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Abstract. Pseudonymization is a promising technique for publishing a
trajectory location data set in a privacy-preserving way. However, it is
not trivial to determine whether a given data set is safely publishable
against an adversary with partial knowledge about users’ movements. We
therefore formulate this safety decision problem based on the framework
of constraint satisfaction problems (CSPs) and evaluate its performance
with a real location data set. We show that our approach with an existing
CSP solver outperforms a polynomial-time verification algorithm, which
is designed particularly for this safety problem.

1 Introduction

Nowadays, a location data set, which is obtained by collecting GPS data from
people’s mobile devices, can be used for various analytic purposes, such as real-
time traffic monitoring [5] and urban planning for future sustainable cities [13].
However, due to the significant concern about location privacy [1], the sharing
of mobile users’ location traces has largely been restricted to k-anonymized data
sets [6], which degrade the granularity of location data to ensure that every
location contains more than k people. Such a k-anonymized data set provides
little information on trajectory patterns of mobile users.

We, therefore, consider a dynamic pseudonym scheme for constructing a lo-
cation data set that retains users’ path information while preserving their lo-
cation privacy. The basic idea is to exchange multiple users’ pseudonyms ran-
domly when they meet at the same location to eliminate the linkability of their
pseudonyms before and after that exchange. Roughly speaking, a user’s location
privacy is preserved if we can find enough number of plausible alternate paths for
that user in the data set. We believe that such a dynamic pseudonym approach
is effective enough to publish large segments of the users’ whole trajectory paths
in a privacy-preserving way if the data set involves a large number of users whose
trajectory paths intersect with each other many times.

However, it is not trivial to count the numbers of users’ alternate paths under
the presence of an adversary who owns partial information on users’ movements
(e.g., a user’s home location). Such an adversary can eliminate some of the
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Fig. 1. Pseudonymized location data publishing. The data publisher replaces a user’s
identity ui with a pseudonym pi before releasing location data to data set users.

users’ alternate paths that are inconsistent with his external knowledge. We thus
need to address the issue of multi-path inconsistencies among multiple users
and formulate this problem in the context of constraint satisfaction problems
(CSPs) [4].

A CSP is defined as a set of variables whose values must satisfy a number of
constraints expressed with arithmetic and logical operators. We can declaratively
define constraints on each user’s pseudonym assignments considering the possi-
bility of pseudonym exchanges at mix zones and consistency requirements with
an adversary’s external knowledge. Once we formulate all constraints on users’
plausible trajectory paths, we can compute the number of possible alternate
paths with an existing CSP solver; that is, the number of different pseudonyms
that are possibly taken by the same user corresponds to the uncertainty about
that user’s possible destinations.

Although the time complexity of solving a CSP is exponential at the worst
case, our experimental results with a real location data set show that our CSP-
based approach outperforms a polynomial-time algorithm we previously devel-
oped for this problem [9]. Therefore, we believe that our CSP-based approach is
effective in many realistic situations.

2 Privacy model

We first define our system model for a psedonymized location data publishing
service, and introduce a technique of dynamic pseudonym exchanges at a mix
zone. Next, we establish our privacy metrics we consider in this paper. Figure 1
shows our system model. We assume that each user ui carrying a GPS-enabled
mobile device periodically reports a triplet (ui, lk, tk), which indicates that user
ui is at location lk at time tk. The data publisher receives identifiable location
data from multiple users, replaces their identities with pseudonyms, and provides
a dataset user with a pseudonymized location data set. This data set is an output
from the data publisher in Figure 1.

To replace a user’s identity on a given moving path with a static pseudonym
does not necessarily protect the user’s location privacy. The danger is that if an
adversary knowing that a target user u is at location l at time t finds a data
point (p, l, t) where p is a pseudonym from the received data set, the adversary
can associate p with the user’s identity u. Furthermore, he also learns that all
the data points with the same pseudonym p in the data set belong to the same
user u; that is, the adversary can identify user u’s whole trajectory path.
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Fig. 2. Example pseudonym exchange. Two users exchange their pseudonyms pi and
pj at the intersection. The solid lines denote each user’s actual path while the dotted
lines denote an alternate possible path.

To limit undesirable information disclosure from the above inference attack,
we take an approach of changing each user’s pseudonym dynamically when mul-
tiple users meet at the same location, which we call a mix zone. The basic idea
is to divide a whole path of the same user into multiple segments with different
pseudonyms such that the linkability of any neighboring segments is eliminated.
Figure 2 shows an example of two users’ exchanging their pseudonyms. Two
users who own pseudonyms pi and pj , respectively, randomly exchange their
pseudonyms when meeting at the intersection. Although the user who previ-
ously owned pseudonym pi actually turns right at the corner, we consider that
the alternate path of the users’ turning left is also possible. The other user
similarly has the two possible paths after passing the intersection.

If we consider the possible paths of a single user, whenever the user meets an-
other user, we can add a new branch as a possible segment of the path. However,
such a possible path must be consistent with an adversary’s external knowledge.
Suppose that the adversary knows users’ home location and that every user
starts its path with his home location and eventually returns home. We need
to eliminate some possible branches if taking that direction makes it impossible
for the user to return home. Furthermore, even if one user ui is able to return
home along a possible path, another user uj who exchanged her pseudonym with
ui might lose a possible route to her home location. We thus need to consider
possible pseudonym sequences for multiple users simultaneously. We call this
requirement the multi-path consistency requirement, which is expressed as a set
of constraints in a CSP in Section 3. We assume that an adversary learns a user
u’s location only at some mix zones; that is, the adversary observes user u where
many people get together (e.g., a zebra zone on the street or a public space such
as a hospital).

We consider the number of pseudonyms at a given time t on possible
pseudonym sequences satisfying the multi-path consistency requirement as our
location privacy metrics. Figure 3 shows such multiple pseudonym sequences of
user ui. If an adversary knows ui’s location at times t0 and t∗, there is no uncer-
tainty about a pseudonym taken by ui at both times. However, user ui is likely
to have some uncertainty about his pseudonym in the middle of his trajectory
after passing multiple mix zones. We now define the notion of (k, t)-pseudonym
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Fig. 3. Concept of (k, t)-pseudonym location privacy.

location privacy as follows.

Definition 1 ((k, t)-pseudonym location privacy) If user ui can take k or
more pseudonyms at a given time t while satisfying the multi-path consistency
requirement, we say that user ui satisfies (k, t)-pseudonym location privacy.

3 Background on constraint satisfaction problems

We give a brief overview of a constraint satisfaction problem (CSP) [12], which
is sufficient to formulate the safety problem of location data psuedonymization
in the context of CSP in Section 4. A CSP is a problem of finding a solution
satisfying all the given conditions on a set of variables. We define a CPS in
a declarative way such that a CSP solver finds a solution in a computationally
efficient way. Although solving a CSP is known as NP-hard, existing CSP solvers,
which have been widely used in many areas (e.g., [2, 8]), usually show good
performance for practical purposes.

We first define a constraint network and a CSP as follows.

Definition 2 (Constraint network) Constraint network (or Network) N
is a tuple (X,D,C) where

– X is a finite set of integer variables,
– D is a mapping from X to a set of all possible finite subsets of integers which

represents their possible values (domain), and
– C is a finite set of constraints over X which represents a conjunction of

constraints (∧). Each constraint consists of:
• Arithmetic operators (such as +, −)
• Arithmetic comparisons (such as =, 6=, ≤)
• Logical operators (such as ∧, ∨, ⇒)
• Global constraints (such as same: described later)

A global constraint is a constraint between non-fixed number of vari-
ables. For example, the same constraint takes two integer sequences X =<



x1, x2, . . . , xn > and Y =< y1, y2, . . . , yn >, and it represents X is a permuta-
tion of Y .

An assignment is a mapping from X to a set of integers and a partial assign-
ment is a mapping from a subset of X to a set of integers.

Definition 3 (Constraint Satisfaction Problem) Let N = (X,D,C) be a
constraint network. A constraint satisfaction problem (CSP) is a problem to find
an assignment α such that

– α satisfies all the constraints c ∈ C and
– α(x) ∈ D(x) holds for all integer variables x ∈ X.

If there exists such assignment α, it is called a solution of the CSP.

An existing CSP solver typically finds a solution in the following way. First,
it picks one variable xi from X and defines a partial assignment to xi. Second,
the solver removes inconsistent values from the other domains by applying a
constraint propagation algorithm. If another domain for a variable xj becomes
an empty set (i.e., the partial assignment cannot be extended to any solution),
the solver picks a different value x′i from D(xi) and repeats the same process to
extend the partial assignment to variable xj . This process is iterated until the
solver finds a solution by extending the partial assignment to an assignment for
all the variables.

4 Formalizing the CSP safety problem

We formalize the safety problem in Section 2 as the k-pseudonym decision prob-
lem and show how to solve that decision problem using a CSP solver.

4.1 The k-pseudonym decision problem

We use letters u and u1, u2, . . . for users and p and p1, p2, . . . for pseudonyms
respectively. We denote Nt∗ as a finite set of integers {1, . . . , t∗}.

Definition 4 (Mix Zone) Let U be a finite set of users. A mix zone m over
U is a subset of U whose size is greater than one. We denote by MU all the set
of mix zones over U .

We next define the mix zone function that takes a time t as an input and outputs
a finite set of mix zones, which occur at time t as follows.

Definition 5 (Mix zone function) Let U be a finite set of users, t∗ be a pos-
itive integer, and MU be a set of all possible mix zones over U . The mix zone
function fU,t∗ : Nt∗ → 2MU is a mapping from Nt∗ to a finite subset of MU where
MU is the set of all mix zones.

To formulate a k-pseudonym decision problem, we express an adversary’s exter-
nal knowledge and each user u’s security requirements as follows.



Definition 6 (External knowledge) External knowledge is a finite set of
pairs (u, t), which represents the fact that an adversary knows a user u’s lo-
cation at time t.

Definition 7 (Security requirement) A security requirement is a tuple (u, t, k)
where u ∈ U is a user and 1 ≤ t ≤ t∗ and k ≥ 1 are integers.

This requirement represents the fact that a user u can possibly take more than
k different pseudonyms at time t. We expect that each user specifies multiple
security requirements on a given pseudonymized data set.

We next define the pseudonym function which returns a pseudonym for the
user u at time t.

Definition 8 (Pseudonym function) Let U be a finite set of users, P =
{p1, p2, . . . , p|U |} be a finite set of pseudonyms, and t∗ be a positive integer.
The function pseudonym s : U ×Nt∗ → P maps a pair of a user u and time t
to a pseudonym p ∈ P such that a user u has a pseudonym p at time t.

Finally, we define the k-pseudonym decision problem as follows.

Definition 9 (k-pseudonym decision problem) Let U be a finite set of
users, t∗ be a positive integer, and E be an adversary’s external knowledge.
Let (u, t, k) be a security requirement. The k-pseudonym decision problem
(fU,t∗ , (u, t, k), E) is a problem to decide whether there exist k candidates for
s(u, t) that are consistent with the external knowledge E.

4.2 Solving k-pseudonym decision problem

We first represent the k-pseudonym decision problem as a constraint network
and show how we solve it with a CSP solver in an incremental way. Figure 4
shows the function generateCSP that generates a constraint network from the
given mix zone function. Quoted variables or constraints such as ‘stu’ in Figure 4
show the variables or constraints in the network. Here are the overview of the
function generateCSP :

– We introduce an integer variable stu ∈ P which represents a pseudonym
s(u, t) for each user u and each time t. The domain of stu is {1, 2, . . . , i, . . . , |U |−
1, |U |} where each domain value i corresponds to the pseudonym pi in the
set of pseudonyms P .

– Without loss of generality, we add constraints for specifying the pseudonyms
of users at time t = 0.

– For each time t ∈ {1..t∗}, we add the following constraints.

• s(u, t) = s(u, t− 1) holds if the user u is not included in any mix zones
at time t.

• same(< s(ui, t− 1), s(uj , t− 1), · · · >, < s(ui, t), s(uj , t), · · · >) holds if
there is a mix zone {ui, uj , . . . } at time t.



// U: a finite set of users, f: mix zone function, t∗: maximum time

def generateCSP(U, f, t∗)
X = ∅
C = ∅
// introduce integer variables

foreach u in U
foreach t in 0..t∗

X = X ∪ {‘stu’}
end

end

// pseudonyms at time t = 0
i = 0
foreach u in U

C = C ∪ {‘s0u = i’}
i = i + 1

end

foreach t in 1..t∗

// The same constraint should hold for each mix zone.

foreach M in f(t)
P = ∅
foreach ‘stu’ in M

P = P ∪ {‘s(t−1)
u ’}

end

C = C ∪ {‘same(P , M)’}
end

// If an user u is not included in any mix zones,

// ‘stu’ is same as the pseudonym at the previous time.

foreach u in U −
⋃

f(t)

C = C ∪ {‘stu = s
(t−1)
u ’}

end

end

return (X, D, C) where D(s) = {1..|U |} for all s in X
end

Fig. 4. A pseudo code to generate a constraint network from the given mix zone func-
tion



In addition to the constraint network generated by the function generateCSP ,
we need to express extra constraints for the external knowledge. If an adversary
knows only one external knowledge (u, t), she knows that one of the possible
values in D(stu) corresponds to the user u. She cannot infer further information
because she only knows the external knowledge at mix zones as described in
Section 2. Therefore we do not need additional constraints in this case.

If the adversary knows two external knowledge {(u, t1), (u, t2)} (i.e., she know
the information about s(u, t1) and s(u, t2)), she can infer more information from
the external knowledge at the worst case where s(u, t1) = s(u, t2) holds. To
consider this worst case, we add an extra constraint st1u = st2u to the generated
constraint network. If there is more than two elements in the external knowledge,
we add the corresponding constraints in the same way.

Let N be a constraint network which is generated with the function
generateCSP(U, f, t∗) and let us consider (XG, DG, CG) = ΦG(N) where ΦG(N)
is the function for removing all inconsistent values from the domains. Each do-
main value d ∈ DG(stu) corresponds to a possible pseudonym which is computed
with s(u, t). Therefore, we can solve k-pseudonym decision problem by checking
whether |DG(stu)| ≥ k holds for the security requirement (u, t, k).

However, many CSP solvers do not use ΦG in practice because it requires
too much computation time. Those solvers usually use the algorithms for other
consistencies which are weaker but more reasonable with respect to execution
time or memory consumption. Therefore, we propose an incremental solving
method, which can be applicable to existing CSP solvers.

In the incremental solving method, we first generate a constraint network
(X,D,C) from the given mix zone function, and check whether the network
(X,D,C ∪ {stu = i}) has a solution for each domain value i ∈ D(stu).

5 Experimental results

We develop the safety verification program for solving the k-pseudonym decision
problem from a given mix zone function. It is written in Groovy with 409 lines
using the Choco library [14] as an external CSP solver. Using this program, we
further develop an optimization program based on dynamic programming that
finds the minimum number of mix zones satisfying a given safety requirement.

We use the dataset [11] containing mobility traces of taxi cabs in San Fran-
cisco, USA. It contains GPS coordinates of approximately 500 taxis collected
over 30 days in the San Francisco Bay Area. When we conduct our experiments
with a given number of users, we randomly pick a specified number of users from
the dataset.

Figure 5 shows performance results of finding the minimum set of mix zones
satisfying all the security requirements changing the number of users in a dataset.
We randomly define security requirements of up to five to randomly chosen
users. We compare results with our safety verification program using the CSP
solver with those using our previously developed polynomial-time algorithm[10].
Although the time complexity of the CSP solver is exponential at the worst



Fig. 5. Comparison of the processing time. CSP is the result with a CSP solver and
DP is the results with our previously developed polynomial algorithm.

case, our safety versifier outperforms our previously algorithm. This results show
that the CSP solver, which has been done with various performance turning,
efficiently makes a safety decision with realistic location data sets.

6 Related work

Using pseudonyms is a promising way to make location data unlinkable to a
particular user. Beresford and Stajano [3] were the first to discuss the idea of
dynamically changing pseudonyms in a mix zone where multiple people meet,
in order to prevent an adversary from linking two pseudonyms of the same user.
However, they only consider the situation where an adversary has just a local
view of users’ movements and observes pseudonyms of entering or leaving the
same mix zone. Hoh and Gruteser [7] present a path perturbation algorithm that
adds noises to original location data so that each user can construct alternate
possible paths by exchanging his pseudonym with those of other users when they
meet at the same place. However, their scheme does not consider an adversary’s
external knowledge that can associate each user with a particular location, as
we assume in this paper.

7 Conclusions

In this paper, we introduce the safety definition of pseudonym-based location
data and show how to represent the original safety problem in the context of
constraint satisfaction problem. Our experimental results with a real location
data set show that our approach with an existing CSP solver outperforms a
polynomial-time verification algorithm, which is designed particularly for this
safety problem.
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