
HAL Id: hal-01397181
https://inria.hal.science/hal-01397181

Submitted on 15 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A GPU-Based Enhanced Genetic Algorithm for
Power-Aware Task Scheduling Problem in HPC Cloud

Nguyen Quang-Hung, Le Thanh Tan, Chiem Thach Phat, Nam Thoai

To cite this version:
Nguyen Quang-Hung, Le Thanh Tan, Chiem Thach Phat, Nam Thoai. A GPU-Based Enhanced
Genetic Algorithm for Power-Aware Task Scheduling Problem in HPC Cloud. 2nd Information and
Communication Technology - EurAsia Conference (ICT-EurAsia), Apr 2014, Bali, Indonesia. pp.159-
169, �10.1007/978-3-642-55032-4_16�. �hal-01397181�

https://inria.hal.science/hal-01397181
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A GPU-Based Enhanced Genetic Algorithm for Power-

Aware Task Scheduling Problem in HPC Cloud

Nguyen Quang-Hung
1
, Le Thanh Tan, Chiem Thach Phat, and Nam Thoai

1

Faculty of Computer Science & Engineering, HCMC University of Technology, VNUHCM

268 Ly Thuong Kiet Street, Ho Chi Minh City, Vietnam
1
{hungnq2,nam}@cse.hcmut.edu.vn, {50902369,

50901901}@stu.hcmut.edu.vn

Abstract. In this paper, we consider power-aware task scheduling (PATS) in

HPC clouds. Users request virtual machines (VMs) to execute their tasks. Each

task is executed on one single VM, and requires a fixed number of cores (i.e.,

processors), computing power (million instructions per second - MIPS) of each

core, a fixed start time and non-preemption in a duration. Each physical machine

has maximum capacity resources on processors (cores); each core has limited

computing power. The energy consumption of each placement is measured for

cost calculating purposes. The power consumption of a physical machine is in a

linear relationship with its CPU utilization. We want to minimize the total energy

consumption of the placements of tasks. We propose here a genetic algorithm

(GA) to solve the PATS problem. The GA is developed with two versions: (1)

BKGPUGA, which is an adaptively implemented using NVIDIA’s Compute

Unified Device Architecture (CUDA) framework; and (2) SGA, which is a serial

GA version on CPU. The experimental results show the BKGPUGA program

that executed on a single NVIDIA® TESLA™ M2090 GPU (512 cores) card ob-

tains significant speedups in comparing to the SGA program executing on Intel®

XeonTM E5-2630 (2.3 GHz) on same input problem size. Both versions share the

same GA’s parameters (e.g. number of generations, crossover and mutation

probability, etc.) and a relative small (10-11) on difference of two finesses be-

tween BKGPUGA and SGA. Moreover, the proposed BKGPUGA program can

handle large-scale task scheduling problems with scalable speedup under limita-

tions of GPU device (e.g. GPU’s device memory, number of GPU cores, etc.).

1 INTRODUCTION

Cloud platforms have become more popular in provision of computing resources under virtual

machine (VM) abstraction for high performance computing (HPC) users to run their applica-

tions. An HPC cloud is such a cloud platform. Keqin Li [1] presented a task scheduling prob-

lems and power-aware scheduling algorithms on multiprocessor computers. We consider here

the power-aware task scheduling (PATS) problem in the HPC cloud. The challenge of the

PATS problem is the trade-off between minimizing of energy consumption and satisfying Qual-

ity of Service (QoS) (e.g. performance or on-time resource availability for reservation requests).

Genetic algorithm (GA) has proposed to solve task scheduling problems [2]. Moreover, GA is

one of evolutionary inspired algorithms that are used in green computing [3]. The PATS prob-

lem with N tasks (each task requires a VM) and M physical machines can generate MN possible

placements. Therefore, whenever the PATS problem increases its problem size, the computa-

tion time of these algorithms to find out an optimal solution or a satisfactory solution is unac-

ceptable.
GPU computing has recently becomes a popular programming model to get high perfor-

mance on data-parallel applications recently. NVIDIA introduces CUDA parallel computing

framework where a CUDA program can run on GeForce®, Quadro®, and Tesla® products.

Latest Tesla® architecture is designed for parallel computing and high performance computing.

In the newest Tesla architecture, each GPU card has hundreds of CUDA cores and gets multiple

Teraflops that targets to high performance computing. For example, a Tesla K10 GPU Acceler-

ator with dual GPUs gets 4.58 teraflops peak single precision [4]. Therefore, study of genetic

algorithm on GPU has become an active research topic. Many previous works proposed genetic

algorithm on GPU [5][6][7][8]. However, none of these works has studied the PATS. In this

paper, we propose BKGPUGA, a GA implemented in CUDA framework and compatible with

the NVIDIA Tesla architecture, to solve the PATS problems. The BKGPUGA proposes apply-

ing same genetic operation (e.g. crossover, mutation, and selection) and evaluation fitness of

chromosomes on whole population in each generation that uses data-parallel model on hundreds

of CUDA threads concurrently.

2 Problem Formulation

We describe notations used in this paper as following:

Ti Task i

Mj Machine j

rj(t) Set of indexes of tasks that is allocated on the Mj at time t

mipsi,c Allocated MIPS of the c-th processing element (PE) to the Ti by Mj

MIPSj,c Total MIPS of the c-th processing element (PE) on the Mj

We assume that total power consumption of a single physical machine (P(.)) has a linear re-

lationship with CPU utilization (Ucpu) as mentioned in [9]. We calculate CPU utilization of a

host is sum of total CPU utilization on PEj cores:

 () ∑ ∑

 ()

 (1)

Total power consumption of a single host (P(.)) at time t is calculated:

 (()) () () (2)

Energy consumption of a host (Ei) in period time [ti, ti+1] is defined by:

 () ∫ () ()

 (3)

In this paper, we assume that t[ti, ti+1]: Ucpu(t) is constant (ui), then:

 () () (4)

Therefore, we obtain the total energy consumption (E) of a host during operation time:

⋃ ∑

We consider the power-aware task scheduling (PATS) in high performance computing

(HPC) Cloud. We formulate the PATS problem as following:

Given a set of n independent tasks to be placed on a set of m physical machines. Each task

is executed on a single VM.

The set of n tasks is denoted as: V = {Ti(pei, mipsi, rami, bwi, tsi, di) |i = 1,...,n}

The set of m physical machines is denoted as: M = {Mj(PEj, MIPSj, RAMi, BWj} |j = 1,...,m}

Each i-th task is executed on a single virtual machine (VMi) requires pei processing ele-

ments (cores), mipsi MIPS, rami MBytes of physical memory, bwi Kbits/s of network band-

width, and the VMi will be started at time (tsi) and finished at time (tsi + di) with neither

preemption nor migration in its duration (di). We concern three types of computing resources

such as processors, physical memory, and network bandwidth. We assume that every Mj can

run any VM and the power consumption model (Pj(t)) of the Mj has a linear relationship with

its CPU utilization as described in formula (2). The objective of scheduling is minimizing total

energy consumption in fulfillment of maximum requirements of n tasks (and VMs) and follow-
ing constraints:

Constraint 1: Each task is executed on a VM that is run by a physical machine (host).

Constraint 2: No task requests any resource larger than total capacity of the host’s resource.

Constraint 3: Let rj(t) be the set of indexes of tasks that are allocated to a host Mj. The sum

of total demand resource of these allocated tasks is less than or equal to total capacity of the

resource of the Mj. For each c-th processing element of a physical machine Mj (j=1,..,m):

   () ∑ ()
 (5)

For other resources of the Mj such as physical memory (RAM) and network bandwidth
(BW):

 () ∑ ()
 , () ∑ ()

 (6)

HPC applications have various sizes and require multiple cores and submit to system at dy-

namic arrival rate [10]. An HPC application can request some VMs.

3 Genetic Algorithm for Power-Aware Task scheduling

3.1. Data structures

CUDA framework only supports array data-structures. Therefore, arrays are an easy ways

to transfer data from/to host memory to/from GPU. Each chromosome is a mapping of tasks to

physical machines where each task requires a single VM. Fig. 1 presents a part of a sample

chromosome with six tasks (each task is executed on a single VM), the task ID=0 is allocated to

machine 5, the task ID=1 is allocated to machine 7, etc.

Task ID 0 1 2 3 4 5

Machine ID 5 7 8 4 5 9

Fig. 1. A part of chromosome

Finesses of chromosomes are evaluated and stored in an array similar to that in Fig. 2.

Chromosome 0 has fitness of 1.892; chromosome 1 has fitness of 1.542, etc.

Chromosome 0 1 2 3 4 5

Fitness 1.892 1.542 1.457 1.358 1.355 1.289

Fig. 2. A part of a sample array of finesses of chromosomes

3.2. Implementing Genetic Algorithm on CUDA

We show the BKGPUGA’s execution model that executes genetic operations on both CPU and

GPU as shown in the Fig. 3 below.

Fig. 3. Execution model of genetic operations on CPU and GPU.

Initialize population: Initial population using CUDA’s cuRAND library.

GA_Evolution method: This is the main loop of the GA on CPU-GPU. The Algorithm 1 illus-

trates the GA_Evolution method.

CPU GPU Nvidia

Initialization

GA_Evolution

Start call device function

Stop call device funtion

host_init_chromosome

device_init_chromosome

host_init_Machine

host_init_Task

Copy data from Host to Device

Copy results from Device to Host

Call eval

Stop eligible

Call eval for offspring

Call selection

Call cross_over

Call selection

Call mutation

Call eval for offspring

eval

cross_over

mutation

selection

Start call device function

Copy results from Device to Host Stop call device funtion

True

False

Host function

Host function call device function

Device threads

Algorithm 1: GA_Evolution

Input: num_generations, Chromosomes[], Fitness[], TaskInfo[], MachineInfo[]

Output: The best chromosome with highest fitness

size_arr_chrom = A=sizeof(int)*length(chromosome)*pop_size ;

d_NST[], d_tem[]; /* Array of parent and offspring chromosomes on GPU */

size_arr_fitness = B = sizeof(float) * pop_size

d_fitness[], d_tem_fitness[];/* Parent fitness and Offspring fitness on GPU */

cudaMalloc (d_NST, d_tem , A);

cudaMalloc (d_fitness, d_tem_fitness, pop_size);

cudaMemcpy (d_NST, host_NST, A, HostToDevice) ;

cudaMemcpy (d_tem, host_NST, A, HostToDevice) ; /* Cloning */

Load tasks and machines information to GPU;

eval_fitness <<< n_chromosomes >>>(d_NST, d_fitness) ;

for c = 1 to num_generations do

 crossover<<<n_chromosomes>>>(d_NST, d_tem, cu_seeds);

 eval_fitness<<<n_chromosomes>>>(d_tem,d_tem_fitness);

 selection<<<n_chromosomes>>>(d_NST,d_tem,d_fitness, d_tem_fitness);

 mutation<<< n_chromosomes x length(chromosome)>>>(d_tem, pop_size, cu_seeds);

 eval_fitness<<<n_chromosomes>>>(d_tem,d_tem_fitness);

 selection<<<num_chromosomes>>>(d_NST,d_tem,d_fitness,d_tem_fitness, cu_seeds);

cudaMemcpy(host_NST, d_NST, DeviceToHost);

cudaMemcpy(host_fitness, d_fitness, DeviceToHost);

cudafree(d_NST, d_tem, d_fitness, d_tem_fitness);

Fitness Evaluation

The Fig. 5 shows the flowchart of the fitness evaluation. The placement of each

task/VM on a physical machine has to calculate the power consumption increase as

the VM is allocated to a physical machine and reduce power consumption when the

task/VM is finished its execution.

Selection method

The BKGPUGA does not use random selection method, the BKGPUGA’s selection method is

rearrangement of chromosomes according to the fitness from high to low, then it pick up the

chromosomes have high fitness until reach the limit number of populations. The selection

method is illustrated in Fig. 6. After selection or mutation, chromosomes in Parents and Off-

spring population will have different fitness, size of new population that included both Parents’

and Offspring’s is double size. Next, the chromosomes are rearranged according to the fitness

value, the selection method simply retains high fitness of chromosome in the region, and the

population is named after F1, whose magnitude is equal to the original population. To prepare

for the next step of the algorithm GA (selection or mutation), F1 will be given a copy of

Clones. The next calculation is done on Clones, Clones turn into F1’s offspring. After each

operation, the arrangement and selection is repeatedly.

Fig. 4. GA_Evolution method

Fig. 5. Flowchart of evaluation fitness of a chromosome on GPU

In order to simplify and speedup the sorting operation, the program has used the CUDA

Thrust Library provided by NVIDIA. The selection method keeps the better individuals. This is

not only improves the speed of evolution, but also increases the speedup of overall program

because of the parallel steps.

Mutation method

Each thread will execute decisions on each cell mutagenic or not based on a given probability.

If the decision is yes, then the cell will be changed randomly to different values. Fig. 7 shows

Start

Copy data to GPU

Evaluate Fitness

Crossover

Evaluate Fitness
for the new
generation

Selection Mutation

Selection

Stop condition? Yes

Copy data back to
CPU

End

No

Write result to file
Evaluate Fitness

for the new
generation

mutation with 12.5% probability. Call n is the total number of cell populations, p is the proba-

bility change of each cell, q=(1 - p). The probability to have k cells modified Bernoulli calcu-

lated by the formula: ()

The cells that are likely to be modified: (n  p – q) or (n  p – q +1)

Fig. 6. Fitness of Parents and Offspring populations in Selection method

Fig. 7. Mutation process with 12.5% probability

Crossover method

Crossover is the process of choosing two random chromosomes to form two new ones. To

ensure that after crossover it allowed sufficient number of individuals to form Offspring popu-

lation, the probability of it is 100%, which mean all will be crossover.

Fig. 8. Selection process between two chromosomes

Crossover process is using one-point crossover and the cross point is randomly chosen. Fig. 8

shows an example of section process between two chromosomes. The result is two new chro-

mosomes. This implementation is simple, ease of illustrating. It creates the children chromo-

somes randomly but it does not guarantee the quality of these chromosomes. To improve the

quality of the result, we can choose the parents chromosomes with some criteria but this makes

the algorithm becoming more complex. Thus, the selection with sorting will overcome this

drawback.

Individual

F
it
n
e

s
s Parents Offspring

Individual

F
it
n
e

s
s High fitness Low fitness

Individual

F
it
n
e

s
s F1 Clones

Individual

F
it
n
e

s
s Parents Offspring

P

O

mutation probability
= 12.5%

Chromosome 1 Chromosome 2

XP

O

4 Experimental results

Both serial (SGA) and GPU (BKGPUGA) programs were tested on a machine with one Intel

Xeon E5-2630 (6 cores, 2.3 GHz), 24GB of memory, and one Tesla M2090 (512 cores, 6GB

memory).

Fig. 9. Speedup of BKGPUGA that executes on NVIDIA Tesla M2090 and computa-

tional time SGA that executes on CPU. The X-axis is the size of population and the

number of generations. The green/blue/yellow line is the speedup of BKGPUGA with

128/256/512 CUDA threads-per-block.

We generated an instance of the PATS with the number of physical machines and the number

of tasks is 500 x 500. On each experiments, mutation probability is 0.005, the number of chro-

mosomes (popsize - size of population) is {512, 1024, 2048}, the number of generations is

{100, 1000, 10000}, the number of CUDA threads-per-block is {128, 256, 512}. Table 1 shows

experimental results of the computation time of the serial GA (SGA) and the computational

time of the BKGPUGA. Fig. 9 shows the speedup chart of the BKGPUGA program on configu-

rations of 128, 256 and 512 CUDA threads-per-block (green, blue and yellow lines respective-

ly). The maximum speedup of BKGPUGA is 28.14 when using 256 CUDA threads-per-block

to run the GPU GA with 2048 chromosomes and 10,000 generations. The number of genera-

tions is the main factor that affects the execution time, when number of generations increases

from 100 to 1000 and 10,000 generations the BKGPUGA’s average execution time increases

approximately 7.66 and 71.67 and the SGA’s average execution time increases approximate-

ly 9.16 and 91.39 respectively. The fitness comparison between BKGPUGA and CPU ver-

sion shows that the difference is relative small (10-11). The fitness values on 1,000 and 10,000

generations are almost equal; that they figure out if it nearly reaches the best solution, the in-

crease of generations makes the fitness is better but not much and a tradeoff is the increased

execution time on the BKGPUGA.

0

5

10

15

20

25

30

Sp
e

e
d

u
p

PopSize x Generations

128-threads-per-block 256-threads-per-block 512-threads-per-block

Table 1. Experimental result of SGA and BKGPUGA: Problem size is 500x500

Pop. size

Genera-

tions

#Threads-

per-block

SGA

Comp. time

(sec.)

BKGPUGA

Comp. time

(sec.) Speedup

512 100 128 22.501 2.028 11.10

512 100 256 22.501 2.340 9.61

512 100 512 22.501 3.316 6.79

512 1000 128 255.123 16.390 15.57

512 1000 256 255.123 17.967 14.20

512 1000 512 255.123 24.764 10.30

512 10000 128 2,564.250 157.058 16.33

512 10000 256 2,564.250 168.187 15.25

512 10000 512 2,564.250 231.165 11.09

1024 100 128 60.077 2.918 20.59

1024 100 256 60.077 3.121 19.25

1024 100 512 60.077 4.373 13.74

1024 1000 128 516.906 24.228 21.34

1024 1000 256 516.906 24.971 20.70

1024 1000 512 516.906 31.743 16.28

1024 10000 128 5,351.200 232.682 23.00

1024 10000 256 5,351.200 233.576 22.91

1024 10000 512 5,351.200 293.717 18.22

2048 100 128 114.827 5.156 22.27

2048 100 256 114.827 5.098 22.52

2048 100 512 114.827 6.152 18.66

2048 1000 128 1,035.470 39.912 25.94

2048 1000 256 1,035.470 38.958 26.58

2048 1000 512 1,035.470 45.428 22.79

2048 10000 128 10,124.880 374.850 27.01

2048 10000 256 10,124.880 359.827 28.14

2048 10000 512 10,124.880 421.728 24.01

5 Conclusions and Future Work

Compared to previous studies, this paper presents a parallel GA using GPU computation to

solve the power-aware task scheduling (PATS) problem in HPC Cloud. Both BKGPUGA and

the corresponding SGA programs are implemented carefully for performance comparison.

Experimental results show the BKGPUGA (CUDA program) executed on NVIDIA Tesla

M2090 obtains significant speedup than SGA (serial GA) executed on Intel Xeon E5-2630. The

execution time of BKGPUGA depends on the number of generations, size of the task schedul-

ing problems (number of tasks/VMs, number of physical machines). To maximize speedup,

when the number of generations is less than or equal to 1,000 we prefer to use 128 CUDA

threads per block, and when the number of generations is greater than or equal to 10,000 we

prefer to use 256 CUDA threads per block. The limitation on the number of tasks and number

of physical machines is the size of local memory on each CUDA thread in internal GPU card.

In the future work, we will concern on some real constraints (as in [11]) on the PATS and

we will investigate on improving quality of chromosomes (solutions) by applying EPOBF

heuristic in [12] and Memetic methodology in each genetic operation.

Acknowledgments. This research is funded by Vietnam National University Ho

Chi Minh (VNU-HCM) under grant number B2012-20-03TĐ.

References
1. Li, K.: Performance Analysis of Power-Aware Task Scheduling Algorithms on

Multiprocessor Computers with Dynamic Voltage and Speed. IEEE Trans. Parallel Distrib.

Syst. 19, 1484–1497 (2008).

2. Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L., Maheswaran, M., Reuther, A.I.,

Robertson, J.P., Theys, M.D., Yao, B., Hensgen, D., Freund, R.F.: A Comparison of

Eleven Static Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous

Distributed Computing Systems. J. Parallel Distrib. Comput. 61, 810–837 (2001).

3. Kołodziej, J., Khan, S., Zomaya, A.: A Taxonomy of Evolutionary Inspired Solutions for

Energy Management in Green Computing: Problems and Resolution Methods. Adv. Intell.

Model. Simul. 422, 215–233 (2012).

4. Tesla Kepler GPU Accelerators. (2013).

5. Chen, S., Davis, S., Jiang, H., Novobilski, A.: CUDA-based genetic algorithm on traveling

salesman problem. In: Lee, R. (ed.) Computer and Information Science. pp. 241–252.

Springer-Verlag Berlin Heidelberg (2011).

6. Luong, T. Van, Melab, N., Talbi, E.-G.: GPU-based island model for evolutionary

algorithms. Proceedings of the 12th annual conference on Genetic and evolutionary

computation - GECCO ’10. p. 1089. ACM Press, New York, New York, USA (2010).

7. Arenas, M.G., Mora, A.M., Romero, G., Castillo, P.A.: GPU computation in bioinspired

algorithms: a review. In: Cabestany, J., Rojas, I., and Joya, G. (eds.) Advances in

Computational Intelligence. pp. 433–440. Springer Berlin Heidelberg (2011).

8. Zhang, S., He, Z.: Implementation of Parallel Genetic Algorithm Based on 2 Classification

of Parallel Genetic Algorithms. 4th Int. Symp. ISICA 2009 Huangshi, China. 5821, 24–30

(2009).

9. Fan, X., Weber, W.-D., Barroso, L.A.: Power provisioning for a warehouse-sized

computer. ACM SIGARCH Comput. Archit. News. 35, 13 (2007).

10. Garg, S.K., Yeo, C.S., Anandasivam, A., Buyya, R.: Energy-Efficient Scheduling of HPC

Applications in Cloud Computing Environments. arXiv Prepr. arXiv0909.1146. (2009).

11. Quang-Hung, N., Nien, P.D., Nam, N.H., Tuong, N.H., Thoai, N.: A Genetic Algorithm

for Power-Aware Virtual Machine Allocation in Private Cloud. ICT-EurAsia’13. LNCS

7804, 183–191 (2013).

12. Quang-Hung, N., Thoai, N., Son, N.T.: EPOBF: Energy Efficient Allocation of Virtual

Machines in High Performance Computing Cloud. J. Sci. Technol. Vietnamese Acad. Sci.

Technol. 51, No. 4B, 173–182 (2013).

