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Abstract. The paper presents a metric for visual security evaluation of
encrypted images based on object recognition using the Scale Invariant
Feature Transform (SIFT). The metrics’ behavior is demonstrated using
three different encryption methods and its performance is compared to
that of the PSNR, SSIM and Local Feature Based Visual Security Metric
(LFBVSM). Superior correspondance to human perception and better
responsiveness to subtle changes in visual security are observed for the
new metric.

1 Introduction

Today a number of (format compliant) image encryption techniques exist which
allow the encrypted content to be decoded and viewed. To determine the level
of security offered by these techniques it is not enough to simply evaluate the
cryptographic strength of the encryption cipher used.

For some methods the decoded encrypted image is a low quality version of
the original image and certain image features can still be recognised. So beside
evaluating the encryption cipher also the visual security of the result has to be
assessed. In this context we need to deal with the remaining image quality left
behind by the encryption process and the recognizability and intelligibility of
the encrypted image content.

In order to be able to discuss the exact notion of visual security, we need to
distinguish distinct application scenarios of media encryption schemes [1]:

Confidentiality Encryption: Means MP security (mes- sage privacy). The
formal notion is that if a system is MP- secure an attacker cannot efficiently
compute any property of the plain text from the cipher text. This can only be
achieved by the conventional encryption approach, i.e. applying a cryptograph-
ically strong cipher to compressed (redundancy-free) image data.

Content Confidentiality: Is a relaxation of confidential encryption. Side
channel information may be reconstructed or left in plaintext, e.g. header infor-
mation, packet length, but the actual visual content must be secure in the sense
that the image content must not be intelligible / discernible.

Sufficient Encryption: Means we do not require full security, just enough
security to prevent abuse of the data. The content must not be consumable due



to high distortion (e.g. for DRM systems) by destroying visual quality to a degree
which prevents a pleasant viewing experience or destroys the commercial value.
This implicitly refers to message quality security (MQ), which requires that an
adversary cannot reconstruct a higher quality version of the encrypted material
than specified for the application scenario.

Given these different application scenarios it is clear that depending on the
goal, a security metric has to fulfill dif- ferent roles. For example, under the
assumption of sufficient encryption a given security metric would have to evaluate
which quality is low enough to prevent a pleasant viewing experience.

When it comes to content confidentiality the question of quality is no longer
applicable. Content confidentiality requires that image content must not be iden-
tified by human or automated recongnition. This requirement also has to be
maintained for any part of the image. Image metrics, in general, do not deal with
such questions but rate the overall image quality, the question of intelligibility
is usually not covered at all. Thus, it seems to be clear that a general purpose
metric covering all application scenarios is probably very hard or impossible to
design.

Additionally we have to face the fact that different encryption methods in-
troduce different kind of distortions. While some methods shift and morph the
images (i.e. chaotic encryption which is mainly based on permutations) others
introduce noise and noise like patterns. An ideal metric for assessment of visual
security has to be able to deal with those different kind of distortions.

To evaluate the visual security of an encrypted image in an objective man-
ner, often the Peak Signal to Noise Ratio (PSNR) or the Structural Similarity
(SSIM) Index are used. Despite the fact that both originally have been devel-
oped for image quality assessment, they have also been used for the assessment
of encrypted images [2,3,4,5].

Also several attempts have been made to develop a metric specifically for the
task of visual security assessment. One popular example is the Local Feature
Based Visual Security Metric (LFBVSM [6]), which compares corresponding
image regions of the cipher and plain images by their luminance and contour
information to evaluate the visual security of an encrypted image. Also further
dedicated metrics for visual security evaluation have been proposed (e.g. [7,8,9]).

While there exist particular image encryption techniques for which PSNR,
SSIM, and LFBVSM do a reasonable job to rate the visual security of a ciphered
image, for many encryption methods these metrics tend to have troubles in the
correct assessment of visual security in correspondence to visual perception (as
we shall see in the experiments).

Since most of these metrics compare the plain and the cipher images pixel by
pixel or region by region (fundamental principles of the Human Vision System
(HVS) in terms of luminance and edge perception are considered) a warped image
may still be recognisable while the metric rates the image as secure due to large
dissimilarities in terms of pixel or local region differences. Also, noise patterns
tend to decrease the score rater quickly but leave the content of the image still
intelligible. Thus, answering the question if an encryption of this type results in



a content confidential image, i.e. an image without any intelligible content, can
become quite challenging with those metrics.

In this paper, we aim to apply object recognition methods to design a metric
for visual security assessment in order to tackle the issue of content recognition
and intelligibility in a more appropriate manner. The basic idea of the metric
presented is to compare the recognizability of objects found in a reference and
a cipher image instead of measuring image quality as such.

In particular, we propose to employ the Scale Invariant Feature Transform
(SIFT) [10] for object recognition in ciphered images. Therefore, the metric is
termed “Scale Invariant Feature Transform Similarity Score” (SIFTSS).

The paper is divided into four parts. First a description of the SIFTSS is
given, followed by a description of the encryption methods used to test the
metrics performance. Then the results of the experiments are presented and
finally they are discussed in the last section of the paper.

2 SIFT Similarity Score

The SIFT algorithm derives a set of key-points for each image. Each key-point is
associated with a descriptor vector (edge histograms). The images are compared
using these key-points, i.e. all key-points of the target (ciphered) image are com-
pared to the key-points found in the reference (original) image. The matching
process compares the Euclidian distances between descriptor vectors of the ref-
erence key-points and the target key-points. A search for the minimum Euclidian
distance between their descriptor vectors is carried out.

To improve matching performance, a validity check is performed. The mini-
mum distance found is multiplied by the value of 1.5 and again compared to the
set of distances. If the multiplied distance is still smaller than all other distances,
the key-point pair involved is considered a match. The check ensures that the
match of the key-points is distinctive or dominant in comparison to all other
possible matches.

For the implementation of the metric the VLFeat.org 1 implementation of the
SIFT algorithm was used. The matching process returns an array of matching
image key-points along with their corresponding Euclidian distances, measured
between their descriptor vectors. The number of matched key-points as well
as the average Euclidian distance of the edge histograms is used to derive a
matching score.

In the formula

SIFTSS(A,B) =

(
dim(m)

min(nA, nB)

) µm

|m|2 (1)

the calculation of the SIFTSS between the images A and B is shown, where
m is a vector containing a list of the Euclidian distances of the matched key-
points between A and B, and nA,nB is the total number of key-points found in

1 http://www.vlfeat.org

http://www.vlfeat.org


each of the two images. The number of matched key-points dim(m) is divided
by the maximum number of possible matches, and thus mapped into the interval
[0 : 1]. The term is then taken to the power of the average Euclidian distance
µm divided by the L2-Norm of m. This also maps the exponent into the interval
[0 : 1]. Consequently, while an increasing number of matched key-points increases
the score, large Euclidian distances decrease it. Since the SIFT matching process
is not commutative and returns different values when matching imageA to imageB
than when matching imageB to imageA the algorithm calculates both directions
and averages the result to restore symmetry.

In Listing 1.1 a pseudo code for calculating the SIFTSS is shown.

Listing 1.1. The calculation of the SIFTSS
1 [ matchScoresA ] = SIFTmatch ( imageA , imageB ) ;
2 [ matchScoresB ] = SIFTmatch ( imageB , imageA) ;
3
4 matchCountA = length (matchScoresA ) ;
5 matchCountB = length ( matchScoresB ) ;
6
7 i f (matchCountA == 0 | | matchCountB == 0)
8 return 0
9 else

10 normA = Norm(matchScoresA ) ;
11 normB = Norm(matchScoresB ) ;
12 i f (normA == 0 | | normB == 0) then
13 return 0
14 else
15 normA = Norm(matchScoresA ) ;
16 normB = Norm(matchScoresB ) ;
17 i f [ normA == 0 | | normB == 0] then ;
18 return 1 ;
19 else
20 meanEuclidianDistanceA = mean(matchScoresA/normA) ;
21 meanEuclidianDistanceB = mean( matchScoresB/normB) ;
22
23 keyPointsOfA = getNumberOfKeypoints ( imageA) ;
24 keyPointsOfB = getNumberOfKeypoints ( imageB ) ;
25
26 matchScoreA = matchCountA / min( keyPointsOfA , keyPointsOfB ) ;
27 matchScoreA = power (matchScoreA , meanEuclidianDistanceA ) ;
28
29 matchScoreB = matchCountB / min( keyPointsOfA , keyPointsOfB ) ;
30 matchScoreB = power (matchScoreB , meanEuclidianDistanceB ) ;
31
32 matchScore = (matchScoreA + matchScoreB ) /2
33
34 return matchScore ;
35
36 end
37 end
38 end

The range of SIFTSS values is between 0 and 1 where scores close to 0 signify
a better visual security and 1 indicates identical images.

3 Experimental Settings

To give an overview of the metrics performance three case studies using differ-
ent encryption methods have been selected and will be briefly described below.
To establish a standard of comparison these cases are also evaluated using the
PSNR, SSIM and LFBVSM. For the experiments the images of the Kodak Loss-
less True Color Image Suite2 where cropped into a square format (which is
required for Arnolds’s Cat Map encryption), and scaled down to 150× 150 pix-
els. Metrics results are averaged for this data set, all images have been encrypted
using individual random encryption keys.

2 http://r0k.us/graphics/kodak/
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The first encryption approach uses Arnold’s Cat Map, a chaotic map, for
image encryption [11,12]. This type of encryption uses warp and shift operations
for rendering the image unintelligible. The map works on an image of size NxN
and is defined by the formula(

xk+1

yk+1

)
= C(xk, yk) =

(
1 b
a ab+ 1

)
∗
(
xk
yk

)
mod N (2)

where (xk, yk) satisfying 0 ≤ xk, yk < N are the positions of the pixels in the
original (square) image area while (xk+1, yk+1) is the position of the pixel in the
target image, k is the number of the current iteration and 0 ≤ a, b < N , a, b ∈ N
are the control parameters of the function used as key.

In each iteration the image is warped, cut and transformed back into its
squared shape rendering the image more and more random. The operation has
the property of a torus restoring the image after a discrete number of iterations.
A visual explanation of a single iteration step is shown in Figure 1.
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Fig. 1. Arnold’s cat map in pictures

The iteration stages evaluated in the experiment were 0, 1, 3, 132, 155, 157,
200, 211, 250, 275, 299 and 300. In Figure 2 one of the encrypted images can be
seen in all investigated iteration stages.

Fig. 2. Image transformed with Arnold’s cat map (iterations ordered from left to right
and top to bottom)

The second encryption method is integrated into the JPEG XR compression
standard [13]. It is suggested to encrypt the DC coefficients using Random Level



Shifts (RLS), i.e. to alter the value of the DC coefficients by adding or subtracting
random numbers which are derived from a key. To increase the impact of the
encryption method on visual security we have recently suggested to apply RLS
to all coefficients of a transform block, not only to its DC coefficient [1].

This encryption method introduces noise into the image and the impact
on image perception can be seamlessly adjusted from low to high by setting
the maximum allowed shift value accordingly. In Figure 3 sample images for
increasing maximum shift values can be seen.

Fig. 3. RLS encryption using increasing maximum shift values (values from left to
right: 80, 160, 280, 480, 800, 2000)

The third encryption method used for SIFTSS evaluation is the permutation
of the coefficients’ scan order in a JPEG XR code stream. This method has first
been discussed for the JPEG standard [14] and was later proposed to be used
for encrypting the LP frequency band of JPEG XR encoded images [15].

In JPEG XR the coefficients are grouped into three frequency bands, the
DC-, the Lowpass- (LP) and Highpass (HP) band. In the experiment only the
coefficients of the LP and HP band are subject to the permutation process [1].
Swapping of coefficients across frequency bands is not carried out.

As a result there are six possible encryption settings. For each of the two
storage modes (spatial and frequency storage mode), the encryption of the LP,
of the HP and of both frequency bands can be selected. Sample images for each
encryption mode can be found in Figure 4.

To establish a subjective order in terms of visual security the images in Figure
4 are ordered from left (low security) to right (high security). Corresponding
settings are: Spatial store mode and HP band encryption, Frequency store mode
and HP band encryption, spatial store mode and LP band encryption, spatial
store mode LP+HP band encryption, frequency store mode LP band encryption
and frequency store mode LP+HP band encryption.

Fig. 4. Lena image scrambling using coefficient scan order permutation.



4 Experimental Results

The objective image metrics return values for the first experiment using Arnold’s
Cat Map can be seen in Figure 5.
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Fig. 5. Averaged return values for Arnold’s Cat Map encrypted Kodak Image Database
images.

The desired behavior of a metric evaluating this set of images would be an
indication of content intelligibility for iteration stages 1, 200 and 299 and a
contraindication for all others (stages 0 and 300 set aside). Subjectively, these
iteration stages do show some resemblance of the original image (see Figure 2).

The SIFTSS indeed shows the desired behaviour for the suspected iteration
stages 1, 200 and 299. Interestingly, also the SSIM indicates intelligibility for
these stages. The PSNR and the LFBVSM do not show exactly the desired
behavior. Notice that no values for iteration stage 0 and 300 are plotted in
Figure 5 since the metric returns ∞ for identical images. Both metrics indicate
some intelligibility for iteration stage 200 when comparing the return values for
this stage with iteration stages 3 to 275. However, they fail to indicate it for
iteration stage 1 and 299 which show similar values as for all other iteration
stages.

The reason why iteration stage 1 and 299 is handled well by the SSIM may
be explained with the fact that most pixels are still neighbouring each other in
these stages. Certain image regions are not moved far from their original position
(bottom left and top right corner of the image) and additionally certain regions
show the same structure after the operation (e.g. an area showing clear blue sky
is replaced with clear blue sky during warping). The SSIM metric uses a sliding
window approach assigning each pixel of the image (the pixel aligned to the cen-
ter pixel of the window) a similarity score derived from the area covered from the
window. Also the metric uses mainly mean luminance and variance to describe



the local structure information but ignores edge orientation and magnitude in-
formation which becomes disturbed during the warp operation. The LFBVSM
metric however, which also compares image regions, uses edge orientation and
magnitiude information contrasting to SSIM. This is probably the reason why
the LFBVSM does not indicate intelligibility for those two iteration stages and
SSIM does.
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Fig. 6. Averaged return values for RLS encrypted Kodak Image Database images.

The objective image metrics averaged return values for the RLS encrypted
Kodak Image Database images can be seen in Figure 6. The PSNR, SSIM and
LFBVSM values exhibit a steep drop when increasing the maximum shift level
from 0 to 300. After reaching a maximum shift value of 300 their slopes flat-
ten out. As can be seen in Figure 3, this behaviour does not correspond well
with visual perception where a gradual worsening of image quality and content
intelligibility is observed across the entire range of considered shift values.

The SIFTSS on the other hand shows a much less steep drop in its return
values when increasing the maximum shift level and flattens out at a much later
stage as compared to the other metrics. In the area of a maximum shift value
from 500 to 2000 the SIFTSS is still tributing the changes in visual security with
much more distinct return values than the other metrics do.

Finally, the objective image metrics’ averaged return values for the Coefficient
Scan Order Permutation encrypted Kodak Image Database images are shown in
Figure 7. The SIFTSS values suggest an ordering with respect to visual security
which corresponds to the subjective one shown in Figure 4. Contrasting to that,
the return values of the PSRN, SSIM, and LFBVSM do not at all correspond
to this ordering of the images. These metrics attest HP encrypted images in
spatial store mode a better visual security than images which have an encrypted
LP band (also in spatial store mode) which is found in the middle of the plot.
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Fig. 7. Averaged return values for Coefficient Scan Order Permutation encrypted Ko-
dak Image Database images.

Notice that the LFBVSM shows a valley or dent instead of a peak because the
metric uses an inverted scale.

5 Conclusion

We have found that overall, SIFTSS is well suited to assess visual security and
its ratings correspond well to subjective perception. In particular, for the three
encryption techniques considered, SIFTSS clearly outperforms PSNR, SSIM, and
LFBVSM in terms of correspondence to human perception and responsiveness
to subtle changes in visual security.

On major drawback of SIFTSS is the computational effort required by the
metric. Due to the complexity of the SIFT algorithm itself the metric is signifi-
cantly more demanding as compared to PSNR and SSIM.

The behaviour of SIFTSS might be further improved by extracting additional
characteristics from the area around each matched key-point, for example by
including the mean luminance and deviation of the subregions around the key-
point. These options have not been investigated so far and remain as a suggestion
for future work.
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