ and |x| denotes the
length (or size) of string x. We use λ for the empty string. A language over Σ
is a subset of Σ∗, where Σ∗ is a set of all strings over Σ. Given two strings x
and y over the same alphabet, x ⊑ y indicates that x is a substring of y; namely,
for certain two strings u and v, y equals uxv. Moreover, given a string x and an
index i ∈ [|x|], the notation (x)i expresses a unique substring made up only of
the first i symbols of x. Clearly, (x)i ⊑ x holds. The notation |C| for a finite set
A refers to its cardinality.

Let us consider multi-valued partial functions, each of which maps elements
of a given set to subsets of another set. Slightly different from a conventional
notation (e.g., [7, 8]), we write f : A → P(B) for two sets A and B to refer to a
multi-valued partial function that takes an element in A as input and produces
a certain number of elements in B, where P(A) denotes the power set of A. In
particular, when f(x) = Ø, we briefly say that f(x) is undefined. The domain
of f , denoted by dom(f), is the set {x ∈ A | f(x) is not undefined }. Given a
constant k ∈ N+, f is k-valued if |f(x)| ≤ k holds for every input x in A. For two
multi-valued partial functions f, g : A → P(B), we say that g is a refinement
of f (or f is refined by g), denoted f ⊑ref g, if (i) dom(f) = dom(g) and (ii)
g(x) ⊆ f(x) (set inclusion) holds for every x ∈ dom(g). For any function classes
F and G, the succinct notation F ⊑ref G means that every function in F has a
refinement in G.

Our mechanical model of computation is a one-way one-head nondeterminis-
tic pushdown automaton (or an npda, in short) with/without a write-only output
tape, allowing λ-moves (or λ-transitions). We use an infinite input tape, which
holds two special endmarkers: the left endmarker |c and the right endmarker
$. In addition, we use a semi-infinite output tape on which its tape head is
initially positioned at the first (i.e., the leftmost) tape cell and moves in one

direction to the right unless it stays still. Formally, an npda M with an out-
put tape is a tuple (Q,Σ, {|c, $}, Γ,Θ, δ, q0, Z0, Qacc, Qrej) with a finite set Q of
inner states, an input alphabet Σ, a stack alphabet Γ , an output alphabet Θ,
the initial state q0 ∈ Q, the bottom marker Z0 ∈ Γ , a set Qacc (resp., Qrej)
of accepting (resp., rejecting) states with Qhalt ⊆ Q, and a transition function
δ : (Q−Qhalt)× (Σ̌ ∪{λ})×Γ → P(Q×Γ ∗ × (Θ∪{λ})), where Σ̌ = Σ ∪{|c, $}
and Qhalt = Qacc ∪ Qrej . We demand that M should neither remove Z0 nor
replace it with any other symbol at any step of its computation. Furthermore,
the output tape is write-only; namely, whenever M writes a non-blank symbol
on this tape, its tape head must move to the right. It is important to recognize
two types of λ-move. When δ is applied to (q, λ, γ), M modifies the current con-
tents of its stack and its output tape while neither scanning input symbols nor
moving its input-tape head. When (p, w, λ) ∈ δ(q, σ, γ) holds, M neither moves
its output-tape head nor writes any non-blank symbol onto the output tape.

Whenever we need to discuss an npda having no output tape, we automati-
cally drop “Θ” as well as “Θ ∪ {λ}” from the above definition of M and δ. As
stated in Section 1, we consider only npda’s whose computation paths are all
terminate within O(n) steps, where n refers to any input size, and this particu-
lar condition concerning the termination of computation is conventionally called
the termination condition [13]. Throughout this paper, all npda’s are implicitly
assumed to satisfy this termination condition.

In general, an output (outcome or output string) of M along a given com-
putation path refers to a string over Θ written down on the output tape when
the path terminates. Such an output is classified as being valid (or legitimate) if
the corresponding computation path is an accepting computation path (i.e., M
enters an accepting state along this path). We say that an npda M with an
output tape computes function f if, on every input x, M produces exactly all
the strings in f(x) as valid outputs; namely, for every pair x, y, y ∈ f(x) if and
only if y is a valid outcome of M on input y. Notice that an npda can generally
produce more than one valid output strings, its computed function inherently
becomes multi-valued. Because invalid outputs produced by M are all discarded
from our arguments in the subsequent sections, we will refer to valid outputs as
just “outputs” unless otherwise stated.

The notation CFLMV (resp., CFLkV for a fixed k ∈ N+) stands for a class of
multi-valued (resp., k-valued) partial functions that can be computed by npda’s
with write-only output tapes in linear time. When k = 1, we customarily write
CFLSV instead of CFL1V. In addition, we define UCFLkV as a collection of all
functions f in CFLkV for which a certain npda with an output tape computes f
with the extra condition (called the unambiguous computation condition) that,
for every input x and every value y ∈ f(x), there exists exactly one accepting
computation path producing y on input x. It then follows that UCFLkV ⊆
CFLkV ⊆ CFLMV. Since any function producing exactly k + 1 values cannot
be in CFLkV by definition, CFLkV ̸= CFL(k + 1)V holds; thus, in particular,
we obtain CFLSV ̸= CFLMV. Notice that this inequality does not directly lead
to the desired conclusion CFLMV ̸⊑ref CFLSV.

To describe behaviors of an npda’s stack, we closely follow terminology from
[10, 11]. A stack content is formally a series zmzm−1 · · · z1z0 of stack symbols
sequentially stored into a stack in such a way that z0 is the bottom marker Z0

and zm is a symbol at the top of the stack. We sometimes refer to a stack content
obtained just after the tape head scans and moves off the ith cell of the input
tape as a stack content at the ith position.

3 Proof of the Main Theorem

Our ultimate goal is to solve negatively a question that was posed in [6] and
reformulated in [14] as in the form of Question 1. In what follows, we will present
an example function, called h3, which belongs to UCFL2V, and then give an
explanation of why no refinement of this function is found in CFLSV, resulting
in the main theorem, namely, UCFL2V ̸⊑ref CFLSV.

3.1 An Example Function

Our example function h3 is a natural extension of a well-recognized deterministic
context-free language {x#xR | x ∈ {0, 1}∗} (marked even-length palindromes),
where # is a distinguished symbol not in {0, 1}. Let us define two supporting lan-
guages L = {x1#x2#x3 | x1, x2, x3 ∈ {0, 1}∗} and L3 = {w | w = x1#x2#x3 ∈
L, ∃(i, j) ∈ I3 [xR

i = xj]}, where I3 = {(i, j) | i, j ∈ N+, 1 ≤ i < j ≤ 3}. We then
introduce the desired function h3 by setting h3(w) = {0i1j | (i, j) ∈ I3, x

R
i = xj}

if w = x1#x2#x3 ∈ L, and h3(w) = Ø if w is not in L. It thus follows that
L3 = {w ∈ L | h3(w) ̸= Ø}. Now, let us claim the following assertion.

Proposition 1. The above function h3 is in UCFL2V.

Proof. Obviously, h3 is 2-valued. Let us consider the following npda M equipped
with a write-only output tape. On any input w, M checks whether w is of the
form x1#x2#x3 in L by moving its input-tape head from left to right by counting
the number of # in w. At the same time, M nondeterministically chooses a pair
(i, j) ∈ I3, writes 0

i1j onto its output tape, stores xi into a stack, and then checks
whether xR

i matches xj by retrieving xi in reverse from the stack. If xR
i = xj

holds, then M enters an accepting state; otherwise, it enters a rejecting state.
It follows by this definition that, for each choice of (i, j) in I3, there is at most
one accepting computation path producing 0i1j . It is not difficult to show that
M computes h3. Therefore, h3 belongs to UCFL2V.

To complete the proof of the main theorem, it suffices to verify the following
proposition regarding the existence of refinements of the function h3.

Proposition 2. The function h3 has no refinement in CFLSV.

3.2 Colored Automata

Our proof of Proposition 2 proceeds by contradiction. To lead to the desired
contradiction, we first assume that h3 has a refinement, say, g in CFLSV. Since
g is single-valued, we rather write g(x) = y instead of g(x) = {y} for x ∈ dom(f).
Take an npdaN computing g with a write-only output tape. LetN have the form
(Q,Σ, {|c, $}, Γ,Θ, δ, q0, Z0, Qacc, Qrej) with δ : (Q − Qhalt) × (Σ̌ ∪ {λ}) × Γ →
P(Q× Γ ∗ × (Θ ∪ {λ})), where Σ = Θ = {0, 1}.

Unfortunately, we find it difficult to directly analyze the moves of its output-
tape head. To overcome this difficulty, we then try to modify N into a new
variant of npda having no output tape, say, M . As seen later, this modification is
possible because g’s output values are limited to strings of constant lengths. Now,
let us introduce this new machine, dubbed as “colored” automaton, which has no
output tapes but uses “colored” stack symbols. Using a finite set C of “colors,” a
colored automaton M = (Q′, Σ, {|c, $}, Γ ′, C, δ′, q′0, Z0, Q

′
acc, Q

′
rej) partitions its

stack alphabet Γ ′, except for the bottom marker, into sets {Γξ}ξ∈C ; namely,∪
ξ∈C Γξ = Γ −{Z0} and Γξ ∩ Γξ′ = Ø for any distinct pair ξ, ξ′ ∈ C. We define

a color of stack symbol γ to be ξ in C if γ is in Γ ′
ξ (= Γξ ∪ {Z0}). Notice that

Z0 has three colors. Given a color ξ ∈ C, we call a computation path of M a
ξ-computation path if all configurations along this computation path use only
stack symbols in color ξ. An output of M on input x is composed of all colors ξ
in C for which there is an accepting ξ-computation path of M on x.

Lemma 1. There exists a colored automaton M that computes g.

Proof Sketch. Recalling the set I3, we introduce a set Ī3 = {0i1j | (i, j) ∈ I3}
and another set Īpart3 composed of all substrings of any strings in Ī3. Recall the
given npda N with a write-only output tape. Now, we want to define a new
colored automata M = (Q′, Σ, {|c, $}, Γ ′, Ī3, δ

′, q′0, Z0, Q
′
acc, Q

′
rej) that simulates

N as follows. Roughly speaking, on any input x, M first guesses (i.e., nonde-
terministically chooses) an output string t of g(x). Whenever N pushes u, M
pushes its corresponding color-t symbol u(t) into a stack. Further along this com-
putation path, M keeps using only color-t stack symbols. Instead of having an
output tape, M remembers the currently produced string on N ’s output tape.
Whenever N enters an accepting state with an output string that matches the
firstly guessed string t of M , M also enters an appropriate accepting state. In
other cases, M rejects the input. 2

To simplify notations in our argument, we describe the colored automaton
M guaranteed by Lemma 1 as (Q,Σ, {|c, $}, Γ, I3, δ, q0, Z0, Qacc, Qrej). It is also
useful to restrict the “shape” of M . A colored automaton M is said to be in an
ideal shape if M satisfies all of the following six conditions.

1. There are only one accepting state qacc and one rejecting state qrej . More-
over, the set Q of inner states equals {q0, q, qacc, qrej}. The machine M is in
state q during its computation except for the initial and final configurations.

2. The input-tape head of M always moves.

3. The machine M never aborts its computation; that is, δ is a total function
(i.e., δ(q, σ, γ) ̸= Ø holds for any (q, σ, γ) ∈ (Q−Qhalt)× Σ̌ × Γ).

4. Every stack operation either modifies a single top stack symbol or pushes
extra one symbol onto the top of the stack after (possibly) altering the then-
top symbol; that is, δ’s range is P(Q× (Γ ∪ Γ 2)× (Θ ∪ {λ})).

5. The stack never becomes empty (excluding the bottom marker Z0) at any
step of the computation except for the initial and the final configurations.
In addition, at the first step of reading |c, M must push a stack symbol
onto Z0 and this stack symbol determines the stack color in the rest of its
computation path. After reading $, M ’s stack becomes empty.

6. The machine never enters any halting state before scanning the endmarker.

It is well-known that, for any context-free language L, there always exists an
npda (with no output tape) in an ideal shape that recognizes L (see, e.g., [4]).
Similarly, we can assert the following statement for colored automata.

Lemma 2. Given any colored automaton, there is always another colored au-
tomaton in an ideal shape that produces the same set of output values.

In the rest of this paper, we fix a colored automaton in an ideal shape,
guaranteed by Lemma 2, which computes g correctly.

Hereafter, let us focus on inputs of the form x#xR#y for x, y ∈ {0, 1}∗. For
any x ∈ {0, 1}∗, we abbreviate the set {y ∈ {0, 1}|x| | y ̸∈ {x, xR}} as Hx. Given

n ∈ N+, D
(n)
(i,j) denotes a set of all strings x ∈ {0, 1}n for which there exists an

accepting (i, j)-computation path of M on input x#xR#x. Obviously, it holds

that D
(n)
(1,2) ∪D

(n)
(2,3) = {0, 1}n. It therefore holds, for every length n, that either

|D(n)
(1,2)| ≥ 2n/2 or |D(n)

(2,3)| ≥ 2n/2. We will discuss the case of |D(n)
(2,3)| ≥ 2n/2 in

Section 3.3 and the case of |D(n)
(1,2)| ≥ 2n/2 in Section 3.6.

3.3 Case 1: D(2,3) is Large

Let us consider the first case where the inequality |D(n)
(2,3)| ≥ 2n/2 holds for

infinitely many lengths n ∈ N. Take an arbitrary number n ∈ N that is signifi-

cantly larger than 3|Q|+|Σ|+|Γ | and also satisfies |D(n)
(2,3)| ≥ 2n/2. We fix such a

number n throughout our proof and we thus tend to drop script “n” whenever
its omission is clear from the context; for instance, we often write D(2,3) instead

of D
(n)
(2,3).

By the property of the colored automaton M computing g, it follows that, for
any pair x, y ∈ {0, 1}n, if y /∈ {x, xR}, then there always exists a certain accept-
ing (1, 2)-computation path on input x#xR#y; however, there is no accepting
(1, 2)-computation path on input x#xR#x for every x in D(2,3). In addition,
no accepting (1, 2)-computation path exists on input x#z#y if z ̸= xR. Since
there could be a large number of accepting (1, 2)-computation paths of M on
x#xR#y, we need to choose one of them arbitrarily and take a close look at this
particular path.

For convenience, let PATHn denote a set of all possible accepting (1, 2)-
computation paths of M on inputs of the form x#xR#y for certain strings
x, y ∈ {0, 1}n. We arbitrarily fix a partial assignment π : D(1,2) × {0, 1}n →
PATHn that, for any element (x, y), if y ∈ Hx, then π picks an accepting (1, 2)-
computation path ofM on input x#xR#y; otherwise, let π(x, y) be undefined for
simplicity. For brevity, we abbreviate π(x, y) as px,y. Note that px,y is uniquely
determined from (x, y) whenever π(x, y) is defined.

Given an accepting (1, 2)-computation path px,y of M on input x#xR#y,

the notation γ
(x)
i,y denotes a stack content obtained by M just after reading off

the first i symbols of x#xR#y along this particular path px,y. Furthermore, we

abbreviate as γ
(x)
y the stack content γ

(x)

|x#xR#|,y, which is produced just after

reading x#xR# of the input x#xR#y. Note that, for each x ∈ D(2,3) and any
y ∈ Hx, along an accepting (1, 2)-computation path px,y on input x#xR#y, M

produces unique stack contents γ
(x)
|x#|,y and γ

(x)
y .

In Sections 3.4–3.6, we plan to evaluate how many strings in D(2,3) satisfy
each of the following conditions.

1. Strings x in D(2,3) that make γ
(x)
y small in size for all y ∈ Hx.

2. Strings x in D(2,3) that make γ
(x)
y relatively large in size for certain strings

y ∈ Hx.

Proposition 3 gives a lower bound of the number of strings in (1), whereas
Propositions 4 and 5 provide lower bounds for (2). Those bounds, moreover,
guarantee the existence of a string that satisfies both conditions, clearly leading
to the desired contradiction.

3.4 Fundamental Properties of a Stack History

In the following series of lemmas and propositions, we will explore fundamental
properties of a stack history of M along computation path px,y on input of the
form x#xR#y. Those properties are essential in proving the main theorem.

Lemma 3. Fix x, y ∈ {0, 1}n. For any accepting (1, 2)-computation path px,y of
M on input x#xR#y, there is no pair (i1, i2) of positions such that |x| < i1 <

i2 ≤ |x#xR#| and γ
(x)
i1,y

= γ
(x)
i2,y

. Moreover, the same statement is true when
1 ≤ i1 < i2 ≤ |x|.

Lemma 3 can be generalized as follows.

Lemma 4. Let x1, x2, y1, y2 ∈ {0, 1}n, i1, i2 ∈ N with 1 ≤ i1, i2 ≤ |x1#xR
1 #|.

Assume that one of the following conditions holds: (i) i1 ̸= i2, (ii) 1 ≤ i1 = i2 ≤
|x1#| and (x1)i1 ̸= (x2)i2 , and (iii) (x1)|x1#| = (x2)|x1#|, |x1#| < i1 = i2 ≤
|x1#xR

1 #|, and (x1)i1 ̸= (x2)i2 . It then holds that γ
(x1)
i1,y1

̸= γ
(x2)
i2,y2

.

Now, we start estimating the lower bound of the number of strings x in D(2,3)

for which their corresponding stack contents γ
(x)
y are small in size for an arbitrary

string y in Hx. More specifically, we will verify the following statement.

Proposition 3. There exist two constants d1, d2 ∈ N+, independent of (n, x, y),

such that |{x ∈ D(2,3) | ∀y ∈ Hx [|γ(x)
y | < d1]}| ≥ |D(2,3)| − d2.

Hereafter, we will aim at proving Proposition 3.
Given two strings u, v ∈ (Γ(1,2))

∗ and a string z ∈ {0, 1}∗, we say that M
transforms u to v while reading z (along computation (sub)path p) if M behaves
as follows along this subpath p: (i)M starts in state q with uZ0 in stack, scanning
the leftmost input symbol of z, (ii) M then reads z, with no endmarkers, from
the input tape, (iii) after reading off z, M enters state q with vZ0 in stack,
and (iv) M does not empty the stack (except for Z0). The notation TFM (τ, σ)
expresses a set of all strings of the form z#z′ for z, z′ ∈ {0, 1}∗ such that M
transforms τ to σ while reading z#z′.

Lemma 5. Given any pair (u, v), there is at most one string x′ such that x′ is
a substring of a certain string x in D(2,3) and M transforms u to v while reading
x′ along a subpath of px,y for a certain y ∈ {0, 1}n.

Next, we will show a key lemma, necessary to prove Proposition 3. Given
a pair (x, y), we define MSCx,y (minimal stack contents) to be a collection
of all stack contents γ satisfying the following: there exists a position ℓ with

|x#| ≤ ℓ ≤ |x#xR#| such that (i) γ = γ
(x)
ℓ,y and (ii) |γ| ≤ |γ(x)

ℓ′,y| holds for any

ℓ′ satisfying |x#| ≤ ℓ′ ≤ |x#xR#|. Condition (ii) indicates that the size of γ is
minimum. Note that, when y ∈ Hx, MSCx,y cannot be empty. In addition, by

Lemma 4, all elements in {γ(x)
i,y | 1 ≤ i ≤ |x#xR#|} are mutually distinct.

Lemma 6. There exists a constant d > 0, independent of (n, x, y), that satisfies

the following statement. Let x ∈ {0, 1}n, y ∈ Hx, and γ
(x)
ℓ,y ∈ MSCx,y. Moreover,

let x = rz, xR = zRsr′, ℓ = |x#zRs|, γ(x)
|r|,y = τvZ0, and γ

(x)
ℓ,y = σvZ0 for an

appropriate tuple (r, r′, z, s, σ, τ, u, v). If ℓ ̸= |x#| and z#zRs ∈ TFM (τ, σ), then

|γ(x)
y | ≤ d holds. Moreover, when n is sufficiently large, ℓ ̸= |x#| holds.

Assuming that Lemma 6 is true, we can prove Proposition 3 in the following

manner. Since MSCx,y is non-empty, take an element γ
(x)
ℓ,y from MSCx,y with

|x#| ≤ ℓ ≤ |x#xR#|. By the size-minimality of γ
(x)
ℓ,y , there exists an appropriate

tuple (r, r′, z, s, σ, τ, u, v) that satisfies

(*) x = rz, xR = zRsr′, ℓ = |x#zRs|, γ(x)
y = uvZ0, γ

(x)
|r|,y = τvZ0, γ

(x)
ℓ,y = σvZ0,

and z#zRs ∈ TFM (τ, σ).

By the second part of Lemma 6, except for a certain constant number of x’s,
it always holds that ℓ ̸= |x#|. The first part of Lemma 6 provides the desired

constant d1 that upper-bounds |γ(x)
y |. We therefore obtain the proposition.

To complete the proof of Proposition 3, we still need to verify Lemma 6. This
lemma follows from Lemmas 7 and 8. In the first lemma, we want to show that
the size of s in (*) is bounded from above by a certain absolute constant.

Lemma 7. There exists a constant d1 > 0, independent of (n, x, y), satisfying

the following statement. Let x ∈ {0, 1}n, y ∈ Hx, and γ
(x)
ℓ,y ∈ MSCx,y. Moreover,

let x = rz, xR = zRsr′, ℓ = |x#zRs|, γ
(x)
|r|,y = τvZ0, and γ

(x)
ℓ,y = σvZ0. If

ℓ ̸= |x#| and z#zRs ∈ TFM (τ, σ), then |s| ≤ d1 holds.

Proof. Let x = rz, xR = zRsr′, ℓ = |x#zRs|, γ(x)
|r|,y = τvZ0, and γ

(x)
ℓ,y = σvZ0.

Since ℓ ̸= |x#|, it follows that z ̸= λ. Assume that γ
(x)
ℓ,y ∈ MSCx,y and z#zRs ∈

TFM (τ, σ). We first claim that s can be uniquely determined from (τ, σ).

Claim. Let z1 ∈ {0, 1}+ and s1 ∈ {0, 1}∗. If z1#zR1 s1 ∈ TFM (τ, σ), then s = s1.

Let us show this claim. Toward a contradiction, we assume that s ̸= s1.
Assume that M has an accepting (1, 2)-computation path p1 while reading
rz#zRsr′. Replace a portion of this path associated with z#zRs by a subpath
corresponding to z1#zR1 s1. We then obtain a new accepting (1, 2)-computation
path on rz2#zR2 s2r

′. However, we obtain (rz1)
R = zR1 r

R = z1sr
′ ̸= zR1 s1r

′ be-
cause s ̸= s1. This means that there is no accepting (1, 2)-computation path on
rz1#zR1 s1r

′, a contradiction. Therefore, the claim is true.
The above claim helps us define a map from (τ, σ) to s. Thus, the number of

all possible strings s is at most |Γ ′
(1,2)|

2. This implies that |s| is upper-bounded
by an appropriately chosen constant, independent of (n, x, y). 2

In the second lemma, we want to show that the size of r′ in (*) is also
upper-bounded by a certain absolute constant.

Lemma 8. There exists a constant d2 > 0, independent of (n, x, y), that satisfies

the following statement. Let x ∈ {0, 1}n, y ∈ Hx, and γ
(x)
ℓ,y ∈ MSCx,y. Moreover,

let x = rz, xR = zRsr′, y = r′′z′, ℓ = |x#zRs|, ℓ′ = |x#xR#r′′|, γ(x)
|r|,y = τvZ0,

γ
(x)
ℓ,y = σvZ0, and γ

(x)
ℓ′,y = vZ0. If r

′#r′′ ∈ TFM (σ, λ), then |r′| ≤ d2 holds.

Finally, we will prove Lemma 6 with the help of Lemmas 7 and 8.

Proof of Lemma 6. Let x = rz and xR = zRsr′. Let γ
(x)
y = uvZ0, γ

(x)
ℓ = σvZ0

with ℓ = |x#zRs|. Assume that M transforms σ to u while reading r′. We first
claim that ℓ ̸= |x#|. Assume that ℓ = |x#|. This implies that z = s = λ. Hence,
xR = r′. By Lemma 8, we obtain |r′| ≤ d2. However, x must be sufficiently large
in size, a contradiction. Therefore, ℓ ̸= |x#| holds.

Lemma 7 yields an appropriate constant d1 such that |s| ≤ d1. Lemma 8
also shows that |r′| is upper-bounded by a certain constant, say, d2. Since |r| =
|sr′| = |s|+ |r′| by definition, |r| is bounded from above by d1+d2. Let σ0 be the
stack symbol pushed into the stack at the first step of M . Since M transforms
σ0 to τv while reading r for a certain τ and the stack increases by at most one,
it follows that |v| (and therefore |uvZ0|) is upper-bounded by an appropriately
chosen constant. 2

In the subsequent argument, the notation Ex expresses a collection of all stack

contents γ
(x)
y at the |x#xR#|-th position (i.e., just after reading off x#xR#)

along any accepting (1, 2)-computation path px,y of M on input x#xR#y for an
arbitrary string y ∈ Hx. Since π is fixed, it holds that 1 ≤ |Ex| ≤ 2|x| − 2.

Before proceeding further, we want to prove a useful lemma.

Lemma 9. Let x1, x2, y ∈ {0, 1}n. If x2 ∈ D(2,3) and x1 ̸= x2, then there is no

position i such that |x1| ≤ i ≤ |x1#xR
1 #| and γ

(x1)
i,x2

= γ
(x2)
i,y .

Proof. Assume that such a position i actually exists. We then swap between
substrings x1#(xR

1)j and x2#(xR
2)j , where j = |x1#xR

1 #| − i, and we then ob-
tain another accepting (1, 2)-computation path on input x2#(xR

2)j(x
R
1)n−j#x2.

(Case 1) If (xR
2)j(x

R
1)n−j ̸= xR

2 , then such an accepting path cannot be a (1, 2)-
computation path, a contradiction. (Case 2) If (xR

2)j(x
R
1)n−j = xR

2 , then the
obtained accepting (1, 2)-computation path on x2#xR

2 #x2 must be a rejecting
path by the choice of x2 ∈ D(2,3), a contradiction. 2

3.5 Size of Stack Contents

Notice that |Ex| ≥ 1 holds for all x ∈ D(2,3). Prior to a discussion on this general
case, we intend to consider a special case, which exemplifies an essence of our
proof, where |Ex| = 1 holds for any x ∈ D(2,3).

I) Special Case of |Ex| = 1. Since the choice of y ∈ Hx is irrelevant, it is

possible to drop subscript “y” and express γ
(x)
i,y , γ

(x)
y , and ux,y, as γ

(x)
i , γ(x), and

ux, respectively. To lead to the desired contradiction, let us examine two stack

contents, γ
(x)
|x#| and γ(x).

Proposition 4. Given any number ϵ ≥ 0, it holds that |{x ∈ D(2,3) | ∃y ∈
Hx [|γ(x)

y | ≥ (n− 2− ϵ)/ log |Γ ′
(1,2)|]}| ≥ |D(2,3)|(1− 2−ϵ).

To prove Proposition 4, let us consider two stack contents γ
(x1)
x2 and γ

(x2)
x1 for

any distinct pair x1, x2 ∈ D(2,3). Lemma 9 implies that γ
(x1)
x2 ̸= γ

(x2)
x1 . We thus

obtain the following.

Lemma 10. For every distinct pair x1, x2 ∈ D(2,3), it holds that γ(x1) ̸= γ(x2).

Recall the set Γ ′
(1,2) = Γ(1,2) ∪ {Z0}. Given a number d ∈ N+, we further

define Ad = {x ∈ D(2,3) | ∃y ∈ Hx [|γ(x)
y | ≥ d]}.

Lemma 11. For any constant d ∈ N+, it holds that |Ad| ≥ |D(2,3)| − 2|Γ ′
(1,2)|

d.

Proof. Let Bd = {x ∈ D(2,3) | ∀y ∈ Hx [|γ(x)
y | < d]}. Notice that Bd coincides

with {x ∈ D(2,3) | |γ(x)| < d}. It holds that γ(x) belongs to (Γ ′
(1,2))

m for a

certain number m with m ≤ d − 1. Consider a mapping h from x to γ(x). Let
B̄d = {x ∈ Bd | xR = x}. The function h is 1-to-1 on B̄d and also 1-to-1 on
at least a half of elements in Bd − B̄d by Lemma 10. Hence, it follows that

|Bd|/2 ≤
∑d−1

j=1 |Γ ′
(1,2)|

j = |Γ ′
(1,2)|

d. We conclude that, since D(2,3) = Ad ∪ Bd,

|Ad| = |D(2,3)| − |Bd| ≥ |D(2,3)| − 2|Γ ′
(2,3)|

d, as requested. 2

With the help of Lemma 11, Proposition 4 can be easily proven as follows.

Proof of Proposition 4. For simplicity, write d for (n − 2 − ϵ)/ log |Γ ′
(1,2)|,

which equals log|Γ ′
(1,2)

| 2
n−2−ϵ. It suffices to show that |Ad| ≥ |D(2,3)|(1 − 2−ϵ).

By Lemma 11, we obtain |Ad| ≥ |D(2,3)| − 2|Γ ′
(1,2)|

d ≥ |D(2,3)|(1− 2−ϵ). 2

To complete the proof for the special case, let x = rz, xR = zRsr′, γ(x) =

uvZ0, and γ
(x)
ℓ = σvZ0 with ℓ = |x#zRs|. Assume that M transforms σ to

u while reading r′. Proposition 3 shows that, for most of x’s, |uvZ0| is upper-
bounded by a certain constant, independent of (n, x, y). However, by setting,
e.g., ϵ = 98, Proposition 4 implies that |uvZ0| ≥ (n − 100)/ log |Γ ′

(1,2)| for at

least the 2/3-fraction of x’s in D(2,3). Since n is sufficiently large, we obtain a
clear contradiction.

II) General Case of |Ex| ≥ 1. We have already shown how to deal with the
case where |Ex| = 1 holds for all x ∈ D(2,3). Now, let us discuss a general case
where |Ex| ≥ 1 holds for any x ∈ D(2,3). Our goal is to show the following
statement.

Proposition 5. There are at least the |D(2,3)|−1/2-fraction of x’s in D(2,3) such
that, for a certain stack content τ ∈ Ex, τ contains at least log|Γ | n/2 symbols.

We start with the following lemma regarding Ex’s, which can be seen as a
generalization of Lemma 10.

Lemma 12. Let x1, x2 ∈ D(2,3). If x2 ∈ Hx1 , then Ex1 ̸= Ex2 .

Proof. Assume to the contrary that Ex1 = Ex2 holds for two particular elements
x1, x2 ∈ D(2,3) satisfying x2 ∈ Hx1 . Take a stack content τ ∈ Ex1 satisfying τ =

γ
(x1)
x2 for a certain accepting (1, 2)-computation path px1,x2 of M on x1#xR

1 #x2.

Since Ex1 = Ex2 , there exists another y in Hx2 that satisfies τ = γ
(x2)
y along an

appropriate accepting (1, 2)-computation path px2,y on x2#xR
2 #y. By swapping

two parts of the above computation paths px1,x2 and px2,y properly, we then
obtain another accepting (1, 2)-computation path of M on x2#xR

2 #x2 satisfying

τ = γ
(x2)
x2 . This is an obvious contradiction against the choice of x2 ∈ D(2,3). 2

Write Un for {x ∈ D(2,3) | |Ex| > n/2} and consider two separate cases.

Case 1: Assume that |Un| ≥ |D(2,3)|1/2. By taking an arbitrary x ∈ Un, we want
to claim that a certain stack content τ ∈ Ex must be made up of more than
log|Γ | n/2 symbols. For this purpose, let us assume otherwise. Since any τ in Ex

has at most log|Γ | n/2 symbols, there must be at most n/2 different elements in
Ex. This implies that x /∈ Un, a contradiction against the choice of x. Hence, we
obtain |τ | > log|Γ | n/2, as stated in Proposition 5.

Case 2: Next, we assume that |Un| < |D(2,3)|1/2. We first prove the following
combinatorial lemma.

Lemma 13. Let n ∈ N+ be sufficiently large and let X,Y satisfy X ⊆ Y . Let A
be an X × Y matrix whose entries are taken from Θ∗, where Θ is an alphabet.
Assume that (i) |X| ≥ 2n−2 and |Y | = 2n, (ii) for any (x, y) ∈ X×Y , A(x,y) = λ
iff y ∈ {x, xR}, and (iii) for any x, y ∈ X, if A(x,y) ̸= λ, then A(x,y) ̸= A(y,z)

for any z ∈ Y . Then, the set X̃ = {x ∈ X | ∃y ∈ Y [|A(x,y)| ≥ log|Θ| log|Θ| n]}
has cardinality at least |X|1/2.

Proof. Let us assume that the premise of the lemma is satisfied. For convenience,
we define X ′ = {x ∈ X | maxy∈Y {|A(x,y)|} < log|Θ| log|Θ| n}, which satisfies

X = X̃ ∪ X ′. To show that |X̃| ≥ |X|/2, we assume to the contrary that
|X̃| < |X|/2. This implies that |X ′| = |X| − |X̃| > |X| − |X|/2 = |X|/2 ≥ 2n−3

since |X| ≥ 2n−2. Let E′
x = {A(x,y) | y ∈ Y } for every x ∈ X. Analogously to

Lemma 12, it holds that E′
x1

̸= E′
x2

for every distinct pair x1, x2 ∈ X.
Let x ∈ X ′. Since |A(x,y)| < log|Θ| log|Θ| n for all y ∈ Y , the total number

of strings A(x,y) in E′
x is upper-bounded by |Θ|log|Θ| log|Θ| n = log|Θ| n; that is,

|E′
x| ≤ log|Θ| n. For convenience, let E =

∪
x∈X′ E′

x and set α = |E|. Notice

that α ≥ 2. Hereafter, we want to claim that α ≥ 2(n−3)/(2 log|Θ| n). Toward a
contradiction, we assume that α < 2(n−3)/(2 log|Θ| n). Now, let us estimate the
upper bound of |X ′|. Note that there are |X ′| different E′

x’s in E and that E′
x is

a subset of E of cardinality at most log|Θ| n. It follows that |X ′| does not exceed
the total number of E ’s nonempty subsets of size at most log|Θ| n. We then

conclude that |X ′| ≤
∑log|Θ| n

i=1 (α
i) ≤ (log|Θ| n) · αlog|Θ| n ≤ α2 log|Θ| n ≤ 2n−3,

where the second inequality comes from i < n/2 and (α
i) ≤ αi/i!. This is a clear

contradiction against |X ′| ≥ 2n−3. Therefore, we obtain α ≥ 2(n−3)/(2 log|Θ| n).
However, this contradicts the bound of |E| ≤ log|Θ| n. 2

Let us return to the proof of Proposition 5. To apply Lemma 13, we simply

set X to be D(2,3), {0, 1}n to be Y , and γ̃
(x)
y to be A(x,y), where γ̃

(x)
y is obtained

from γ
(x)
y by simply deleting Z0. It is not difficult to show that the obtained

triplet (A,X, Y) satisfies Conditions (i)–(iii) of the lemma. The lemma ensures

that there are at least 2n/3 x’s in D(2,3) satisfying |γ(x)
y | ≥ log|Θ| log|Θ| n for a

certain string y ∈ {0, 1}n.
Nonetheless, Proposition 3 indicates that |γ(x)

y | ≤ d1 for all y ∈ Hx. We then
obtain a contradiction, as requested, and therefore this closes Case 1.

3.6 Case 2: D(1,2) is Large

We have already proven Case 1 in Sections 3.3–3.5. To complete the proof of
Proposition 2, however, we still need to examine the remaining case where {n ∈
N+ | |D(2,3)| ≥ 2n/2} is a finite set; in other words, |D(1,2)| > 2n/2 holds for
all but finitely many n. Recall from Section 3.2 the introduction of our colored

automaton M = (Q,Σ, {|c, $}, Γ, I3, δ, q0, Z0, Qacc, Qrej) with Qacc = {qacc} and
Qrej = {qrej} that computes g. Before starting the intended proof, we will
present a general lemma regarding inputs in reverse form.

Lemma 14. There exists a colored automaton MR that satisfies the following:
M accepts x1#x2#x3 along an accepting (i, j)-computation path if and only if
MR accepts xR

3 #xR
2 #xR

1 along an accepting (4− j, 4− i)-computation path.

Let us return to our proof for the case of |D(1,2)| > 2n/2. Note that, by
running M on inputs of the form x#y#z for x, y, z ∈ {0, 1}n, we then ob-
tain |D(1,2)| > 2n/2. We consider a counterpart of D(1,2), denoted by DR

(2,3),

which is obtained by running MR instead of M . Lemma 14 also implies that
|DR

(2,3)| > 2n/2. Apply to DR
(2,3) an argument used for Case 1. This is an obvious

contradiction. We have therefore completed the proof of Proposition 2.

References

1. C. Choffrut and K. Culik. Properties of finite and pushdown transducers. SIAM
J. Comput., 12 (1983) 300–315.

2. R. J. Evey. Application of pushdown-store machines. In Proc. 1963 Fall Joint
Computer Conference, AFIPS Press, pp.215–227, 1963.

3. P. C. Fisher. On computability by certain classes of restricted Turing machines.
In Proc. 4th Annual IEEE Symp. on Switching Circuit Theory and Logical
Design (SWCT’63), IEEE Computer Society, pp.23–32, 1963.

4. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata The-
ory, Languages, and Computation. Second Edittion. Addison-Wesley, 2001.

5. K. Kobayashi. Classification of formal langauges by functional binary trans-
ductions. Inform. Control, 15 (1969) 95–109.

6. S. Konstantinidis, N. Santean, and S. Yu. Representation and uniformization
of algebraic transductions. Acta Inform., 43 (2007) 395–417.

7. A. L. Selman. A taxonomy of complexity classes of functions. J. Comput. Sys-
tem Sci., 48 (1994) 357–381.

8. A. L. Selman. Much ado about functions. In Proc. of the 11th Annual IEEE
Conference on Computational Complexity, pp.198–212, 1996.

9. K. Tadaki, T. Yamakami, and J. C. H. Lin. Theory of one-tape linear-time Tur-
ing machines. Theoret. Comput. Sci., 411 (2010) 22–43. An extended abstract
appeared in SOFSEM 2004, LNCS vol.2932, pp.335–348, 2004.

10. T. Yamakami. Swapping lemmas for regular and context-free languages. Avail-
able at arXiv:0808.4122, 2008.

11. T. Yamakami. Pseudorandom generators against advised context-free lan-
guages. See arXiv:0902.2774, 2009.

12. T. Yamakami. Immunity and pseudorandomness of context-free languages.
Theor. Comput. Sci., 412 (2011) 6432–6450.

13. T. Yamakami. Oracle pushdown automata, nondeterministic reducibilities, and
the hierarchy over the family of context-free languages. In Proc. 40th of SOF-
SEM 2014, LNCS, vol. 8327, pp. 514–525, 2014. See also arXiv:1303.1717.

14. T. Yamakami. Structural complexity of multi-valued partial functions com-
puted by nondeterministic pushdown automata. Unpublished manuscript,
2014.

