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Abstract. Sensitivity, block sensitivity, and certificate complexity are
complexity measures for Boolean functions. In this paper, we prove that
these three complexity measures are equal to each other if a Boolean
function is a unate function or a read-once function. We also prove

√

n

tight lower bounds for the three complexity measures of read-once func-
tions. As an application of our results, the decision tree complexity of
unate functions and read-once functions is upper bounded by the square
of the sensitivity of the function.

1 Introduction

Sensitivity, block sensitivity, and certificate complexity of a Boolean func-
tion f , denoted by s(f), bs(f) and C(f), respectively, are complexity
measures for Boolean functions, and related to other complexity mea-
sures including the time complexity of CREW PRAMs and decision tree
complexity. A long-standing open problem for these measures is whether
or not block sensitivity can be polynomially upper bounded by sensitivity:

bs(f) ≤ poly(s(f))?

Although many efforts have been devoted to the open problem as we see
later, it is still open. On the other hand, if a function f is a monotone
function, it is known that s(f) = bs(f) = C(f) [8]. Our main motivation
of this paper is to seek other Boolean function classes such that s(f) =
bs(f) = C(f).

In this paper, we prove that s(f) = bs(f) = C(f) for unate functions,
which are generalized functions of monotone functions, and for read-once
functions over the Boolean operators ∧, ∨ and ⊕. We also prove that√
n ≤ s(f) (= bs(f) = C(f)) for read-once functions which have n input

variables, and the lower bound is tight.



Related works.
Rubinstein [9] exhibited a Boolean function f which has bs(f) =

1
2s(f)

2. The result has been improved [10, 2], although the best known
gap is still quadratic. Kenyon and Kutin [7] have proved that bs(f) ≤
e√
2π
es(f)

√

s(f). The upper bound has been improved to bs(f) ≤ 2s(f)−1s(f)

by Ambainis et al. [1]. Survey papers [4, 5] include more background for
this topic. On the average version of the sensitivity, Impagliazzo and
Kabanets [6] have given the tight bound on the average sensitivity of
read-once de Morgan formulas.

2 Preliminaries

2.1 Sensitivity, block sensitivity, and certificate complexity

Let f : {0, 1}n → {0, 1} be a Boolean function. For an input x =
(x1, x2, . . . , xn) of f and S ⊆ [n] = {1, 2, . . . , n}, let xS denotes the input
obtained from x by flipping all the bits xi such that i ∈ S. We abbrevi-
ate x{i} to xi. Sensitivity, block sensitivity, and certificate complexity are
defined as follows, respectively.

Definition 1. The sensitivity of f on x, denoted by s(f, x), is the number
of indices i such that f(x) 6= f(xi). The sensitivity of f , denoted by s(f),
is maxx s(f, x). For z ∈ {0, 1}, the z-sensitivity of f , denoted by sz(f),
is maxx∈f−1(z) s(f, x).

Definition 2. The block sensitivity of f on x, denoted by bs(f, x), is
the maximum number of disjoint subsets B1, B2, . . . , Bb of [n] such that
f(x) 6= f(xBi) for all i. The block sensitivity of f , denoted by bs(f),
is maxx bs(f, x). For z ∈ {0, 1}, the z-block sensitivity of f , denoted by
bsz(f), is maxx∈f−1(z) bs(f, x).

Definition 3. A certificate of f on x is a subset S ⊆ [n] such that f(y) =
f(x) whenever yi = xi for all i ∈ S. The size of a certificate is |S|.

The certificate complexity of f on x, denoted by C(f, x), is the size of
a smallest certificate of f on x. The certificate complexity of f , denoted
by C(f), is maxxC(f, x). For z ∈ {0, 1}, the z-certificate complexity of
f , denoted by Cz(f), is maxx∈f−1(z)C(f, x).

We can easily show the following relation between s(f), bs(f) and
C(f).

Proposition 1. For any Boolean function f ,

s(f) ≤ bs(f) ≤ C(f).



Proof. By the definitions of s(f) and bs(f), s(f) ≤ bs(f). For all x, since
a certificate on x have to contain indices of at least one variable of each
sensitive block, bs(f, x) ≤ C(f, x). Thus, bs(f) ≤ C(f). ⊓⊔

Let xi, yi ∈ {0, 1} for 1 ≤ i ≤ n. A Boolean function is calledmonotone
if f(x1, x2, . . . , xn) ≤ f(y1, y2, . . . , yn) whenever xi ≤ yi for all 1 ≤ i ≤ n.
Nisan [8] showed the following proposition for monotone functions.

Proposition 2 ([8]). If f is a monotone function, then

s(f) = bs(f) = C(f).

2.2 Unate functions and read-once functions

A Boolean function f : {0, 1}n → {0, 1} is positive unate in xi, 1 ≤ i ≤ n,
if

f(x1, . . . , xi−1, 0, xi+1, . . . , xn)

≤ f(x1, . . . , xi−1, 1, xi+1, . . . , xn)

for all xj , j 6= i, and is negative unate in xi if

f(x1, . . . , xi−1, 0, xi+1, . . . , xn)

≥ f(x1, . . . , xi−1, 1, xi+1, . . . , xn)

for all xj , j 6= i. A function f is called unate if f is positive or negative
unate in all xi for 1 ≤ i ≤ n. Monotone functions are a special case
of unate functions such that a function is positive unate in all input
variables.

A Boolean formula is a rooted binary tree in which each internal node
is labeled by the Boolean operators ∧, ∨, or ⊕ and each leaf is labeled by a
Boolean variable or its negation. A Boolean formula computes a Boolean
function in a natural way. A Boolean formula is called read-once if every
variable appears exactly once. A read-once Boolean function is a Boolean
function that can be represented by a read-once Boolean formula. Notice
that we define read-once Boolean functions based on Boolean formulas
which have the Boolean operator ⊕.

3 Unate functions

In this section, we prove the following theorem.



Theorem 1. If f is a unate function, then

s(f) = bs(f) = C(f).

s(f), bs(f) and C(f) of a Boolean function f are not changed even if
some input variables of f are flipped. More precisely, the following lemma
holds.

Lemma 1. Let f(x) be a Boolean function, and let S ⊆ [n]. For any S,
if g(y) is defined as f(yS), then,

s(f) = s(g), bs(f) = bs(g), C(f) = C(g).

Proof. It is obvious by the definitions of s(f), bs(f) and C(f). ⊓⊔

Proof (of Theorem 1). Let S = {i|f is negative unate in xi, 1 ≤ i ≤ n}.
We define g(y) as f(yS), then g(y) is monotone. By Lemma 1,

s(f) = s(g), bs(f) = bs(g), C(f) = C(g).

By Proposition 2,

s(g) = bs(g) = C(g).

Hence,

s(f) = bs(f) = C(f).

⊓⊔

4 Read-once functions

In this section, we prove that s(f) = bs(f) = C(f) for any read-once
Boolean function (Theorem 2), and prove that

√
n ≤ s(f) (Corollary 1)

and the
√
n lower bound is tight.

4.1 Lemma

Consider a read-once Boolean formula F representing a read-once Boolean
function. In F , two subformulas which are connected to a same node have
no common input variables, since every variable appears exactly once in a
read-once Boolean formula. This fact enables us to analyze the sensitivity
and certificate complexity of functions computed at each node in F .



Lemma 2. Let f1 and f2 be Boolean functions such that f1 and f2 have
no common input variables, and f1 and f2 are not constant functions.

If f = f1 ∧ f2, then

s0(f) = max{s0(f1), s0(f2)},
C0(f) = max{C0(f1), C0(f2)},
s1(f) = s1(f1) + s1(f2),

C1(f) = C1(f1) + C1(f2).

If f = f1 ∨ f2, then

s0(f) = s0(f1) + s0(f2),

C0(f) = C0(f1) + C0(f2),

s1(f) = max{s1(f1), s1(f2)},
C1(f) = max{C1(f1), C1(f2)}.

If f = f1 ⊕ f2, then

s0(f) = max{s0(f1) + s0(f2), s1(f1) + s1(f2)},
C0(f) = max{C0(f1) + C0(f2), C1(f1) + C1(f2)},
s1(f) = max{s0(f1) + s1(f2), s1(f1) + s0(f2)},
C1(f) = max{C0(f1) + C1(f2), C1(f1) + C0(f2)}.

Proof. Assume that f = f1∧f2. We consider that s0(f) = max{s0(f1), s0(f2)}.
If s0(f1) ≥ s0(f2), we can assign input variables of f2 so that f2 = 1, and
independently we can assign input variables of f1. Thus, we can confirm
that s0(f) = max{s0(f1), s0(f2)}.

Similarly, we can confirm all equations by the definitions of sensitivity
and certificate complexity. ⊓⊔

4.2 Equality

Lemma 2 immediately gives the following lemma.

Lemma 3. Let f1 and f2 be Boolean functions such that f1 and f2 have
no common input variables, and f1 and f2 are not constant functions. If

f = f1 ∧ f2, f = f1 ∨ f2, or f = f1 ⊕ f2,

and
s0(f1) = C0(f1), s1(f1) = C1(f1),



s0(f2) = C0(f2), s1(f2) = C1(f2),

then
s0(f) = C0(f), s1(f) = C1(f).

Now, we prove the following theorem.

Theorem 2. If f is a read-once Boolean function, then

s(f) = bs(f) = C(f).

Proof. Since s(f) ≤ bs(f) ≤ C(f) for any Boolean function f by Propo-
sition 1, we only need to prove s(f) = C(f).

Let n be the number of input variables of f . We use induction on n
and prove s0(f) = C0(f) and s1(f) = C1(f).

Base: n = 1. Then, f = x1 or f = ¬x1, and s0(f) = s1(f) = 1 and
C0(f) = C1(f) = 1. Thus, s0(f) = C0(f) and s1(f) = C1(f).

Induction Step: Suppose s0(f
′) = C0(f

′) and s1(f
′) = C1(f

′) for every
Boolean function f ′ such that the number of input variables of f ′ is less
than n.

Let F be a read-once Boolean formula which computes f . Recall that
we define Boolean formulas as rooted binary trees. Let f1 and f2 are
Boolean functions computed by subformulas which are connected to the
root node of F . Then, f = f1 ∧ f2, f = f1 ∨ f2, or f = f1 ⊕ f2, and the
number of input variables of f1 and f2 is less than n, respectively. By
the supposition, s0(f1) = C0(f1), s1(f1) = C1(f1), s0(f2) = C0(f2) and
s1(f2) = C1(f2). Thus, by Lemma 3, s0(f) = C0(f) and s1(f) = C1(f),
which mean s(f) = C(f). ⊓⊔

4.3 Lower bound

Lemma 2 also gives a lower bound for the sensitivity of read-once func-
tions.

Theorem 3. If f is a read-once Boolean function of n input variables,
then

n ≤ s0(f)s1(f).

Proof. We use induction on n.

Base: n = 1. Then, f = x1 or f = ¬x1, and s0(f)s1(f) = 1. Thus,
n ≤ s0(f)s1(f).



Induction Step: Suppose n′ ≤ s0(f
′)s1(f ′) for every Boolean function f ′

such that the number of input variables of f ′, denoted by n′, is less than
n.

Let F be a read-once Boolean formula which computes f . Recall that
we define Boolean formulas as rooted binary trees. Let f1 and f2 are
Boolean functions computed by subformulas which are connected to the
root node of F , and let n1 and n2 are the number of input variables of f1
and f2, respectively. Then, f = f1 ∧ f2, f = f1 ∨ f2, or f = f1 ⊕ f2, and
n1 < n, n2 < n, and n1 + n2 = n. By the supposition, n1 ≤ s0(f1)s1(f1)
and n2 ≤ s0(f2)s1(f2).

If f = f1 ∧ f2, then, by Lemma 2,

s0(f)s1(f) = max{s0(f1), s0(f2)}s1(f1) + max{s0(f1), s0(f2)}s1(f2)
≥ s0(f1)s1(f1) + s0(f2)s1(f2)

≥ n1 + n2 = n.

Similarly, we can prove that n ≤ s0(f)s1(f) also for the cases that f =
f1 ∨ f2 and f = f1 ⊕ f2. ⊓⊔

Recall that s(f) = max{s0(f), s1(f)}.

Corollary 1. If f is a read-once Boolean function of n input variables,
then √

n ≤ s(f).

The lower bounds in Theorem 3 and Corollary 1 are tight, since we
can easily confirm that the following read-once Boolean function f has
s0(f) = n/m and s1(f) = m. (We assume that m is a positive integer
such that n/m becomes an integer.)

f =

n/m
∨

i=1

m
∧

j=1

xm(i−1)+j .

5 Concluding Remarks

In this paper, we investigated the sensitivity, block sensitivity, and cer-
tificate complexity of unate functions and read-once functions. As the
conclusion of this paper, we show an application of our results to decision
tree complexity.

Let D(f) denote the decision tree complexity of f , i.e., the depth of
an optimal decision tree that computes f . Beals et al. [3] prove



Theorem 4 ([3]). For any Boolean function f ,

D(f) ≤ C1(f)bs(f).

Recall that we proved that s(f) = bs(f) = C(f) for any unate function f
(Theorem 1) and for any read-once function f (Theorem 2), and C1(f) ≤
C(f) by the definition. Thus, we obtain the following corollary.

Corollary 2. If f is a unate function or a read-once function, then

D(f) ≤ s(f)2.

Although Corollary 2 is meaningful for unate functions, we have to be
attentive for read-once functions, since we can easily see that D(f) = n
for every read-once function. Thus, Corollary 2 is an alternating proof
of Corollary 1 rather than an upper bound of D(f). Notice that the
alternating proof depends on Theorem 4 and cannot prove Theorem 3.
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