
HAL Id: hal-01398006
https://inria.hal.science/hal-01398006

Submitted on 16 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Property Specification Made Easy: Harnessing the
Power of Model Checking in UML Designs

Daniela Remenska, Tim C. Willemse, Jeff Templon, Kees Verstoep, Henri Bal

To cite this version:
Daniela Remenska, Tim C. Willemse, Jeff Templon, Kees Verstoep, Henri Bal. Property Specification
Made Easy: Harnessing the Power of Model Checking in UML Designs. 34th Formal Techniques for
Networked and Distributed Systems (FORTE), Jun 2014, Berlin, Germany. pp.17-32, �10.1007/978-
3-662-43613-4_2�. �hal-01398006�

https://inria.hal.science/hal-01398006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Property Specification Made Easy: Harnessing the
Power of Model Checking in UML designs

Daniela Remenska1,3, Tim A.C. Willemse2,
Jeff Templon3, Kees Verstoep1, and Henri Bal1

1 Dept. of Computer Science, VU University Amsterdam, The Netherlands
2 Dept. of Computer Science, TU Eindhoven, The Netherlands

3 NIKHEF, Amsterdam, The Netherlands

Abstract. Developing correct concurrent software is challenging. Design errors
can result in deadlocks, race conditions and livelocks, and discovering these is
difficult. A serious obstacle for an industrial uptake of rigorous analysis tech-
niques such as model checking is the learning curve associated to the languages
— typically temporal logics — used for specifying the application-specific prop-
erties to be checked. To bring the process of correctly eliciting functional prop-
erties closer to software engineers, we introduce PASS, a Property ASSistant
wizard as part of a UML-based front-end to the mCRL2 toolset. PASS instan-
tiates pattern templates using three notations: a natural language summary, a µ-
calculus formula and a UML sequence diagram depicting the desired behavior.
Most approaches to date have focused on LTL, which is a state-based formalism.
Conversely, µ-calculus is event-based, making it a good match for sequence dia-
grams, where communication between components is depicted. We revisit a case
study from the Grid domain, using PASS to obtain the formula and monitor for
checking the property.

1 Introduction
A challenge during the development of concurrent systems is detecting design errors,
as such errors can cause deadlocks, livelocks, race conditions, starvation, etc. The sheer
number of different executions and the inherent non-determinism in concurrent sys-
tems make complete testing of such software infeasible. Instead, more rigorous formal
analysis techniques like model checking are required, which exhaustively analyze the
behaviors of (an abstraction of) the system. Toolsets such as SPIN, nuSMV, CADP
and mCRL2 offer such analysis techniques. Despite the research effort, these tools are
still not widely accepted in industry. One problem is the learning curve associated with
becoming proficient in the underlying mathematical formalisms that must be used for
describing models in these toolsets.

Bridging the gap between industry-adopted methodologies based on UML software
designs and the aforementioned tools and languages, in [1] we devised a methodology
for automatically verifying UML sequence and activity diagrams. Our prototype uses
the mCRL2 language [2] and toolset as its backend, without users having to leave the
UML domain, except when specifying application-specific properties.

While the mCRL2 toolset can automatically discover deadlocks and search for spe-
cific events, its model checking facilities require users to specify their application-
specific properties in a data-enriched extension of the modal µ-calculus [3]. A downside
is that it is not very accessible and requires a high degree of mathematical maturity. As
already simpler languages such as Linear Temporal Logic (LTL) and Computational
Tree Logic (CTL) are not widespread in industry, the µ-calculus stands little chance
of being embraced by the industry. In fact, most requirements are written in natural
language, and often contain ambiguities which make it difficult even for experienced
practitioners to capture them accurately in any temporal logic. There are subtle but cru-
cial details which are often overlooked and need to be carefully considered in order to
distill the right formula.

In an attempt to ease the use of temporal logic, in [4], a pattern-based classifica-
tion was developed for capturing requirements and generating input to model checking
tools. The authors observed that almost all (> 500) properties they surveyed can be
mapped into one of several property patterns. Each pattern is a high-level, formalism-
independent abstraction and captures a commonly occurring requirement. Their hierar-
chical taxonomy is based on the idea that each pattern has a scope, which defines the
extent of program execution over which the pattern must hold, and a behavior, which
describes the intent of the pattern. The pattern system identifies 5 scopes and 11 behav-
ior variations that can be combined to create 55 different property templates. Examples
of scopes are: globally, and after an event or state occurs; examples of behavior clas-
sification are: absence (an event or state should never occur during an execution) and
response (an event or state must be followed by another event or state).

Although the patterns website [5] contains a collection of mappings for different
target formalisms such as LTL and CTL, in practice practitioners have to fully under-
stand the solutions before they can select and apply the appropriate ones. To mitigate
this problem, several conversational tools [6–8] have been proposed for elucidating
properties, based on the patterns. These tools guide users in selecting the appropriate
pattern and optionally produce a formula in some target temporal logic. Alternative ap-
proaches [9–15] tackle the property specification problem by proposing new graphical
notations for specifying properties. As far as we have been able to trace, all approaches
deal with state-based logics. Such logics conceptually do not match the typical event-
based UML sequence diagrams and activity diagrams, in which events represent meth-
ods calls or asynchronous communication between distributed components.

The contribution of our work is a simplification of the process of specifying func-
tional requirements for event-based systems. We introduce PASS, a Property ASSistant
which is a tool that guides and facilitates deriving system properties. Our starting point
was the pattern system [4], which we extended with over 50 useful property templates.
The pattern templates instantiated with PASS have three notations: a natural language
summary, a µ-calculus formula and a UML sequence diagram depicting desired behav-
iors. We utilized mCRL2’s rich data extensions of the µ-calculus to express complex
data-dependent properties. Lastly, we automatically generate monitors which can be
used for property-driven on-the-fly state space exploration using the standard explo-
ration facilities of mCRL2. Our monitors are essentially sequence diagrams, acting as
observers of message exchanges.

We deliberately chose to develop PASS as an Eclipse plug-in, as our strong motiva-
tion was to stay within an existing UML development environment, rather than use an
external helper tool for this. We are convinced that this increases the tool accessibility
by allowing software engineers to remain focused in the realm of UML designs. In ad-
dition, a tight connection between elements of the design and instances of the property
template is kept, such that, if the design is changed, these changes can be easily prop-
agated in the property template placeholders. To this end, we use the standard MDT-
UML2 [16] Eclipse modeling API. We revisit a case study we did previously in [1], this
time using PASS to obtain the formula and monitor for checking the property.
Structure. In Section 2 we survey related approaches, and outline their advantages and
shortcomings. Section 3 introduces mCRL2, µ-calculus and UML sequence diagrams.
We describe our approach in Section 4. In Section 5 we apply PASS on a case study
from the Grid domain, and we conclude in Section 6.

2 Related Work
PROPEL [6] is a tool that guides users in selecting the appropriate template from
the patterns classification. PROPEL adds new patterns covering subtle aspects not ad-
dressed by the patterns classification of [4] (such as considering the effect of multiple
occurrences of a cause in a pattern); at the same time it omits patterns such as the uni-
versality, bounded existence and chain patterns. The resulting templates are represented
using “disciplined natural language” and finite state automata rather than temporal logic
expressions. Similar to PROPEL, the tools SPIDER [7] and Prospec [8] extend the orig-
inal patterns but add compositionality. SPIDER is no longer maintained and available;
the latest version of Prospec that we found and tested (Fig. 1 left) produces formulas in
Future Interval Logic, not LTL as stated in [8].

Approaches that use a graphical notation for specifying properties come closest to
the realm of modeling the system behavior. In [10], formulas are represented as acyclic
graphs of states and temporal operators as nodes. Technically, the underlying LTL for-
malism is hidden from the user but the notation still closely resembles the formalism.
As such, it is not very accessible. Another tool, called the TimeLine Editor [11] permits
formalizing specific requirements using timeline diagrams. For instance, response for-
mulas are depicted in timeline diagrams by specifying temporal relations among events
and constraints. These diagrams are then automatically converted into Büchi automata,
amenable to model checking with SPIN. Unfortunately the tool is no longer available.
The CHARMY approach [9] presents a scenario-based visual language called Property
Sequence Charts (PSC). Properties in this language are relations on a set of exchanged
system messages. The language borrows concepts from UML 2.0 Sequence Diagrams
and the tool uses the toolset SPIN as a backend for model checking generated Büchi au-
tomata [17]. The PSC notation uses textual restrictions for past and future events, placed
as circles directly on message arrows (Fig. 1 right). A drawback of PSC is that it does
not support asynchronous communication, which is omnipresent in concurrent systems.
Furthermore, CHARMY is a standalone framework for architectural descriptions, not
inter-operable with UML tools. As such, its use in industrial contexts is limited.

Among the UML-based tools are HUGO/RT [12] and vUML [13]. HUGO/RT is a
tool for model checking UML 2.0 interactions against a model composed of message-
exchanging state machines. The interactions represent the desired properties, and are

Fig. 1. Left: Prospec tool; right: CHARMY PSC graphical notation

translated together with the system model into Büchi automata for model checking with
SPIN. The version we tested supports no asynchronous messages nor combined frag-
ments. vUML [13] is, like HUGO/RT, essentially a tool for automating verifications
of UML state machines. Properties must be specified in terms of undesired scenarios.
The verification is based on the ability to reach error states. This is inconvenient, as
users must specify these manually. Live Sequence Charts (LSC) are also used [14, 15]
as a graphical formalism for expressing behavioral properties. They can distinguish be-
tween possible (cold) and mandatory (hot) behaviors. For both, Büchi automata and
LTL formulas are generated automatically from the diagrams. UML 2.0 sequence dia-
grams borrow many concepts from LSC, by introducing the assert and negate fragments
capturing mandatory and forbidden behavior. However, LSCs lack many UML features.

3 Preliminaries
3.1 Brief Introduction to mCRL2 and µ-calculus

mCRL2 is a language and accompanying toolset for specifying and analyzing concur-
rent systems. Our choice for using the mCRL2 language is motivated by its rich set of
abstract data types as first-class citizens, as well as its powerful toolset for analyzing,
simulating, and visualizing specifications. The fragment of the mCRL2 syntax that is
most commonly used is given by the following BNF grammar:

p ::= a(d1, . . . , dn) | τ | δ | p+ p | p · p | p||p |
∑

d:D
p | c→ p � q

Actions are the basic ingredients for models. They represent some observable atomic
event. An action a of a process may have a number of data arguments d1, ..., dn. The
action τ denotes an internal step, which cannot be observed from the external world.
Non-deterministic choice between two processes is denoted by the “+” operator. Pro-
cesses can be composed sequentially and in parallel by means of “·” and “||”. The sum
operator

∑
d:D p denotes choice among processes parameterized by variable d. The

behavior of the conditional process c → p � q depends on the value of the boolean ex-
pression c: if it evaluates to true, process p is chosen and otherwise process q is chosen.

This allows for modeling systems whose behavior is data-dependent. There are a num-
ber of built-in data types in mCRL2, such as integers, reals, booleans, lists, and sets.
Furthermore, by a sort definition one can define a new data type. Recursive process
equations can be declared by proc.

The semantics associated with the mCRL2 syntax is a Labeled Transition System
(LTS) that has multi-action labeled transitions, which can carry data parameters. The
language used by the mCRL2 toolset for model checking specific properties is an ex-
tension of the modal µ-calculus [18]. This formalism stands out from most modal and
temporal logic formalisms with respect to its expressive power. Temporal logics like
LTL, CTL and CTL* all have translations [19] into µ-calculus, witnessing its general-
ity. This expressiveness comes at a cost: very complex formulas with no intuitive and
apparent interpretation can be coined. The syntax of mCRL2’s modal µ-calculus for-
mulas we are concerned with in this paper is defined by the following grammar:
φ ::= b | φ ∧ φ | φ ∨ φ | ∀d:D. φ | ∃d:D. φ | [ρ]φ | 〈ρ〉φ | µZ. φ(Z) | νZ. φ(Z)
ρ ::= α | nil | ρ · ρ | ρ∗ | ρ+
α ::= a(d1, . . . , dn) | b | ¬α | α ∩ α | α ∪ α |

⋂
d:D. α |

⋃
d:D. α

Properties are expressed by state formulas φ, which contain Boolean data terms b that
evaluate to true or false and which can contain data variables, the standard logical con-
nectives and (∧) and or (∨), the modal operators must ([]) and may (〈 〉), and the
least and greatest fixpoint operators µ and ν. In addition to these, mCRL2’s extensions
add universal and existential quantifiers ∀ and ∃.

The modal operators take regular expressions ρ for describing words of actions,
built up from the empty word nil, individual actions described by an action formula α,
word concatenation ρ · ρ and (arbitrary) iteration of words ρ∗ and ρ+. Action formulas
describe sets of actions; these sets are built up from the empty set of actions (in case
Boolean expression b evaluates to false), the set of all possible actions (in case Boolean
expression b evaluates to true), individual actions a(d1, . . . , dn), action complemen-
tation and finite and possibly infinite intersection ∩ and union ∪. A state of an LTS
(described by an mCRL2 process) satisfies 〈ρ〉φ iff from that state, there is at least one
transition sequence matching ρ, leading to a state satisfying φ; [ρ]φ is satisfied by a state
iff all transition sequences matching ρ starting in that state lead to states satisfying φ.
For instance, [¬(

⋃
n:Nat. read(n + n))]false states that a process should not execute

any actions other than read actions with even-valued natural numbers. Note that [a]φ is
trivially satisfied in states with no “a”-transitions.

In mCRL2, verification of µ-calculus formulas is conducted using tooling that oper-
ates on systems of fixpoint equations over first-order logic expressions. This sometimes
requires too much overhead to serve as a basis for lightweight bug-hunting, as it can be
difficult to interpret the counterexamples that are obtained from these equation systems
in terms of the original mCRL2 process. Observers, or monitors (à la Büchi) defined in
the mCRL2 model itself, can sometimes be used to bypass the problem. However, not
all µ-calculus formulas are amenable to such a conversion, as we will see in Section 4.2.

3.2 UML Sequence Diagrams
Sequence diagrams model the interaction among a set of components, with emphasis on
the sequence of messages exchanged over time. Graphically, they have two dimensions:

Fig. 2. Sequence diagrams with combined fragments

the objects participating in the scenarios are placed horizontally, while time flows in the
vertical dimension. The participants are shown as rectangular boxes, with the vertical
lines emanating from them known as lifelines. Each message sent between the lifelines
defines a specific communication, synchronous or asynchronous. Messages are shown
as horizontal arrows from the lifeline of the sender to the lifeline of the receiver instance.

Sequence diagrams have been considerably extended in UML 2.x to allow express-
ing of complex control flows such as branching, iterations, and referring to existing in-
teractions. Combined fragments are used for this purpose. The specification supports
different fragment types, with operators such as alt, opt, loop, break, par. They are
visualized as rectangles with a keyword indicating the type. Each combined fragment
consists of one or more interaction operands. Depending on the type of the fragment,
constraints can guard each of the interaction operands. Combined fragments can be
nested with an arbitrary nesting depth, to capture complex workflows. Figure 2 shows
how some of them can be used.

There are also two less-known combined fragments: assert and neg. Their use in
practice is limited, because their semantics described in the UML 2.0 superstructure
specification [20] are rather vague and confusing. By default, sequence diagrams with-
out the use of these two operators only reflect possible behavior, while assert and neg
alter the way a trace can be classified as valid or invalid. The specification characterizes
the semantics of a sequence diagram as a pair of valid and invalid traces, where a trace
is a sequence of events or messages. The potential problems with the UML 2.0 assertion
and negation are explained in [21]. In summary, the specification aims at depicting of re-
quired and forbidden behaviors. However, as [21] points out, stating that “the sequences
of the operand of the assertion are the only valid continuations. All other continuations
result in an invalid trace” suggests that the invalid set of traces for an assert fragment
is its complement, i.e., the set of all other possible traces. Conversely, the standard also
declares that the invalid set of traces are associated only with the use of a neg fragment,
which is contradictory. For this reason, we also believe that these two operators should
rather be considered as modalities. We restrict their usage to single events in property
specifications, and assign the following semantics: neg is considered a set-complement
operator for the event captured by the fragment, while assert specifies that an event

must occur. In addition, we disallow nestings between these two fragments. We find
that this does not limit the expressiveness of property specifications in practice.

4 The Approach
4.1 The Rationale
To describe our proposal to a correct and straightforward property elucidation, we out-
line the motivations behind the choices we made, and how they differ from existing
related approaches.

While we follow on the idea of using a guiding questionnaire to incrementally refine
various aspects of a requirement, we find the resulting artifacts (LTL formulas or graph-
ical representations of finite state machines) from using the available ones (discussed
in Section 2) not yet suitable for practical application in our context. For one, the prac-
titioner must manually define the events to be associated with the placeholders when
instantiating the template. To avoid potential errors, as well as reduce effort in specifica-
tions, we want to ideally stay in the same IDE used for modeling the system, and select
only existing events that represent valid communication between components. In addi-
tion, we can already obtain mCRL2 models from UML designs comprising sequence
diagrams [1]. In our experience, visual scenarios are the most suitable and commonly
used means to specify the dynamics of a system. We believe that such a visual depiction
of a scenario, more than finite state machines, improves the practitioner’s understand-
ing of the requirement as well. This is why we chose sequence diagrams as a property
specification artifact too.

Most of the invented notations used by existing scenario approaches can fit well in
UML 2.0 sequence diagrams. Profiles are a standard way to extend UML for express-
ing concepts not included in the official metamodel. In short, UML profiles consist of
stereotypes that can be applied to any UML model, like classes, associations, or mes-
sages. We used this mechanism to apply the restrictions on the usage of neg and assert,
as well as to distinguish between events presenting interval bounds and regular ones,
from the patterns. As an example, Fig. 3a depicts the precedence chain pattern (with a
between-Q-and-R scope), with the stereotypes applied to messages Q and R. The pat-
tern expresses that event P must precede the chain of events S, T, always when the
system execution is in the scope between events Q and R. We find this a much more
intuitive scenario representation than the CHARMY/PSC one (Fig. 3b), for the same
pattern. Notice that we do not have to specify constraints on past unwanted events, as
they are automatically reflected in the µ-calculus formula, as long as there is a dis-
tinction between interval-marking messages, regular, mandatory, and forbidden ones.
Also, the CHARMY/PSC notation presents the scenario in a negative form, using “f:”
to explicitly mark an error message.

Furthermore, most visual scenario approaches cover the (state-based) LTL map-
pings and extensions of the pattern system. Event-based temporal logics have not re-
ceived much attention. Even though the original pattern system does not cover µ-
calculus, such mappings [22] have been developed by the CADP team. These are ade-
quate for action- or event-based systems, making them a good match for sequence dia-
grams, where communication between components is depicted. LTL logic is interpreted
over Kripke structures, where the states are labeled with elementary propositions that

(a) Sequence Diagram with monitor (b) PSC with Büchi automaton [9]

Fig. 3. Scenarios for the precedence chain pattern

hold in each state, while µ-calculus is interpreted over LTS-es, in which the transitions
are labeled with actions that represent state changes. Even though both are comple-
mentary representations of the more general finite state automata, conversions between
them are not practical, as they usually lead to a significant state space increase. For
example, the fact that a lock has been acquired or released can be naturally expressed
by actions. Since state-based temporal logics lack this mechanism, an alternative is to
introduce a variable to indicate the status of the lock, i.e., expose the state information.
With such properties, LTS representations are more intuitive, and easier to query using
event-based logics.

Given that communication among components proceeds via actions (or events)
which can represent synchronous or asynchronous communication, property specifi-
cation can be defined over sequences of actions that are data-dependent. Fortunately,
µ-calculus is rich enough to express both state and action formulas, and provides means
for quantification over data, which many formalisms lack. With our approach, a prac-
titioner can use a wild-card “*” to express that the property should be evaluated for all
values that message parameters can carry. This allows us to use patterns which would
otherwise make sense only for state-based formalisms. For example, the universality
pattern is used to describe a portion of the system’s execution which contains only
states/events that have a desired property. Checking if a certain event is executed in ev-
ery step of the system execution is not useful most of the time, so we adapted it in the
context of µ-calculus.

Finally, for the purpose of on-the-fly verification, we provide an automatically gen-
erated mCRL2 monitor which corresponds to the property formula. We interpret a se-
quence diagram as an observer of the message exchanges in the system. This helps in
avoiding generation of those parts of the state space for which it is certain that they
do not compose with the property monitor. In addition, although mCRL2 offers direct
model checking with µ-calculus and can provide feedback when the property fails to
hold, this feedback is not at the level of the mCRL2 process specification. Using the
monitor, the counter-example will be provided at the UML level.

Although any mature visual UML modeling tool can be used, we chose IBM’s Ra-
tional Software Architect (RSA) environment. One of the advantages is that RSA is

Fig. 4. A Büchi automaton

Fig. 5. Launching PASS from the Eclipse Project
Explorer

built on top of Eclipse, making it relatively easy to extend the functionality. To this end,
PASS is developed as an Eclipse plug-in, using the lightweight UML profile, and as
such is available (Fig. 4.2) to any Eclipse-based UML tool.

4.2 Transforming a µ-calculus Formula Into a Monitor Process

A general model checking mechanism used with tools like SPIN is to construct a Büchi
automaton for an LTL formula, which accepts exactly those executions that violate
the property. A product of the model state space (typically a Kripke structure) and the
Büchi automaton is then composed, and checked for emptiness. Although syntactically
Büchi is similar to the finite-state monitor for which we aim, the difference lies in the
acceptance conditions: a monitor accepts only finite runs of the system, while Büchi can
trap infinite executions through detection of cycles, but potentially needs the entire state
space generated in the process. Runtime verification does not store the entire state space
of a model, so it cannot detect such cycles. In addition, to expose state information,
transitions in Fig. 4 are labeled with elementary propositions rather than actions (notice
the ∧ operator). As such, we cannot use existing tools for constructing Büchi automata
with our approach.

Not every property can be monitored at runtime when only a finite run has been
observed so far. Monitorable properties are those for which a violation occurs along
a finite execution. This problem has been studied [23], and it is known that the class
of monitorable properties is strictly larger than that of safety properties. However, an
exact categorization of monitorable properties is missing. In particular, the definition
of liveness requires that any finite system execution must be extendable to an infinite
one that satisfies the property. By defining an end-scope of a property, we can also
assert violations to existence patterns, which are typically in the liveness category. Such
runtime monitor can also assert universality and absence patterns with or without scope
combinations. We found that we are able to construct a monitor for about 50% of the
property patterns.

We translate a core fragment of the µ-calculus to mCRL2 processes which can sub-
sequently serve as observer processes for monitorable properties. The idea behind the
translation is that a violation of a property of the form [α]φ is witnessed by an action
that matches the action formula α. A monitor for such a formula synchronizes with
precisely those actions matching α. This generalizes to sequences of actions matching
words described by some ρ for formulas of the form [ρ]φ. Without loss of generality,
we restrict to the following grammar:

φ ::= b | ∀d:D.φ | [ρ]φ | φ ∧ φ
ρ ::= α | nil | ρ · ρ | ρ+ ρ | ρ∗ | ρ+
α ::= a(d1, . . . , dn) | ¬α | b | α ∩ α | α ∪ α |

⋂
d:D. α |

⋃
d:D. α

Before we present the translation, we convert the formulas in guarded form. That is, we
remove every occurrence of ρ∗ and nil using the following rules:

[nil]φ = φ [ρ∗]φ = [nil]φ ∧ [ρ+]φ (1)

The function TrS takes two arguments (a formula and a list of typed variables) and
produces a process. It is defined inductively as follows:

TrSl(b) = (¬b→ error) (2)
TrSl(∀d : D.φ1) =

∑
d:D.TrSl++[d:D](φ1) (3)

TrSl(φ1 ∧ φ2) = TrSl(φ1) + TrSl(φ2) (4)
TrSl([ρ]φ1) = TrRl(ρ) · TrSl(φ) (5)

where TrR takes a regular expression (and a list of typed variables) and produces a
process or a condition:

TrRl(α) =
⊕

a∈Act
(
∑
da:Da. Condl(a(da), α)→ a(da)) (6)

TrRl(ρ1 · ρ2) = TrRl(ρ1) · TrRl(ρ2) (7)
TrRl(ρ1 + ρ2) = TrRl(ρ1) + TrRl(ρ2) (8)

TrRl(ρ
+) = X(l) where X(l) = TrRl(ρ) ·X(l) is a recursive process (9)

where
⊕

is a finite summation over all action names a ∈ Act of the mCRL2 process
and where Cond takes an action and an action formula and produces a condition that
describes when the action is among the set of actions described by the action formula:

Condl(a(da), a
′(e)) =

{
da = e if a = a’
false otherwise (10)

Condl(a(da), b) = b (11)
Condl(a(da),¬α) = ¬Condl(a(da), α) (12)
Condl(a(da), α1 ∩ α2) = Condl(a(da), α1) ∧ Condl(a(da), α2) (13)
Condl(a(da), α1 ∪ α2) = Condl(a(da), α1) ∨ Condl(a(da), α2) (14)
Condl(a(da),

⋃
d:D. α) = ∃d:D. Condl(a(da), α) (15)

Condl(a(da),
⋂
d:D. α) = ∀d:D. Condl(a(da), α) (16)

An mCRL2 process p violates formula φ iff the synchronous parallel composition of
processes p and TrS[](φ) can reach a state in which action error is enabled.

Using the above translation, Fig. 3a shows monitor visualization next to the se-
quence diagram for the precedence chain pattern. Such a monitor can be placed in
parallel with the system model, to perform runtime verification. Clearly, in the “worst”
case, if the model is correct with respect to the property, all relevant model states will
be traversed. In practice however, refutation can be found quickly after a limited ex-
ploration. A sketch of such a translation applied on a model with actions action 1, ac-
tion 2,. . . ,action n is shown in Fig. 6. Intuitively, the monitor process will step through
those exact actions that the original system takes. If a sequence of steps refuting the for-
mula is completed, the monitor will execute the “error” action as a last step, indicating
that a counter-example trace has been found. More examples of monitors along with
references to the applied transformation rules in each step, can be found at [24].

Fig. 6. Transforming a µ-calculus formula into a monitor

5 Case Study: DIRAC’s Executor Framework revisited

DIRAC [25] is the grid framework used to support production activities of the LHCb
experiment at CERN. All major LHCb tasks, such as raw data transfer from the exper-
iment’s detector to the grid storage, data processing, and user analysis, are covered by
DIRAC. Jobs submitted via its interface undergo several processing steps between the
moment they are submitted, to the point when they execute on the grid.

The crucial Workload Management components responsible for orchestrating this
process are the ExecutorDispatcher and the Executors. Executors process any task sent
to them by the ExecutorDispatcher, each one being responsible for a different step in the
handling of tasks (such as resolving the job’s input data). The ExecutorDispatcher takes
care of persisting the state of the tasks and distributing them amongst the Executors,
based on the task requirements. It maintains a queue of tasks waiting to be processed,
and other internal data structures to keep track of the distribution of tasks among the
Executors. During testing, developers experienced certain problems: occasionally, tasks
submitted in the system would not get dispatched, despite the fact that their responsible
Executors were idle at the moment. The root cause of this problem could not be identi-
fied by testing with different workload scenarios, nor by analysis of the generated logs.
In [1] we manually formulated this problem as the following safety property:

[t r ue∗ .
s ynch ca l l (1 , ExecutorQueues , queues , pushTask (JobPath , task Id , f a l s e)) . t r ue∗ .
! (s ynch ca l l (1 , ExecutorQueues , queues , popTask ([JobPath]))) ∗ .
synch rep ly (1 , ExecutorDispatcher , eDispatch ,

sendTaskToExecutor return (OK, 0))] f a l s e

, meaning that a task pushed in the queue must be processed, i.e., removed from the
queue before the ExecutorDispatcher declares that there are no more tasks for process-
ing. Explicit model checking was not feasible in this case due to the model size (50
concurrent processes), so we resorted to writing a standard monitoring process set to
run in parallel with the original model. With a depth-first traversal in mCRL2, we effec-
tively discovered a trace [1] violating the property within minutes, and used our tool to
import and automatically visualize the counter-example as a sequence diagram in RSA.
Since the bug was reported and fixed, we wanted to check if the problem still persists
after the fix, this time using PASS to elicit the property.

5.1 PASS: The Property ASSistant
To cope with the ambiguity of system requirements, PASS guides the practitioner via
a series of questions to distinguish the types of scope and behavior as a relation be-
tween multiple events. By answering these questions, one is led to consider some sub-
tle aspects of the property, which are typically overlooked when manually specifying
the requirement in temporal logic. The last part of the property (i.e. “before the Execu-
torDispatcher declares that there are no more tasks for processing”) is easily recognized
as a scope restriction, which the user can choose by selecting the appropriate answer
from the Scope Question Tree wizard page. This results in a Before-R scope restric-
tion, where the actual communication can be selected by double-clicking the end-event
placeholder (Fig. 7). This presents the user with a popup window with all the possible
message exchanges in the model, so he can choose the actual message, in this case the
reply message sendTaskToExecutor. As already pointed out in [6], a closer ex-
amination of the patterns classification reveals some aspects which are not considered,
and may lead to variants in the original scope and behavior definitions. For example,
the definition of the Before-R scope requires that the event R necessarily occurs. This
means, if R does not occur until the end of the run, the intent or behavior of the property
could be violated, yet the property as a whole would not be violated unless R happens.
In practice however, it is useful to introduce an Until-R variant for cases where the end-
delimiter may not occur until the end of the system execution. This is captured by the
last question in Fig. 7. Similar considerations have led to new variants of the After-Q-
Until-R and After-Q-Before-R patterns. For instance, whether subsequent occurrences
of Q should be ignored, or should effectively reset the beginning of the interval in which
the behavior is considered, are reflected in the questionnaire.

It is easy to elicit the behavior requirement as a response pattern (“a task pushed
in the queue must be processed, i.e., removed from the queue”). The actual events of
interest in this case are pushTask and popTask. Again, an extension of the pattern system
allows for the user to decide whether the first event (the cause) must necessarily occur
in the first place. The Behavior Question Tree part of the wizard is shown in Fig. 8.

Fig. 7. Eliciting the scope for a property with PASS

Fig. 8. Eliciting the behavior for a property with PASS

Adding 4 scope and 2 behavior variations have led to more than 100 ((5+4)∗(11+2))
unique patterns to be chosen from.

At the end of the questionnaire, the user is presented (Fig. 9) with a summary of
the requested property, which can be reviewed before making the final decision. A µ-
calculus formula pertaining to the property is presented, along with the possibility to
assign concrete parameter values that messages carry. Since the property should be
evaluated for all possible values of the taskId’s domain, a wildcard “*” can be used
(as shown in the second parameter of pushTask). This assignment results in a formula
with a forall quantifier. In addition, a sequence diagram (Fig. 10) and a monitor pro-
cess in mCRL2 (visualized in Fig. 11 without the data, for clarity) are generated, to be
used in the final model checking phase. It is worth noticing that our original manu-
ally constructed formula was not entirely correct, and as such could potentially produce
spurious counter-examples. The general pattern template obtained with PASS is:

[(not R)∗ . P . (not (S or R)) ∗ . R] f a l s e

while the original one was a more restrictive formula of the following form:

[t r ue∗ . P . (not S)∗ . R] f a l s e

Using the generated monitor, we performed runtime verification on the corrected model.
We linearized the model with the mCRL2 toolset, and used LTSmin’s symbolic reach-
ability tool [26] for efficient state space exploration. LTSmin is language-independent,
and can be used as an mCRL2 model checking back-end. Taking less than 20 minutes,
the symbolic state space explorer finished the traversal (2.85 million states) without dis-
covering an error step, effectively concluding that the property holds. The PASS tool,
along with the patterns extensions, the model and the monitor of this case study, is avail-
able at [24]. While outside of the current scope, a Java Web Start version of the tool is
available for users who want to elicit a property for existing mCRL2 models created
manually and independently of any UML environment.

Fig. 9. Summary of the elicited property with PASS

Fig. 10. A sequence diagram for the property

Fig. 11. A monitor for the property

6 Conclusions and future work
In an effort to automate more aspects of formal verification of distributed systems, we
introduced PASS, a Property ASSistant that brings the process of correctly specifying
functional properties closer to software engineers. Through a series of questions, the
practitioner can consider subtle aspects about a property which are often overlooked.
Motivated by the wish to stay within an existing UML development environment, rather
than use an external helper tool, PASS was developed as an Eclipse plug-in, thus keep-
ing a strong relationship between the model elements and the property template ones.
Our approach to specifying properties is based on the pattern system [4], which we ex-
tended with useful pattern variations for the event-based µ-calculus formalism. Besides
offering a natural language summary of the elicited property, a µ-calculus formula and a
UML sequence diagram are provided, depicting the desired behavior. In addition, PASS
automatically generates monitors to be used for efficient property-driven runtime verifi-
cation using the mCRL2 toolset. We believe that automating the property specification
process, while keeping practitioners in their familiar environment, should lead to more
active adoption of methods for formal analysis of designs. We revisited a case study
from the grid domain, and discovered that despite a reasonably good understanding of

µ-calculus, our previously manually defined property was in fact not fully correct. Us-
ing the monitor, we performed runtime verification, which in the end resorted to full
exploration of the state space, and did not disprove the property.

Besides instantiating pattern templates, part of our ongoing work is to define a
methodology that would allow the experienced practitioner to directly write sequence
diagrams expressing requirements, based on which a µ-calculus formula and a monitor
would be provided.

References

1. Remenska, D., et al.: From UML to Process Algebra and Back: An Automated Approach to
Model-Checking Software Design Artifacts of Concurrent Systems. In: Proc. NFM’13

2. Groote, J., et al.: The Formal Specification Language mCRL2. In: Proc. MMOSS’06
3. Groote, J.F., Willemse, T.A.C.: Model-checking processes with data. In: Science of Com-

puter Programming. (2005)
4. Dwyer, M.B., et al.: Patterns in property specifications for finite-state verification. In: Proc.

ICSE’99
5. Dwyer, M.B., et al.: Property Specification Patterns http://patterns.projects.cis.ksu.edu.
6. Smith, R.L., et al.: Propel: an approach supporting property elucidation. In: Proc. ISCE’02
7. Konrad, S., Cheng, B.H.: Facilitating the construction of specification pattern-based proper-

ties. In: Proc. RE’05, IEEE
8. Mondragon, O., Gates, A.Q., Roach, S.: Prospec: Support for Elicitation and Formal Speci-

fication of Software Properties. In: Proc. of Runtime Verification Workshop, ENTCS. 2004
9. Autili, M., Inverardi, P., Pelliccione, P.: Graphical scenarios for specifying temporal proper-

ties: an automated approach. Automated Software Eng. (2007)
10. Lee, I., Sokolsky, O.: A Graphical Property Specification Language. In: Proc. of 2nd IEEE

Workshop on High-Assurance Systems Engineering. (1997)
11. Smith, M.H., et al.: Events and Constraints: A Graphical Editor for Capturing Logic Re-

quirements of Programs. In: Proc. RE’01
12. Knapp, A., Wuttke, J.: Model checking of UML 2.0 interactions. In: Proc. MoDELS’06
13. Lilius, J., Paltor, I.P.: vUML: a Tool for Verifying UML Models. In: Proc. ASE’99
14. Kugler, H., et al.: Temporal logic for scenario-based specifications. In: Proc. TACAS’05
15. Baresi, L., Ghezzi, C., Zanolin, L.: Modeling and Validation of Publish/Subscribe Archi-

tectures. In: Testing Commercial-off-the-Shelf Components and Systems. Springer Berlin
Heidelberg

16. The Eclipse Foundation: Eclipse Modeling MDT-UML2 component www.eclipse.org/uml2/.
17. Giannakopoulou, D., Havelund, K.: Automata-Based Verification of Temporal Properties on

Running Programs. In: Proc. ASE’01
18. Emerson, E.A.: Model checking and the Mu-calculus. In: DIMACS Series in Discrete

Mathematics, American Mathematical Society (1997)
19. Cranen, S., Groote, J.F., Reniers, M.: A linear translation from CTL* to the first-order modal

µ-calculus. Theoretical Computer Science (28) (2011)
20. OMG: UML2.4 Superstructure Spec. http://www.omg.org/spec/UML/2.4/Superstructure.
21. Harel, D., Maoz, S.: Assert and negate revisited: Modal semantics for UML sequence dia-

grams. Software & Systems Modeling 7 (2008)
22. Mateescu, R.: Property Pattern Mappings for Regular Alternation-Free µ-Calculus

http://www.inrialpes.fr/vasy/cadp/resources/evaluator/rafmc.html.
23. Bauer, A.: Monitorability of omega-regular languages. CoRR abs/1006.3638 (2010)
24. Remenska, D., Willemse, T.A.C.: PASS: Property ASSistant tool for Eclipse

https://github.com/remenska/PASS.

25. Tsaregorodtsev, A., et al.: DIRAC: A Community Grid Solution. Proc. CHEP’07. IOP
Publishing

26. Blom, S., van de Pol, J.: Symbolic Reachability for Process Algebras with Recursive Data
Types. In: Theoretical Aspects of Computing. (2008)

