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Abstract. In this paper we continue the study of the input-output con-
formance simulation (iocos). In particular, we focus on implementation
aspects to show that iocos is indeed an interesting semantic relation
for formal methods. We address two complementary issues: a) In the
context of model based testing (MBT) we present an online, also called
on-the-fly, testing algorithm that checks whether an implementation con-
forms a given specification. Online testing combines test generation and
execution and avoids the generation of the complete test suite for the
specification. We prove both soundness and completeness of the online
algorithm with respect to the iocos relation. b) In the context of formal
verification and model checking minimisation a key issue is to efficiently
compute the considered semantic relations; we show how the coinductive
flavour of our conformance relation iocos makes it appropriate to be cast
into an instance of the Generalised Coarsest Partition Problem (GCPP)
and thus it can be efficiently computed.

Keywords: Model Based Testing, Online Testing, Simulation Algorithm, Input
Output Conformance Simulation, Model Checking Minimisation, Verification,
Generalised Coarsest Partition Problem, Formal Methods.

1 Introduction

In a recent paper [12] we introduced the input-output conformance simulation
relation (iocos) that refines the classic Tretman’s ioco. The work by Tretmans [25]
has settled a solid and widespread framework in the Model Based Testing (MBT)
community: it offers both offline and online [9] testing algorithms; and there are
several model-based test generation tools (e.g. [26,3]) that implement the ioco-
testing theory.

From a theoretical point of view, some interesting particularities of the ioco-
framework are: behaviours are modelled as labelled transition systems (LTS);
quiescent states (see [24]) are considered; implementations should be input-
enabled; and the ioco relation is a trace-based semantics, and thus a linear
semantics [27].

? Research partially supported by the Spanish MEC projects TIN2009-14312-C02-01
and TIN2012-36812-C02-01



Our iocos approach shares LTS as models, quiescence, and much of the con-
formance philosophy, while considering a wider behaviour domain not imposing,
but allowing, implementations to be input enabled. The substantial difference is
that the conformance relation is an input-output simulation (iocos) —a branch-
ing semantics [27]— with greater discriminatory power than ioco (see Theo-
rem 1 below). In [12] we presented an offline algorithm that starting from a
formal model of the specification produced a test suite to be checked against the
possible implementations. We proved the resulting test suite to be sound and
exhaustive for the given specification with respect to iocos.

In this paper we present an alternative approach to offline testing that avoids
the generation of the whole test suite. When time or space requirements are con-
sidered, a more suitable testing approach is the so called online testing. Online
testing considers a concrete implementation to be checked against the specifica-
tion. It combines test generation from the specification model and test execution
against the implementation. In this approach only a single step of a test is gen-
erated from the model and executed in the implementation; the results of this
execution are taken into account to generate the next step in the test, that is
again checked against the implementation. In order to show the applicability of
our conformance relation, in this paper we define an online testing algorithm for
iocos that we prove to be sound and complete.

An essential point of our conformance relation is that it is simulation-based.
Simulation is an important notion pervading many fields in computer science
(model checking, concurrency theory, formal verification. . . ). It is an active area
of research both theoretical (e.g. [2,8,17,10]) and practical (e.g. [5,22]). Regarding
practical implementation applications for iocos, it is particularly interesting its
use in model checking minimisation ([6,14]) as a technique to overcome the state
explosion problem.

The quest for efficient algorithms1 to compute this relation has been an area
of active research in the last years (e.g.[11,5,22]). In [22] you can find an excel-
lent review of the state of the art for simulation algorithms. One of the most
outstanding algorithms is the one presented in [11], and subsequently corrected
in [28]. It is one of the fastest algorithms and quasi-optimal in space. This al-
gorithm exploits the representation of the simulation problem as a Generalised
Coarsest Partition Problem (GCPP). We show in this paper how the confor-
mance relation iocos can be cast into an instance of the GCPP. Therefore it can
be efficiently computed using the algorithm in [28].

The paper is organised as follows: in Section 2 we present the essential no-
tation, definitions and results of the iocos-theory used in the rest of the paper.
In Section 3, definition and behaviour of our online testing algorithm are ex-
plained and we discuss other related online testing algorithms in the literature.
Section 4 is devoted to prove that iocos is indeed a relation that can be effi-

1 As a general overview, we could say that while deciding trace inclusion on finite-state
processes is PSPACE-hard [23], the simulation preorder is decidable in polynomial
time. Actually, simulation preorder is the coarsest preorder included in trace inclu-
sion with this property.



ciently computed. We use the technique of system transformation to adequate
iocos to the problem definition in [11]. Then we prove that this transformation
holds all requirements to be computed as a GCPP. Finally in Section 5 we make
a summary and advance some future research lines. In order to meet the space
requirements, there is an appendix containing the more technical proofs of the
paper. This appendix will be available on-line in case of acceptance of the paper.

2 Preliminaries

This section presents the notation used in the paper and reviews the formal
framework of the iocos theory introduced in [12,16].

We consider two disjoint finite sets of actions: inputs I, initiated by the
environment and annotated with a question mark, a?, b?, c? ∈ I; and outputs O,
initiated by the system, and annotated with an exclamation mark, o!, u!, t! ∈ O.
In many cases we want to name actions in a general sense, inputs and outputs
indistinctly. We will consider the set L = I∪O and we will omit the exclamation
or question marks when naming generic actions, x, y, z ∈ L.

A state with no output actions cannot autonomously proceed, such a state
is called quiescent. Quiescence is an essential component of the ioco theory. For
the sake of simplicity and without lost of generality (see for instance [25,24]), we
directly introduce the event of quiescence as a special action denoted by δ! ∈ O
into the definition of our models.

Definition 1. A labelled transition system with inputs and outputs is a 4-tuple
(S, I,O,−→) such that

– S is a set of states or behaviours.
– I and O are disjoint sets of input and output actions respectively. Output

action include the quiescence symbol δ! ∈ O. We define L = I ∪O.
– −→ ⊆ S×L×S. As usual we write p x−−→ q instead of (p, x, q) ∈ −→ and p x−−→ ,

for x ∈ L, if there exists q ∈ S such that p x−−→ q. Analogously, we will write
p
x−−6→ , for x ∈ L, if there is no q such that p x−−→ q.

In order to allow only coherent quiescent systems the set of transitions −→
should also satisfy:

• if p δ!−−→ p′ then p = p′. A quiescent transition is always reflexive.

• if p
o!−−−−6→ for any o! ∈ O\{δ!}, then p δ!−−→ p. A state with no (regular)

outputs is quiescent.

• if there is o! ∈ O\{δ!} such that p o!−−→ , then p
δ!−−−−6→ . A quiescent state

performs no other output action.

– A system is input-enabled if at any s ∈ S for every a? ∈ I we have s a?−−→ . ut

We denote the set of labelled transition systems with inputs and outputs
just as LTS . In general we use p, q, p′, q′. . . for states or behaviours, but also
i, i′, s and s′ when we want to emphasise the concrete role of a behaviours as



implementation or specification. We consider implementations and specifications,
or, more generally, behaviours under study, as states of the same LTS .

A trace is a finite sequence of symbols of L. We will normally use the symbol
σ to denote traces, that is, σ ∈ L∗. The empty trace is denoted by ε and we
juxtapose, σ1σ2, to indicate concatenation of traces. The transition relation of
labelled transition systems can naturally be extended using traces instead of sin-
gle actions, p σ−−→ q. Next we introduce some definitions and notation frequently
used in the paper.

Definition 2. Let (S, I,O,−→) ∈ LTS , and p ∈ S, we define:

1. p after σ = {p′ | p′ ∈ S, p σ−−→ p′}, the set of states after the trace σ.

2. outs(p) = {o! | o! ∈ O, p o!−−→}, the outputs of a state p (it may include δ!).

3. ins(p) = {a? | a? ∈ I, p a?−−→}, the set of inputs of a state p. ut

A behaviour is deterministic when for any x ∈ L, if p x−−→ p1 and p x−−→ p2
then p1 = p2; or equivalently the set p after σ is always empty or a singleton.
While some models prevent non determinism we assume and allow all kinds of
non-deterministic behaviour both in specifications and implementations.

Next we recall the simulation-based formal definition of iocos.

Definition 3. Let (S, I,O,−→) ∈ LTS , we say that a relation R ⊆ S × S is a
iocos-relation if and only if for any (p, q) ∈ R the following conditions hold:

1. ins(q) ⊆ ins(p)

2. ∀a? ∈ ins(q) if p a?−−→ p′ then ∃q′ ∈ S such that q a?−−→ q′ ∧ (p′, q′) ∈ R.

3. ∀o! ∈ outs(p) if p o!−−→ p′ then ∃q′ ∈ S such that q o!−−→ q′ ∧ (p′, q′) ∈ R.

We define the input-output conformance simulation (iocos) as the union of
all iocos-relations (the biggest iocos-relation). ut

Additional details on iocos rationale and examples appear in [12], where it is
also proved that iocos is a strictly finer relation than ioco.

Theorem 1. [12] Let (S, I,O,−→) ∈ LTS ; then iocos ⊆ ioco. That is, for any
p, q ∈ S, whenever we have p iocos q it is also true that p ioco q. ut

3 An online testing algorithm for iocos

The main goal of this section is to prove iocos as a suitable conformance relation
to be used in online testing. As usual, the online testing algorithm merges test
generation and execution into a single interactive process. In order to understand
the notation and some ideas and key concepts behind Algorithm 1, next we recall
the iocos theory of testing: test definition and test execution.

Definition 4. A test is a syntactical term defined by the following BNF:

T = % | ! | T1 ⊕ T2 | T1 + T2 | x;T where x ∈ L

We denote the set of tests as T . ut



As usual in MBT, the environments we want to model should be able to
respond at any moment to any possible output of the implementation under
test. That is, tests like a?;Ta? will not be accepted as valid tests, but should be
completed into tests like a?;Ta? +

∑
o!∈O o!;To!. For the sake of simplicity we use∑

i∈{1,...,n} Ti as a shortcut for T1 + · · ·+ Tn.
Particularly interesting is that we consider two kind of choices in the tests:

the one corresponding to the + operator, with conjunctive semantics, and the
⊕ operator with a disjunctive meaning. To define how tests interacts with be-
haviours and what is the result of the execution of that experiment, we follow
Abramsky’s ideas in [1] and use a predicate to define the outcomes of the inter-
action between a test and the behaviour or implementation being tested.

Definition 5. Let (S, I,O,−→) ∈ LTS , s ∈ S, a? ∈ I, and o! ∈ O, we inductively
define the predicate pass ⊆ S × T as follows:

s pass% = false
s pass! = true

s pass o!;To! =

{
true if o! 6∈ outs(s)∧
{s′ pass To!|s o!−−→ s′} otherwise

s pass a?;Ta? =

{
false if a? 6∈ ins(s)∧
{s′ pass Ta?|s a?−−→ s′} otherwise

s pass T1 + T2 = s pass T1 ∧ s pass T2
s pass T1 ⊕ T2 = s pass T1 ∨ s pass T2

ut

For the sake of convenience the pass predicate is inductively defined over the
whole set of tests, with a simpler structural formulation, while at the end we
will only be interested in valid tests.

In [12] we defined an algorithm (Definition 6 below) that starting from a
given specification s produced a test suite T (s) of valid tests that characterised
the specification with respect to the iocos conformance relation as stated in
Theorem 2 below.

Definition 6. Let (S, I,O,−→) ∈ LTS and p ∈ S. We denote with T (p) the set
of valid tests from p by applying a finite number of recursive applications of one
of the following non-deterministic choices:

1. T = ! ∈ T (p).
2. If a? ∈ ins(p), then T ∈ T (p) where

T = a?;
⊕
{Tpa? | p a?−−→ pa?}+

∑
o!∈outs(p)

o!;
⊕
{Tpo! | p

o!−−→ po!} +
∑
o!∈O

o!6∈outs(p)

o!;%

3. If ins(p) = ∅ then T ∈ T (p) where

T =
∑

o!∈outs(p)

o!;
⊕
{Tpo! | p

o!−−→ po!}+
∑
o!∈O

o! 6∈outs(p)

o!;%



In all cases the tests Tp are chosen non-deterministically from the set T (p),

Tδ(p) = ! if p δ!−−→ , and Tδ!(p) = % otherwise. ut

Theorem 2. [12](Completeness) Let (S, I,O,−→) ∈ LTS and p, q ∈ S, T ∈
T (p) : q pass T iff q iocos p. ut

Online Algorithm Offline generation of test leads to a massive test suite.2 This
is not surprising given that the test suite should be able to prove and disprove the
conformance with any possible implementation. Online testing, on the contrary,
considers a concrete implementation under test (IUT) and, therefore, the testing
process can be guided by the mutual interaction.

The online testing algorithm for iocos is defined in Algorithm 1. This algo-
rithm somehow merges the test generation and execution (Definition 5 and 6),
and it considers only the necessary continuations by taking into account the
current state of the specification and the last response from the implementation.

Algorithm 1 starts with a specification, an IUT, and a desired number of
iterations (parameters s, IUT and maxIter in function TE). The testing process
will continue until a % verdict is found, indicating IUT does not conform s, or
until the number of iterations has been reached without a faulty behaviour found
in IUT.

According to Definition 5 the testing process will yield a % verdict on these
cases: a mandatory input is rejected by IUT or an unexpected output by IUT is
registered by the tester. In Algorithm 1, the first situation is solved in the first
conditional inside the first case statements in function TEREC (lines 16 and 17).
Let us note that to check the enabled actions in IUT (line 16), is equivalent to
check condition 1 in Definition 3 (iocos).

Otherwise, if the action that the test chooses to offer is actually enabled in
the IUT, the stimulus is sent to the implementation (line 18) and then condition
2 in Definition 3 (iocos) should be tested: at least one of the descendant tests
must be passed by the current state of the implementation, otherwise the final
return statement outside the loop will propagate the % verdict. The copy clause
(line 19) —theoretically essential, see [1,21]— is used to check every descendant
test against the same state of the implementation. For software artifacts, and
even embedded systems that can be easily replicated, this is indeed a feasible
operation.

In a similar way, if we focus on output actions, conditional in lines 28 and 29
detects unexpected outputs from the implementation. Otherwise, if an output
received from the IUT is acceptable, the algorithm has to proceed and check
condition 3 in Definition 3 (iocos) as described previously.

Algorithm 1 is non-deterministic and the three cases in the choice statement
(line 13) are arbitrarily chosen in every run of the function TEREC. The reset
case introduces the possibility of breadth exploration of the IUT, while the other
two choices produce a (one step) deep exploration.

2 Of course, there is a very interesting line of research in MBT that tries to reduce
the size of the test suite while keeping a good coverage.



Algorithm 1 Online Testing Algorithm for iocos

1: function TE(s, iut,maxIter)
2: continue← !
3: numIter ← maxIter
4: while numIter > 0 ∧ continue == ! do
5: continue, numIter ← TE REC(s, iut, numIter)
6: if continue == ! then
7: reset iut
8: return continue
9: function TEREC(s, iut, numIter)

10: if numIter = 0 then
11: return !, numIter
12: else
13: choice
14: case action do . Offers an input to the implementation
15: choice a ∈ ins(s)
16: if a? is not enabled in iut then
17: return %, numIter

18: send a? to iut
19: iut0 ← copy(iut)
20: for s′ ∈ s after a? do
21: iut← copy(iut0)
22: continue, numIter ← TEREC(s′, iut, numIter − 1)
23: if continue == ! then
24: return !, numIter

25: return %, numIter

26: case wait do . Waits for an output from the implementation
27: wait o! from iut
28: if s after o! = ∅ then
29: return %, T

30: iut0 ← copy(iut)
31: for s′ ∈ s after o! do
32: iut← copy(iut0)
33: continue, numIter ← TEREC(s′, iut, numIter − 1)
34: if continue == ! then
35: return !, numIter

36: return %, numIter

37: case reset do . Resets implementation and restart
38: return !,maxIter

39:



There are in the literature of MBT two essential works we can relate Algo-
rithm 1 with. In [9] de Vries and Tretmans presented an online algorithm for ioco
that is non-deterministic and even termination is one of the non-deterministic
choices. In [15] Larsen et al. describe an online algorithm for an ioco-based confor-
mance relation extended with real time and considering a concrete environment,
namely rtiocoe. Algorithm 1 is more similar in form to that on [15] and share
with it the reset clause and the explicit use of the number of iterations. We do
not consider explicit environments but the most general possible environment.3

As in [9,15], quiescence detection can be implemented with a timeout.
In [29] you can find a practical online testing algorithm that is implemented

in the MBT tool developed at Microsoft Research called Spec Explorer. The
framework and the approach are somehow different: they use interface automaton
as the specification model and assume the implementation to be in the domain
of the specifications. In this work soundness and completeness are not even
mentioned.

Soundness and Completeness The rest of this section is devoted to prove
that Algorithm 1 is indeed sound and complete.

In [9] correctness of the online algorithm for ioco is stated under fairness
assumptions (weather conditions [19]) in the non-deterministic choices. In [15]
online algorithm for rtiocoe is proved to be sound and complete assuming the
classic test hypothesis,4fairness in the randomisation of algorithm choices, and
deterministic IUT.

In our model, we allow both implementations and specifications to behave
non-deterministically and, as usual, we assume fairness in the non-deterministic
choices and the test hypothesis ([9,15]). Test hypothesis assumes that any IUT
can be modelled in the domain of LTS .

Theorem 3. Let (S, I,O,−→) be a LTS , let i, s ∈ S, and n ∈ N. If the function
call TE(s, i, n) in Algorithm 1 returns a %, then i /iocos s.

Proof. The proof proceed by induction on the parameter n of TE(s, i, n), follow-
ing the ideas commented in the algorithm explanation. ut

Asserting completeness implies that, for any faulty implementation of a given
specification s, the online testing process in Algorithm 1 should eventually yield
a % result, that is, the algorithm should drive the computation through a test
passed by the specification and failed by the implementation. Let us note that a
key point to prove the completeness is to assure that all states in the specification
and implementation should be inspected. This is where the fairness requirement
is needed: every infinitely often eligible action is eventually executed. To ensure
this possibility one of the choices of the algorithm is to reset the IUT and to

3 To introduce environments might lead to a reduction of the search-space because
this additional knowledge can be used to further restrict the testing process.

4 The behaviour of IUT can be described in the model domain. Only the existence is
assumed, not a concrete and known instance.



restart the algorithm (lines 37 and 38). Moreover, assuming the fairness hypoth-
esis also implies that the number of times required to ensure that all states have
been checked is not known a priori. So the number of iterations appearing in
Proposition 1 and Theorem 1 cannot be determined at the beginning of the
execution.

Proposition 1. Let (S, I,O,−→) be a LTS , let i, s ∈ S, and let T ∈ T (s) be
a test such that s pass T and i /pass T . Then there exist n, n′ ∈ N such that
TEREC(s, i, n) returns %, n

′.

Proof. We make the proof by induction on the depth of T . The case base is
when T = ! that is trivial since i pass T . According to Definition 6, there are
two cases. We are going to consider the test

T = a?;
⊕
{Tsa?

| s a?−−→ sa?}+
∑

o!∈outs(s)

o!;
⊕
{Tso! | s

o!−−→ so!} +
∑
o!∈O

o! 6∈outs(s)

o!;%

The other case is simpler than this one. Since i /passT , there are three possibilities
to make the test fail:

1. i /passa?;
⊕
{Tsa?

| s a?−−→ sa?}. Since we are assuming the fairness hypothesis,
by choosing an arbitrary high n the choice in line 15 of the algorithm will
eventually choose the action a?. If a? is not enabled in i, then the algorithm
returns% in line 17. Otherwise the algorithm sends a? to the implementation.
Again, by the fairness hypothesis the implementation, eventually will go to

a state i′ such that i′ /pass
⊕
{Tsa?

| s a?−−→ sa?}. Let us name ni′ the number
of iterations needed to reach this state. On the other hand, since s pass T ,

s′ pass
⊕
{Tsa?

| s a?−−→ sa?} for any s′ ∈ saftera?. So by induction hypothesis
for any s′ ∈ s after a? there exist ns′ ∈ N such that TEREC(s′, i, ns′) returns

%. So by choosing n0 ≥= ni′ +
∑
s′∈saftera? ns′ , there exists n′ such that the

TEREC(s, i, n0) returns %, n
′.

2. i /pass
∑
o!∈outs(s) o!;

⊕
{Tso! | s

o!−−→ so!}. In this case there is o! ∈ outs(s) such

that i produces output o! and goes to an state i′ such that i /pass
⊕
{Tso! | s

o!−−→
so!}. By the fairness hypothesis the implementation will eventually produce
that output and will go to state i′. Let us name ni′ the number of iterations

needed to reach this state. On the other hand, s′ pass
⊕
{Tso! | s

o!−−→ so!}
for any s′ ∈ s after o!. So by induction hypothesis for any s′ ∈ s after o!
there exist ns′ ∈ N such that TEREC(s′, i, ns′) returns %. So by choosing
n0 ≥= ni′ +

∑
s′∈saftero! ns′ , there exists n′ such that the TEREC(s, i, n0)

returns %, n
′.

3. i /pass
∑

o!∈O
o!6∈outs(s)

o!;%. In this case there is o! ∈ O such that i produces output

o!. By the fairness hypothesis the implementation will produce this output
an the algorithm will return % in line 29. ut

Since the main function of the algorithm just makes calls to the recursive
algorithm as a corollary we get the following result:



Theorem 4. Let (S, I,O,−→) be a LTS , let i, s ∈ S. If i /iocos s then there exist
n ∈ N such that the function call TE(s, i, n) in Algorithm 1 returns %. ut

4 iocos as a Generalised Coarsest Partition Problem

Milner in [18] introduced the preorder relation called simulation. Simulation
equivalence strongly preserves ACTL∗, and also strongly preserves LTL and
ACTL as sublogics of ACTL∗ [6]. Both ACTL and LTL are widely used for
model checking in practice.

Simulation is a close relative of the well known bisimulation equivalence [20].
Bisimulation equivalence can be fast computed by reducing it to the problem
of determining the coarsest partition of a set stable with respect to a given
relation [13]. An equivalent result for computing simulation as a generalised
coarsest partition problem (GCPP) was given in [11] and corrected in [28]. This
algorithm keeps a very good time complexity while its space complexity can be
considered minimal.

Although iocos definition is simulation-like, it has particularities inherited
from the classic requirements for the conformance relations when dealing with
inputs and outputs, and even the use of input-output actions is not symmetric in
the definition. Therefore, the applicability of simulation algorithms to compute
iocosis not straightforward.

We will show in this section that fortunately we can compute iocos by using
any algorithm that solves the GCPP. To achieve this goal, first we will show how
to transform the LTS into graphs and partitions as defined in [11,28]. Then we
will define the relation g-iocos (graph-iocos) in the transformed LTS that will
be equivalent to iocos. Finally, we will formally prove that the transformed LTS
holds the conditions of the GCPP.

4.1 Transforming an LTS into a graph

The GCPP in [11] is defined in terms of graphs. These graphs have no labels in
the edges. The objective is to transform an LTS into a graph without actions
and without loosing information. The idea to achieve this is to encode the action
associated to a transition into the states of the graph. So the states of the
associated graph of an LTS will be pairs: the first component of the pair refers
to a state of the LTS whereas the second component is the action needed to
reach this state.

One of the details that we have to deal with to transform iocos into a simu-
lation is that in Definition 3 (iocos) the implementation is allowed to introduce
unspecified behaviour. We do not need to take into account those states reached
by implementation when input actions are not present in the specification. To
overcome this situation, in the transformed system, we need to represent these
states by adding a sort of new magic state, that we denote by the symbol ∗.
Such a state has the next property: every possible implementation will fulfil it.
Moreover, in the transformation we will embed the transition action symbol into



the state itself. Exceptionally, and just for the sake of uniformity, a new action
symbol (·) is used for states with no incoming transitions.

Definition 7. Let L = (S, I,O,−→) be a labelled transition system. We define
its transformed graph as T(L) = (N,=⇒) where N = (S ∪ {∗}) × (L ∪ {·}) and
=⇒ is defined by the following rules.

s
y−−→ s′

(s, x) =⇒ (s′, y)
,

s
a?−−−−6→

(s, x) =⇒ (∗, a?)
,

(∗, x) =⇒ (∗, y)
,

s, s′ ∈ S
x, y ∈ L ∪ {·}, a? ∈ I

The nodes of N will be denoted by the letters n, n1, n2, etc. Since these nodes
come from states of the original labelled transition system, we annotate the arcs
of the graph with the action of the target node for readability reasons. In this
way will write n1

x
==⇒ n2 whenever n1 =⇒ n2 and there is s2 ∈ S such that

n2 =(s2, x).
Following the same rationale we adapt the definition of the function ins:

ins(∗, x) = ∅ and ins(s, x) = ins(s) if s ∈ S. ut

Definition 8. Let (N,⇒) be the transformed graph of an L ∈ LTS , a relation
R ⊆ N×N is g-iocos simulation iff for any n1, n2 ∈ N, (n1, n2) ∈ R the following
conditions hold:

1. n1 = (s1, x), n2 = (s2, y) and x = y.
2. ins(n2) ⊆ ins(n1)

3. for all a ∈ L, if n1
a

==⇒ n′1 then exists n′2 such that n2
a

==⇒ n′2 and n′1Rn
′
2.

For n1, n2 ∈ N , we say that n1 g-iocos n2 if there exists a g-iocos simulation R
such that (n1, n2) ∈ R. ut

At a first glance, g-iocos is defined as a kind of ready simulation preorder [4].
Next, we show that computing g-iocos over graphs is equivalent to compute iocos
on LTS. Proposition 2 describes how to transform a concrete iocos-simulation
into a g-iocos-simulation, while Proposition 3 presents the reciprocal transforma-
tion. Finally, Theorem 5 is a corollary of the previous results showing iocos and
g-iocos to be two different formulations for the same semantics in two different
domains.

Proposition 2. Let L = (S, I,O,−→), let T(L) = (N,=⇒) be its transformed
graph, let R be iocos relation R ⊆ S × S, and let R′ ⊆ N ×N defined as

R′ =
{

((i, a), (s, a)|(i, s) ∈ R,∀a ∈ L∪{·}
}
∪
{

(i, a)(∗, a)| a ∈ L∪{·}, i ∈ S∪{∗}
}

Then R′ is a g-iocos simulation.

Proof. Let us take (n1, n2) ∈ R′ and check that R′ holds the statements of
Definition 8.

n2 = (∗, a). i.e., we are in the second subset of R′. Trivially we have ins(n1) ⊇
∅ = ins(n2) (statement 2 of Definition 8). As (∗, x) =⇒ (∗, y) for any x, y ∈ L
and (n′1, (∗, a)) ∈ R′ for any n′1, then statement 3 of Definition 8 holds.



n1 = (∗, a). As R′ is defined, n2 = (∗, a), and it is solved as in the previous case.
n1 6= (∗, a) and n2 6= (∗, a). Let us assume that n1= (i, a) and n2= (s, a). Since

R is an iocos simulation, we obtain ins(n1) = ins((i, a)) = ins(i) ⊇ ins(s) =
ins((s, a)) = ins(n2) (statement 2 of Definition 8).

Now let us take action x ∈ L such that n1
x

==⇒ n′1. If x ∈ O then we
obtain that there exist i′ such that i x−−→ i′ and n′1 = (i′, x). Since R is
a iocos simulation, then there exists s′ such that s a−−→ s′ and (s, s′) ∈ R.

Again, by the construction of the transitions n2 =(s, a)
x

==⇒ (s′, x)=n′2 and
(n′1, n

′
2) ∈ R′ by definition of R′.

If x ∈ I there are two possibilities: either x 6∈ ins(i) or x ∈ ins(i). In the
first case we have (i, a) x−−→ (∗, a) = n′1 by the way transitions are defined.
Since R is an iocos simulation ins(s) ⊆ ins(i) and therefore x 6∈ ins(s). Then

n2 = (s, a)
x

==⇒ (∗, x) = n′2 and (n′1, n
′
2) ∈ R′. In the second case there

exists i′ such that i x−−→ i′. If x ∈ ins(s), since R is an iocos simulation there
exists s′ such that s x−−→ s′ and and (s, s′) ∈ R. By the construction of the

transitions n2 = (s, a)
x

==⇒ (s′, x) = n′2 and (n′1, n
′
2) ∈ R′ by definition of R′.

If x 6∈ ins(s), then (s, a) x−−→ (∗, x) = n′2. Then (n′1, n
′
2) ∈ R′ by definition of

R′ ut

Proposition 3. Let L = (S, I,O,−→) be a labelled transition system, let T(L) =
(N,=⇒) be its transformed graph, let R′ ⊆ N ×N be a g-iocos relation, and let
R ⊆ S × S defined as R = {(i, s)|∃a ∈ L ∪ {·}. ((i, a), (s, a)) ∈ R′ ∧ i, s ∈ S}.
Then R is a iocos simulation.

Proof. Let (i, s) ∈ R. By construction of R, there exists a ∈ L and n1 = (i, a)
and n2 =(s, a) such that (n1, n2) ∈ R′. Since R′ is a g-iocos simulation, we have
ins(i) = ins((i, a)) = ins(n1) ⊇ ins(n2) = ins((s, a)) = ins(s) according to the
statement 1 of the definition of iocos. Now let us check the other two conditions:

– Let us consider b? ∈ ins(s) such i b?−−→ i′, so (i, a)
b?

==⇒ (i′, b?). Since R′

is a g-iocos simulation there exists n′2 = (s′, b?) such that n2
b?

==⇒ n2. Since
b? ∈ ins(s), s′ 6= ∗, so s′ ∈ S. Finally, by definition of,R we obtain (i′, s′) ∈ R.

– The case when o! ∈ outs(i) and i o!−−→ i′ is similar to the previous one, but
in this case s′ 6= ∗ because o! 6∈ I. ut

Finally, we obtain the theorem that relates iocos and g-iocos. This theorem
is a corollary of the previous Proposition 2 and 3.

Theorem 5. Let L = (S, I,O,−→) be a labelled transition system and T(L) =
(N,=⇒) its transformed graph. Then, for any s1, s2 ∈ S, we have (s1, s2) ∈ iocos
if and only if ((s1, x), (s2, x)) ∈ g-iocos ∀x ∈ L. ut

4.2 g-iocos as a GCPP problem

To conclude this section we will show that g-iocos can be seen as an instance of
the GCPP. In order to make the paper self-contained, we are going to reproduce
in condensed form definitions from [11].



Definition 9. Let L = (S, I,O,−→) be a labelled transition system and T(L) =
(N,=⇒) its transformed graph.

1. A partition pair is a tuple 〈S,-〉 such that S = {α, β, . . . } is a partition of
N and - is a reflexive and acyclic relation on S.

2. Let S be a partition and let n ∈ N , we write [n]S as the unique element of
S that contains n.

3. Let α, β ∈ S, we write α =⇒∃ β iff ∃a ∈ α such that a =⇒ g for some b ∈ β.
We write α=⇒∀ β iff ∀a ∈ α we have a=⇒ b for some b ∈ β.

4. We say that 〈S,-〉 is stable with respect to =⇒ iff

∀α, β, γ ∈ S if (α, β) ∈- ∧α=⇒∃ γ then ∃ε ∈ S : (γ, ε) ∈- ∧β =⇒∀ ε

5. Let 〈S1,-1〉 and 〈S2,-2〉 be partition pairs. We say that 〈S1,-1〉 is a re-
finement of 〈S2,-2〉, written 〈S1,-1〉 v 〈S2,-2〉, if S1 is finer than S2, i.e.,
(∀α ∈ S1∃α′ ∈ S2 : α ⊆ α′) and -1⊆-2 (S1) where -2 (S1) is the induced
relation on S1 by -2: (α, β) ∈-2 (S1) iff there exist α′, β′ ∈ S2 such that
α ⊆ α′, β ⊆ β′ and (α′, β′) ∈-2.

6. Let us consider a pair 〈S,-〉, the Generalised Coarsest Partition Problem
(GCPP) for 〈S,-〉 consists in finding a partition pair 〈S0,-0〉 such that:
a) 〈S0,-0〉 v 〈S -〉, b) 〈S0,-0〉 is stable respect to =⇒ , and c) 〈S0,-0〉 is
maximal fitting a) and b). ut

Now we are ready to set up our key concepts in order to embed iocos com-
putation into GCPP problem via a g-iocos reduction.

Definition 10. Let L = (S, I,O,−→) be a labelled transition system and T(L) =
(N,=⇒) its transformed graph. We write ≡g-iocos for the kernel of g-iocos, that
is (a, b) ∈≡g-iocos iff (a, b) ∈ g-iocos and (b, a) ∈ g-iocos.

Since≡g-iocos is an equivalence relation, it induces the partitionN/ ≡g-iocos. In
this partition we can define -g-iocos as the natural relation induced by g-iocos in
N/ ≡g-iocos, namely, for n1, n2 ∈ N , ([n1]g-iocos, [n2]g-iocos) ∈-g-iocos iff (n1, n2) ∈
g-iocos. ut

Let us note, that -g-iocos is reflexive and acyclic in N/ ≡g-iocos, so 〈N/ ≡g-iocos
,-g-iocos〉 is a partition pair. So, the rest of this section is devoted to prove that
the partition 〈N/ ≡g-iocos,-g-iocos〉 can be solved with any algorithm that solves
the GCPP. In order to do it we need to define an initial partition pair 〈Ω,4〉
such that 〈N/ ≡g-iocos,-g-iocos〉 v 〈Ω,4〉.

Definition 11. Let L = (S, I,O,−→) be a labelled transition system and T(L) =
(N,=⇒) its transformed graph.

– We define the partition Ω = {α1, α2, . . . αn} ⊆ P(N) as follows: (n1, n2) ∈ αi
if and only if n1 = (s1, x), n2 = (s2, y), ins(s2) = ins(s1) and x = y.

– We define the relation 4⊆ Ω × Ω as [n1]Ω 4 [n2]Ω iff n1 = (s1, x), n2 =
(s2, y), ins(s2) ⊆ ins(s1) and x = y. ut



Lemma 1. Let L = (S, I,O,−→) be a labelled transition system and its trans-
formed graph T(L) = (N,=⇒). Then 〈N/ ≡g-iocos,-g-iocos〉 v 〈Ω,4〉.
Proof. This lemma is immediate because of the definition of g-iocos-simulation,
kernel ≡g-iocos and the induced partition pair 〈N/ ≡g-iocos,-g-iocos〉. ut

Lemma 2. Let L = (S, I,O,−→) be a labelled transition system and its trans-
formed graph, T(L) = (N,=⇒), then the partition pair 〈N/ ≡g-iocos,-g-iocos〉 is
stable with respect to =⇒ .

Proof. Let us consider equivalence classes [n1]g-iocos, [n2]g-iocos, γ ∈ N/ ≡g-iocos
such that ([n1]g-iocos, [n2]g-iocos) ∈-g-iocos and [n1]g-iocos =⇒∃ γ. Then there exists

n′1 ∈ γ and x ∈ L such that n1
x

==⇒ n′1. As (n1, n2) ∈ g-iocos there exists n′2 such

that n2
x

==⇒ n′2 and ([n′1]g-iocos, [n
′
2]g-iocos) ∈-g-iocos. Let us consider n′2 a maximal

element with respect to g-iocos, i.e, for any n′i such that (n1, n
′
i) ∈ g-iocos we

have (n′i, n
′
2) ∈ g-iocos .

Next we will prove that [n2] =⇒∀ [n′2]. Let us consider n3 ∈ [n2]. Since they
belong to the same ≡g-iocos class, the equivalence kernel makes true (n2, n3) ∈
g-iocos . Therefore there exists n′3 such that n3

x
==⇒ n′3 and (n′2, n

′
3) ∈ g-iocos.

Again, (n3, n2) ∈ g-iocos, there exists n′′2 such that n2
x

==⇒ n′′2 and (n′3, n
′′
2) ∈

g-iocos. Since g-iocos is transitive we obtain (n′2, n
′′
2) ∈ g-iocos. Since n′2 was a

maximal element then n′2 = n′′2 and then n′3 ∈ [n′2]. ut

We also need to show that 〈N/ ≡g-iocos,-g-iocos〉 is maximal with respect
to the points a) and b) of the GCPP. In order to do it, first let us note that
any partition pair 〈S,-〉 induces a natural relation in N that we will denote by
- (N).

Definition 12. Let L = (S, I,O,−→) be a labelled transition system and T(L) =
(N,=⇒) its transformed graph, and let 〈S,-〉 be a partition pair. We define the
relation - (N) ⊆ N ×N as (n1, n2) ∈- (N) iff ([n1]S , [n2]S) ∈-. ut
Second, if 〈S,-〉 satisfies the points a) and b) of the GCPP for the partition pair
〈Ω,4〉, then the following lemma states that - (N) is a g-iocos-simulation.

Lemma 3. Let L = (S, I,O,−→) be a labelled transition system and T(L) =
(N,=⇒) its transformed graph, and let 〈S,-〉 be a refinement of 〈Ω,4〉 such that
is stable with respect to =⇒ . Then - (N) is a g-iocos-simulation.

Proof. Let us consider (n1, n2) ∈ N(-). Since 〈S,-〉 is a refinement of 〈Ω,4〉,
we obtain ([n1]Ω , [n2]Ω) ∈4. Then n1 has the form (s1, x), and n2 has the form
(s2, y) with x = y and ins(n2) ⊆ ins(n1), hence fulfilling 1 of Definition 8.

Now let us consider x ∈ L and n′1 ∈ N such that n1
x

==⇒ n′1. By rewrit-
ing all those elements at coarse level in S we obtain ([n1]S , [n2]S) ∈- and
[n1]S =⇒∃ [n′1]S . Since 〈S,-〉 is stable there exists δ ∈ S such that [n2]S =⇒∀ δ
and ([n′1]S , δ) ∈-. At discrete level that means there exists n′2 ∈ δ such that
n2 =⇒ n′2. Since 〈S,-〉 is a refinement of 〈Ω,4〉, we obtain ([n′1]Ω , [n

′
2]Ω) ∈4.

Since n1
x

==⇒ n′1, then n′1 has the form (s′1, x) (see transformation rules in Defini-
tion 7). By the definition of Ω (Definition 11), then n′2 has also the form (s′2, x).

Therefore n2
x

==⇒ n′2.



ut

Now Since g-iocos is the maximal g-iocos-simulation, we obtain that - (N) ⊆
g-iocos. From this fact is easy to prove the following lemma.

Lemma 4. Let G = (N,=⇒) be the transformed graph of an LTS and let 〈S,-〉
be a partition pair such that - (N) is a g-iocos-simulation. Then 〈S,-〉 v
〈N≡g-iocos ,-g-iocos〉.

Proof. First let us consider α ∈ S and a, b ∈ α. Since - is reflexive we ob-
tain (α, α) ∈- and therefore (a, b) ∈- (N) and (b, a) ∈- (N). Now consid-
ering that - (N) ⊆ g-iocos we obtain (a, b) ∈≡g-iocos. Therefore all elements
of α are in the same equivalence class in N/ ≡g-iocos, so S is a refinement of
N/ ≡g-iocos. Now let us consider α, β ∈-, let us consider a, b ∈ N such that
[a]S = α and [b]S = β. Since - (N) ⊆ g-iocos, we obtain (a, b) ∈ g-iocos and
([a]g-iocos, [b]g-iocos) ∈-g-iocos. Since [a]S ⊆ [a]g-iocos and [b]S ⊆ [b]g-iocos, we obtain
([a]S , [b]S) ∈-g-iocos (S). ut

Finally, we obtain the main theorem of this section.

Theorem 6. Let L = (S, I,O,−→) be a labelled transition system and T(L) =
(N,=⇒) its transformed graph, then 〈N≡g-iocos ,-g-iocos〉 is the solution of the

GCPP for the partition pair 〈Ω,4〉.

Proof. The points a) and b) of the GCPP follows from Lemmas 1, and 2. The
maximality follows from Lemmas 3 and 4. ut

5 Conclusions and Future Work

In this paper we have defined an online algorithm that allows to check if a certain
implementation iocos-conforms a given specification by interacting with it and
without computing any a priori set of tests. Under fairly standard hypothesis
—even weaker than in other models— we prove the algorithm to be sound and
complete.

We plan to introduce test selection criteria and coverage in the iocos-theory.
This technique is mainly used in offline testing but we think that implementa-
tions of the online algorithm we have presented can also benefit from them to
further restrict the search tree.

Since iocos is a branching semantics, it is essential in the online algorithm to
make use of the copy clause (see for instance [1] for a more elaborated discussion).
While this copy capability will exclude some systems to being tested with iocos
—essentially unique systems that cannot be replicated— for a vast number of
applications, for instance to check software products, it could definitely be a
feasible operation. The implementation of our online algorithm is currently under
development using cluster computing techniques.

In this paper we have also proved that the conformance relation iocos, in
spite of its particularities and asymmetry with input and output actions, can



be solved with the GCPP. Actually, we are adapting the mCRL2 toolset [7],
that implements one of the best solution to the GCPP [28], to compute iocos
and the minimised LTS for a give specification. This technique, frequently used
in model checking, allows to reduce the size of the models and therefore the
state explosion in any further testing process. Moreover, we plan to investigate
the logic preservation properties of iocos that would allow to perform model
checking of the intended model specifications and integrate MBT and model
checking in the same theory.

Finally, once the ground model has proved to be useful, we plan to improve
the expressiveness introducing a syntax language and integrating internal τ ac-
tions.
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9. René G. de Vries and Jan Tretmans. On-the-fly conformance testing using spin.
STTT, 2(4):382–393, 2000.
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