
HAL Id: hal-01397199
https://inria.hal.science/hal-01397199

Submitted on 15 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

State Machine Abstraction Layer
Josef Kufner, Radek Mařík

To cite this version:
Josef Kufner, Radek Mařík. State Machine Abstraction Layer. 2nd Information and Communi-
cation Technology - EurAsia Conference (ICT-EurAsia), Apr 2014, Bali, Indonesia. pp.213-227,
�10.1007/978-3-642-55032-4_21�. �hal-01397199�

https://inria.hal.science/hal-01397199
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

State Machine Abstraction Layer

Josef Kufner and Radek Mařík

Department of Cybernetics, Faculty of Electrical Engineering,
Czech Technical University in Prague, Czech Republic
kufnejos@fel.cvut.cz, marikr@k333.felk.cvut.cz

Abstract Smalldb uses a non-deterministic parametric finite automa-
ton combined with Kripke structures to describe lifetime of an entity,
usually stored in a traditional SQL database. It allows to formally prove
some interesting properties of resulting application, like access control
of users, and provides primary source of metadata for various parts of
the application, for example automatically generated user interface and
documentation.

1 Introduction

The most common task for a web application is to present some entities to an
user, and sometimes the user is allowed to modify these entities or to create
a new one. Algorithms behind these actions are usually very simple, typically
implemented using few SQL queries. The tricky part of web development is
keeping track of the behavior and lifetime of all entities in application. As number
and complexity of the entities are growing, it is getting harder for a programmer
to orientate in the application, and situation is even worse when it comes to
testing.

Smalldb brings a bit forgotten art of state machines into the web develop-
ment, unifying specifications of all entities in an application, creating a single
source of all important metadata about many aspects of each entity, and allowing
to build formal proofs of application behavior.

The basic idea of Smalldb is to describe lifetime of each entity using state
machine, and map all significant user actions to state transitions. To make the
best of this approach, the state machine definition is extended with additional
metadata, which are not essential for the state machine itself, but can be used
by user interface, documentation generator, or any other part of the application
related to the given entity.

Smalldb operates at two levels of abstraction within the application. At the
lower level it handles database access, it acts as the model in MVC pattern. At
higher level of abstraction it can describe API, URIs and behavior of large parts
of the application, however, it does not directly implement these parts.

In the next two sections an example of typical entity in web application is
presented. In section 4 Smalldb state machine is formally defined. And section 5
describes relation between state machine instances and underlaying database. A
basic implementation with some interesting implications is roughly described in

mailto:kufnejos@fel.cvut.cz
mailto:marikr@k333.felk.cvut.cz

section 6. Section 7 introduces Smalldb as a primary metadata source. Remaining
sections are dedicated to application correctness.

2 REST resource as a state machine

Let’s start with simple example of generic resource (entity) in RESTful applica-
tion [1]. RESTful applications typically use HTTP API to manipulate resources.
Since REST does not specify a structure of a resource nor exact form of the API
(simply because it is out of REST’s scope), it is impossible to use this API with-
out additional understanding of application behind this API. However, HTTP
defines only a limited set of usable methods, so a general example can be pro-
vided.

Figure 1 presents a generic state machine equivalent to a REST resource. The
resource is created by HTTP POST request on a collection, where the resource
is to be stored. Then it can be modified using HTTP PUT (or similar HTTP
methods), and finally it can be removed using HTTP DELETE method.

Without further investigation of the resource an influence of the “modify”
transition cannot be determined, but we can safely assume the resource is more
complex than Figure 1 presents, otherwise the “modify” transition would make
no sense.

Transitions from the initial state and to the final state represents creation and
destruction of the resource and the machine itself. These two states are denoted
as a separate features, but they both represent the same thing – resource does
not exist. This semantics is one of the key ideas behind Smalldb.

exists

 create
 (HTTP POST)

 modify
 (HTTP PUT)

 delete
 (HTTP DELETE)

Figure 1. REST resource state machine

3 Real-world example

When building real web application, situation is rarely as simple as example in
previous section. Typically there is more actions to perform on an entity, and
the entity passes through a few states during its lifetime.

A very common application on the Web is a blog. Typical blog is based on
publication of posts. Each post is edited for some time after its creation, and
then it is published. Some posts are deleted, but they can also be undeleted (at
least in this example).

A state machine representing lifetime of the post is in Figure 2. As we can
see, there are three states and a few transitions between them. Note that there
is no final state in this state machine. That is because the blog post is never
completely destroyed.

There is one interesting feature in this state machine – the undelete action.
In both HTTP specification and REST there is nothing like it. It is possible to
implement it using an additional attribute of the blog post, but it does not fit
well into RESTful API, for example there is no counterpart to HTTP DELETE
method. Similar troubles occur when controlling nontrivial long-running asyn-
chronous processes, since it is unnatural to express events and commands in
REST.

There is also one big problem with both this and previous examples. If these
state machines are interpreted as usual finite automata, the edit action has no
effect. Invoking the edit action makes no difference, because it starts and ends
in the same state. To justify this behavior, the state machine must use a con-
cept very similar to Kripke structures. Each state represents a possibly infinite
group of sub-states, which have common behavior described by the encapsulat-
ing state. Therefore, the edit transition is in fact a transition between different
sub-states within the same state, i.e. sub-states belong to the same equivalency
class. Omitting these sub-states from the state diagram is very practical since it
allows easy comprehension. The sub-states are implemented using “properties”
of the state machine instance, for example title, author and text of the blog post
(this concept will be described in Section 4.4).

writing

 create

 edit publish

published

 publish

deleted

 delete

 hide

 edit

 delete

 undelete

 undelete

Figure 2. State diagram of blog post

4 State machine

As previous examples showed, it is necessary to modify and extend definition
of finite automaton [2], to make any use of it. In this section a Smalldb state
machine is formally defined and its features are explained. The definition is
designed to follow an actual implementation as close as possible, so it can be
used to formally infer properties of final applications.

4.1 Smalldb state machine definition

Smalldb state machine is modified non-deterministic parametric finite automa-
ton, defined as a tuple (Q, P , s, P0, Σ, Λ, M , α, δ), where:

– Q is finite set of states.
– P is set of named properties. P ∗ is (possibly infinite) set of all possible values

of P . Pt is state of these properties in time t. Pt ∈ P ∗.
– s is state function s(Pt) 7→ q, where q ∈ Q, Pt ∈ P ∗.
– P0 is set of initial values of properties P , P0 ∈ P ∗.
– Σ is set of parametrized input events.
– Λ is set of parametrized output events (optional).
– M is finite set of methods: m(Pt, ein) 7→ (Pt+1, eout), where Pt, Pt+1 ∈ P ∗,
m ∈M , ein ∈ Σ, eout ∈ Λ.

– α is assertion function: α(qt,m) 7→ Qt+1, where qt ∈ Q, Qt+1 ⊂ Q, ein ∈ Σ.

∀m ∈M : s(Pt+1) ∈ α(s(Pt),m)
⇔ (∃ein : m(Pt, ein) 7→ (Pt+1, eout))

– δ is transition function: δ(qt, ein, u) 7→ m, where qt ∈ Q, ein ∈ Σ, m ∈
M , and u represents current user’s permissions and/or other session-related
attributes.

4.2 Explanation of non-determinism

Non-determinism in the state machine has one specific purpose. It expresses
possibility of a failure and uncertainty of the result of invoked action.

For example when the blog post (see Section 3) is undeleted, it is not known
in advance in which state the blog post will end, because if user has no permission
to publish, the result state will be “writing”, even if the blog post was already
published.

Similar situations occur when invoked action can fail. For example when the
blog post cannot be published, because requested URI is already used by another
post, or if some external material must be downloaded during publication and
remote server is inaccessible.

In all these cases, a requested action is invoked, but which transition of state
machine is used, is determined by result of invoked action.

4.3 Simplified deterministic definition

Because the complete definition described in section 4.1 is a bit too complex,
here is a simplified deterministic definition with most of unimportant features
thrown away. These features are present in the implementation, but they are
not important for a basic understanding. This definition may also be useful for
some formal proofs, where these two definition can be considered equivalent, if
thrown away features are not significant for the proof.
Please keep in mind, that the rest of this paper always refers to the full definition
in the section 4.1.

The simplified definition is: Smalldb state machine is defined as a tuple
(Q, q0, Σ, Λ, δ′, m′), where:

– Q is finite set of states.
– q0 is starting state, q0 ∈ Q.
– Σ is set of input events.
– Λ is set of output events (optional).
– δ′ is transition function: δ′(qt, ein, w) 7→ qt+1, where qt, qt+1 ∈ Q, ein ∈ Σ,

and w is unpredictable influence of external entities.
– m′ is output function:m′(qt, ein, w) 7→ eout, where ein ∈ Σ, eout ∈ Λ, qt ∈ Q,

and w is the same external influence as in δ′.

This is basically Mealy (or Moore1) machine [3,4], only difference is in introduc-
ing additional constraint w to handle possibility of failure. However, the w is not
known in advance when transition is triggered (see Section 4.2).

Main simplification is made by chaining transition function δ and assertion
function α into one transition function δ′:

∀qt∀ein∀w :
(
δ′(qt, ein, w) = Qt+1

)
⇔

(
α(qt, δ(qt, ein, w)) = Qt+1

)
This simplification assumes, that the implementation of the transitions is

flawless, which is way too optimistic for real applications.

4.4 Properties and state function

As came out in the blog post example (see Section 3), finite state automaton is
not powerful enough to store all arbitrary data of an entity. To overcome this
limitation, Smalldb state machine has properties. Each property is identified
by name, and rest is up to the application. Properties can be implemented as
a simple key–value store, columns in SQL table, member variables in OOP class,
or anything like that.

Since properties are not explicitly limited in size, they can store very big,
theoretically infinite, amount of data, data of high precision, or very complex
1 Slight differences between Mealy and Moore machines are not important here, and

ein may or may not be used in m′.

structures. To handle these data effectively, the state function is used to deter-
mine state of the machine. The state function converts properties to single value,
the state, which is easy to handle and understand.

Because applying the state function on different sets of properties can (and
often will) result in the same state, the state represents entire equivalence class,
rather than single value. This approach is very similar to Kripke structures [5].

The state function must be defined for every possible set of properties:

∀P ∈ P ∗ : s(P) ∈ S

On the other side, an inverse function to s usually does not exist, so it is not
possible to reconstruct properties from state. The only exception is a null state
q0, in which entity represented by state machine does not exist and properties
are set to P0, in short, q0 = s(P0).

Typically the state function is very simple. In trivial case (like the first ex-
ample in section 2) it only detects existence of a state machine. In more common
cases (like the blog post example in section 3) it is equal to one of properties,
or checks whether a property fits in a predefined range (for example, if date of
publication is in future). Since the state function is key piece of the machine
definition and it is used very often, it should be kept as simple and fast as
possible.

The state is not explicitly stored and it is calculated every time it is requested.
If both the state function and a property storage allow, the state may be cached
to increase performance, but it is not possible to allow it in general. However,
it is usually possible to store some precalculated data within properties to make
state function calculations very fast.

4.5 Input events

The input events Σ can be understood as actions requested by user. The action
is usually composed of method name m ∈ M and its arguments. Input events
are implementation specific and their whole purpose is to invoke one of expected
transitions in a state machine.

4.6 Output events

The output events Λ are simply side effects of methods M , other than mod-
ifications of state machine’s properties. These events usually include feedback
to user and/or sending notification to an event bus interface, so other parts of
application can be informed about change.

4.7 Methods

The methods M implement each transition of the state machine. They modify
properties and perform all necessary tasks to complete the transition. These
methods are ordinary machine-specific protected methods as known from object

oriented languages, invoked by universal implementation of the state machine.
Since the methods cannot be invoked directly, access to them is controlled by
state machine, and it is possible to implement advanced and universal access
control mechanism to secure an entire application.

There is a few methods with special meaning in object oriented languages.
If ∀ein∀u : mc = δ (s(P0), ein, u), then mc is known as constructor or factory
method. If ∀q ∈ Q : α(q,md) = s(P0), then md is known as destructor. However,
in Smalldb both these methods are ordinary methods with no special meaning,
and both can occur multiple times in single state machine.

4.8 Transitions and transition function

Main difference from classic non-deterministic finite automaton is in division of
each transition into two steps. The transition function δ covers only the first
step. The second step is performed by method m ∈ M , which was selected by
the transition function δ. Point of this separation is to localize the source of non-
determinism (see Section 4.2) and accurately describe a real implementation.

The complete transition process looks like this (explanation will follow):

(Pt, ein) δ(s(Pt),ein,u)−−−−−−−−−→ (Pt, ein,m) m(Pt,ein)−−−−−−−→ Pt+1

α(s(Pt),m)−−−−−−−→ s(Pt+1)

Before a transition is invoked, only the properties Pt and the input event
ein are known. First, the transition function δ is evaluated, which results in
the method m being identified. Then the m is invoked and the properties get
updated. Finally, the assertion function is evaluated to check, whether the state
machine ended in correct state.

The transition function δ also checks, if an user is authorized to invoke the
requested transition. User’s permissions are represented by u. This check can
be used alone (without transition invocation) to determine, which parts of user
interface should be presented to user.

4.9 Assertion function

A simple condition must be always valid:

s(m(Pt, ein)) ∈ α(s(Pt),m)

Otherwise there is an error in the function m.
Purpose of the assertion function α is to describe expected behavior of m

and validate its real behavior at run-time. Since m is piece of code written by
humans, it is very likely to be wrong.

5 Space of state machines

Everything said so far was only about definition of a state machine. This defi-
nition is like a class in an object oriented language – it is useless until instances
are created. In contrast with the class instances, the state machine instances are
persistent. Definition is implemented in source code or written in configuration
files, and properties of all state machine instances are stored in database.

But there is one more conceptual difference: The state machine instances are
not created. All machines come to existence by defining a structure of a machine
ID, which identifies machine instance in the space of all machines.

At the beginning, all machines are in null state q0, which means “machine
does not exist” (yes, it is slightly misleading). Since it is known, that properties
of a machine in q0 state are equal to P0, there is no need to allocate storage for
all these machines.

Machine ID is unique across entire application. There is no specification how
such ID should look like, but pair of machine type and serial number is a good
start. A string representation of the ID is URI, a world wide unique identifier.
Conversion between string URI and application-specific ID should be simple and
fast operation which does not require determining a state of given machine.

Once machine instance is identified, a transition can be invoked. Once ma-
chine enters state different than q0, its properties are stored in database. This
corresponds with calling a constructor in an object oriented language. When
machine enters the q0 state again, its properties are removed from database, like
when destructor is called. But keep in mind that machine still exists, it only
does not use any memory.

5.1 Smalldb and SQL database

An SQL database can be used to store machine properties. In that case, each row
of the database table represents one state machine instance, and each column
one property. The table name and primary key are used as the machine ID.
Machines in q0 state do not have their row in the table.

It is useful to implement the state function using an SQL statement, so it
can be used as regular part of SQL query. That way it is easy and effective to
obtain list of machines in given state.

Machine methods M typically call few SQL queries to perform state tran-
sitions. It is not very practical to implement the methods in SQL completely,
since it is usually necessary to interact with other non-SQL components of the
application.

5.2 RESTful HTTP API

URI as a string representation of the machine ID was chosen to introduce
Smalldb HTTP API. This API respects the REST approach [1], and mapping to
Smalldb state machine is very straightforward: HTTP GET request can be used

to read state machine status and properties, HTTP POST request to invoke
a transition.

This may remind RPC2 a little, where procedures on remote machine were
invoked. Smalldb tries to pick the best of both REST and RPC, since these
approaches are not in direct conflict. Entities are identified using URI, just like
REST requires. Transitions are identified in RPC fashion, but structure of the
machine behind this API is unified and data are retrieved in standard way, so
close coupling does not happen, in contrast with RPC.

Question is, how to specify the transition to invoke. Probably the best ap-
proach is to append transition name to URI using query part (for example
http://example.org/post/123?action=edit). This may not be as elegant as
somebody could wish, but it is compatible with old plain HTML forms, be-
cause HTTP GET on such URI with the transition name can result in obtaining
a form, which will be used to create HTTP POST request later. This makes it
possible to use Smalldb without need to create a complex JavaScript frontend.

But if more interactive frontend is required, a HTTP header Accept can be
used to specify other format than HTML page, and retrieve data in JSON or
XML, just like any modern RESTful API offers. Also a HTTP GET on URI
with a transition name specified can return transition definition, like HTTP
OPTIONS does in REST API.

This approach was chosen pragmatically for the best compatibility with cur-
rent stable (old) and widely available technologies.

6 Smalldb implementation

6.1 Prototype

A basic implementation is composed of two base abstract classes, Backend and
StateMachine, and two helper classes, Reference and Router.

The Backend class manages StateMachine instances and takes care of stuff
like shared database connection. It acts as both factory and container class. The
Backend must be able to determine a type of requested machine from its ID, to
prepare correct instance of StateMachine class, and delegate almost all requests
to it. This way the Backend is responsible for entire state machine space without
even touching it. Classes derived from the Backend class implement application
specific way to access list of known state machines (descendants of StateMachine
class).

The abstract StateMachine class and classes derived from it contain def-
inition of the state machine and implementation of methods M (see Section
4.1). There is only one instance of StateMachine class per Backend and state
machine type, which handles all state machines instances of given type. So the
StateMachine instances are responsible for disjunctive subspaces of state ma-
chine space. When transition is to be invoked, machine ID and input event is
passed to a StateMachine::invokeTransition method, which validates request
2 RPC: Remote Procedure Call

using machine definition and executes appropriate protected method implement-
ing the transition.

The Reference class is mostly only syntactic sugar to make application code
prettier. It is created by Backend’s factory method, which takes state machine
ID as an argument. It contains the ID and a reference to both the Backend and
the corresponding StateMachine (obtained from the Backend). The Reference
is used as proxy object to invoke state machine transitions and retrieve its state
and properties. Its implementation is very specific to used language. Usage of
Reference object is similar to Active Record pattern, however, the semantics is
different.

Finally, the Router class is a little helper used to translate URI to state
machine ID and back. Each application may require specific mapping of URIs,
so the instance of Router class is injected into Backend during its initialization.

6.2 Metaprogramming

Since the StateMachine class is responsible for loading of a state machine config-
uration, it is possible to generate the configuration dynamically in StateMachine
constructor. This allows to create more general state machines for similar entities
using one StateMachine class initialized with different configuration.

It is also possible to determine state machine properties from structure of
SQL tables, and load rest of the definition from the SQL database too. This way
it is possible to define new state machines and entities without need to write
a single line of code, using only an administration interface of the application.

6.3 Spontaneous transitions

When state function includes time or some third party data source, it may hap-
pen that state machine will change from one state to another without executing
any code. Since this changes happen completely on their own and without any
influence of Smalldb, it is not possible to perform any reaction when they hap-
pen.

There are two ways of dealing with this problem. The first way is to live
with them and simply avoid any need of reaction. This approach can be useful
in simple cases where an entity should be visible only after specified date. For
example the blog post (see Section 3) can have “time of publication” property
and state function defined like “if time of publication is in the future, post is in
state writing, otherwise post is published”.

Other way is to not include these variables into the state function and sched-
ule transitions using cron or similar tool. This, however, usually require intro-
duction of “enqueued” state. For example the blog post will have additional “is
published” boolean property and there will be regular task executed every ten
minutes, which will look for “enqueued” posts with “time of publication” in the
past and will invoke their “publish” transition.

The spontaneous transitions can be useful tool, it is only necessary to be
aware of their presence and handle them carefully. They also should be marked
in state diagram in generated documentation.

7 State machine metadata

Role of the Smalldb state machine in an application is wider than it is typical for
a model layer (as M in MVC), because Smalldb provides many useful metadata
for the rest of the application. The state machine definition can be extended to
cover the most of entity behavior, which allows Smalldb to be the primary and
only source of metadata in the application.

Having this one central source makes the application simpler and more secure.
Simpler because metadata are separated from application logic, so they do not
have to be repeated everywhere, which also makes maintainability easier and
development faster. More secure because metadata located at one place are easier
to validate and manage.

Other important benefit of centralized metadata source is generated docu-
mentation. Since the metadata are used all over the application, it is practically
guaranteed that they will be kept up to date, otherwise the application will
get broken. And in addition, the metadata in the state machine definition are
already collected and prepared for a further processing. All this makes it very
valuable source for documentation generator.

For example, the Figures 1 and 2 used in examples (sections 2 and 3) were
rendered automatically from a state machine definition in JSON using Graphviz
[6] and a simple, 120 lines long, convertor script.

Additional use for these metadata is in generating user interface, determining
which parts of it user can see and use, user input validation, access control,
or API generating. And if metadata are stored in static configuration files or
database, they can be modified using administration interface embedded in the
application, which allows to easily alter many aspects of the application itself.
Dynamically generated metadata then allows building of large and adaptive
applications with very little effort.

8 Application correctness

A lot of research was done in model checking and finite automata, resulting in
tools, like Uppaal [7], which allows to formally verify statements about given
automaton. Since Smalldb is built on top of such automata, it is very convenient
to use these tools to verify Smalldb state machines. And thanks to existence of
formal definition of Smalldb state machine, it is possible to export state machine
definition to these tools correctly.

8.1 Access control verification

Verification of basic properties, like state reachability3, safety4 and liveness5, is
nice to have in basic set of tests, however, these properties are not very useful
on their own. Situation gets much more interesting, when user permissions are
introduced.

User access is verified just before transition is invoked. Therefore, an user
with limited access is allowed to use only subset of transitions in state diagram,
and some states may become unreachable. If expected reachability of a state
by given user is stated in the state machine definition, it is easy to use the
earlier mentioned tools to verify it. And in the most cases, any allowed transition
originating from unreachable state means security problem.

Similar situation is with liveness property, where unintentional dead ends,
created by insufficient permissions, can be detected.

Because access control is enforced by general implementation of state machine
(in abstract StateMachine class, see Section 6), which can be well tested and
it is not modified often, probability of creating security issue is significantly
reduced.

8.2 Optimizations vs. understandability

In the era of discrete logical circuits, a state reduction was very important task,
because circuits were expensive and less states means less circuits.

In Smalldb, a state machine is used in very different fashion. The state ma-
chine is expected to express real behavior of a represented entity in a way, which
can be understood and validated by non-technical user (customer). A connec-
tion between understandability of state diagram and automated generation of
this diagram from the single source of truth (see Section 7) is important feature,
since it eliminates an area, where errors and misunderstandings can occur – a
gap between expectations and software specification.

From this point of view, any state diagram optimizations are undesirable.

8.3 Computational power of Smalldb machine

Classical finite state automaton is not Turing complete, because it has limited
amount of memory, so it cannot be used, for example, to count sheeps before
sleeping. But in Smalldb state machine this limitation was overcome by intro-
ducing properties and methods implemented in Turing-complete language (see
Section 4.1), so the sheep counting can be done using one state, increment loop-
back transition and sheep counter property.

Smalldb state machine is a hybrid of two worlds. On one side, there is nice
non-deterministic finite automaton, which allows all the nice stuff described in
3 State reachability: “Is there path to every state?”
4 Safety property: “Something bad will never happen.”
5 Liveness property: “Machine will not get stuck.”

this paper. On the other side, there are Turing-complete methods M , the barely
controllable mighty beasts, which do the hard work. As long as these two parts
are together, the computational power is the same as of the language used to
implement the methods M .

By introducing properties and state function, the used automaton cannot
be easily considered finite, since single state represents an equivalence class of
property sets, which is not required to be finite. It is also possible to let methods
M to modify state machine definition on the fly. And since both state function
and transition function are also implemented using Turing-complete language,
it is possible to define them in the way where the amount of the states is not
finite at all. However, rest of this paper does not consider these possibilities and,
for sake of clarity, expects reasonable definitions of all mentioned functions.

A practical example of self-modifying Smalldb state machine is a graphical
editor of state machine definition which uses Smalldb to store modified configu-
ration.

8.4 Troubles with methods M

Because methods M (see Section 4.7) are Turing complete, it is not possible to
deduce their behavior automatically. This means it is not possible to predict,
whether all transitions of the same name will be used by machine, and therefore
some of the states considered reachable, when methods M were not took into
account, may not be ever reached. This problem can be partially solved by careful
testing and reviewing of the methods M .

Another problem is, when some of the methods are flawed and machine ends
up in other state than transition allowed. This is detected by assertion function
and it must be reported as a fatal error to a programmer.

Smalldb cannot solve these troubles completely, but it is designed to locate
these kinds of errors as accurate as possible.

9 Workflow correctness

9.1 State machine cooperation

The workflow can be understood as cooperation of multiple entities with com-
patible goals. When these entities are specified as Smalldb state machines, it is
relatively straightforward to involve tool like Uppaal (see Section 8), and let it
calculate, what will happen, when these entities are put together.

Once state machine instances are required to cooperate, there is a danger that
state machines will got stuck in deadlock. As Smalldb state machines represent
entity lifetime, the cooperation troubles may mean there is something wrong
with processes outside an application.

But the Smalldb state machine does not have to represent the entity within
an application only. It also can be used to describe behavior of external entities,
however, such entity should not be included in the application.

9.2 BPMN and BPEL

Entity lifetime is closely related to users’ workflow and related processes. BPMN6

and BPEL7 were developed to describe them in some formal way. It should be
possible to extract a formal model of each entity included in the process from
BPMN and/or BPEL description, and convert them to Smalldb state machines.
Then the state machine representing an application entity can be used as starting
point of its implementation. And the other state machines, which represents hu-
mans and external applications, can be used to execute a simulation of complete
process.

This approach should eliminate need for software specification when there is
model of the entire process. Another benefit could be possibility of testing and
formal proving of the application not against its specification, but rather against
other entities in the process, removing the gap between what is expected and
what is specified.

This area will require a lot of research and it is mostly out of the scope of
Smalldb and this paper, however, it might be inspirational to put a bit wider
context here.

10 Conclusion

Smalldb represents valuable source of metadata in an application, and allows to
formally verify various aspects of the application, while maintaining practical
usability and development effectivity.

From certain points of view it is similar to object oriented programming,
where invoking of a transition is similar to method call in OOP, but with benefits
of additional validation and better documentation of entity lifetime, which helps
to manage complex and long-term behavior of the entities.

Smalldb also allows definition of simple RESTful HTTP API, which includes
some aspects of RPC, to make the API more universal and easier to use. This
API is also compatible with standard HTML forms, so it can be used on web
sites without creating complex JavaScript clients.

Smalldb is meant as both as production-ready solution and as a building
block for further research of software synthesis. However, there are areas left
unexplored in integration of Smalldb with business process modeling (see section
9) and various aspects of verification.

6 BPMN: Business Process Model and Notation
7 BPEL: Business Process Execution Language

References

1. R. T. Fielding, “Architectural styles and the design of network-based software ar-
chitectures,” Ph.D. dissertation, 2000, aAI9980887.

2. A. Gill, Introduction to the theory of finite-state machines, ser. McGraw-Hill elec-
tronic sciences series. McGraw-Hill, 1962.

3. E. F. Moore, “Gedanken Experiments on Sequential Machines,” in Automata Stud-
ies. Princeton U., 1956, pp. 129–153.

4. G. H. Mealy, “A Method for Synthesizing Sequential Circuits,” Bell System Tech-
nical Journal, vol. 34, no. 5, pp. 1045–1079, 1955.

5. K. Schneider, Verification of Reactive Systems: Formal Methods and Algorithms,
ser. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2004.

6. J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull, “Graphviz
and dynagraph – static and dynamic graph drawing tools,” in GRAPH DRAWING
SOFTWARE. Springer-Verlag, 2003, pp. 127–148.

7. G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal,” in Formal
Methods for the Design of Real-Time Systems: 4th International School on Formal
Methods for the Design of Computer, Communication, and Software Systems, SFM-
RT 2004, ser. LNCS, M. Bernardo and F. Corradini, Eds., no. 3185. Springer–
Verlag, September 2004, pp. 200–236.

	State Machine Abstraction Layer

