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Abstract. The paper presents two alternative approachesite gwerse relia-
bility task — to determine the design parameteraciuieve desired target relia-
bilities. The first approach is based on utilizatiof artificial neural networks
and small-sample simulation Latin hypercube samgplifhe second approach
considers inverse reliability task as reliabilitgsed optimization task using
double-loop method and also small-sample simulatitfficiency of both ap-
proaches is presented in numerical example, adyesitand disadvantages are
discussed.

Keywords: Inverse reliability, artificial neural network, ligility-based opti-
mization, double-loop optimization, uncertaintieatin hypercube sampling.

1 Introduction

To achieve desired level of reliability in limitaseé design is generally not an easy
task. Uncertainties are involved in every parttafictural system (e.g. material prop-
erties, geometrical imperfections, dead load, lvad, wind, snow, corrosion rate,

etc.). When performing either reliability assesstramadvanced engineering design,
it is certainly essential to take uncertainties iatcount using a probabilistic analysis.
Reliability assessment requires forward reliabititgthods for estimating the reliabil-

ity (usually theoretical failure probability and/aliability index are determined). On

the other hand, the engineering design requirds\arse reliability approach to de-

termine the design parameters to achieve desirgdtteeliabilities.

Some sophisticated approaches to determine desigameters (material proper-
ties, geometry, etc.) related to particular lintites have been proposed under the
name “inverse reliability methods”, e.g. a religgitontour method [1] and [2], itera-
tive algorithm based on the modified Hasofer-LinaeRwitz-Fiessler scheme used in
reliability analysis [3], Newton-Raphson iteratiaggorithm to find multiple design
parameters [4] and [5], decomposition technique d6}jvarious implementation of
artificial neural network (ANN) with other soft-cquating techniques [7], [8] and [9].

The two methods proposed in this paper attemptséocome the shortcomings of
existing inverse reliability methods. The first omdizes ANN too, but in a different
way: Computational time is reduced by using a sisethple simulation technique

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011



called Latin hypercube sampling (LHS) in ANN basederse problem proposed by
Novak and Lehky in [10] and [11] first.

The second one is double-loop reliability basedinagttion (RBO) approach.
Classical optimization usually leads to solutiomsttie at the boundary of the admis-
sible domain, and that are consequently ratheritsenso uncertainty in the design
parameters. In contrast, RBO aims at designingsylséem in a robust way by mini-
mizing some objective function under reliabilitynstraints. It provides the means for
determining the optimal solution of a certain olijex function, while ensuring a
predefined small probability that a structure failtius RBO methods have to mix
optimization algorithms together with reliabilitplculations. The approach known as
“double-loop” consists in nesting the computatidrthe failure probability with re-
spect to the current design within the optimizatmop (e.g. [12]). FORM-based dou-
ble-loop approach has been proposed by Dubourty3nl4]. The authors developed
a double-loop reliability-based optimization appredased on small-sample simula-
tion and FORM [15, 16].

2 Inverse Reliability Task

The aim of classical (forward) reliability analyss the estimation of unreliability
using a probability measure called the theorefafire probability, defined as:

p; =P(2<0), (1)

whereZ is a function of basic random variablés= X;, X,, ..., Xy called safety mar-
gin. This failure probability is calculated as alpabilistic integral:

P: = _[fx (X)dX ()
D¢

where the domain of integration of the joint probgbdistribution function (PDF)
above is limited to the failure domaih whereg(X) < 0. The functiorg(X), a compu-
tational model, is a function of random vecir(and also of other, deterministic
quantities). Random vectof follows a joint PDHy(X) and, in general, its marginal
variables can be statistically correlated. The ieitptalculation of integral in (2) is
generally impossible. Therefore a large numberfiidient stochastic analysis meth-
ods have been developed during the last seven eecad

The inverse reliability task is the task to findsim parameters corresponding to
specified reliability levels expressed by relidyiiindex or by theoretical failure prob-
ability. In general, an inverse problem involvawding either a single design parame-
ter to achieve a given single reliability consttaim multiple design parameters to
meet specified multiple reliability constraints. eldesign parameters can be deter-
ministic or they can be associated with randomalseis described by statistical mo-



ments (mean value, standard deviation) and PDEase of mean value one need to
choose if either standard deviation or coefficigintariation will be fixed.

2.1  Solution Based on Artificial Neural Networks

An efficient general approach of inverse reliapilanalysis is proposed to obtain
design parameters of a computational model in ot@@chieve the prescribed relia-
bility level. The inverse analysis is based ondbepling of a stochastic simulation of
Monte Carlo type and an ANN. The design paramdigs mean values or standard
deviations of basic random variables) play the aflbasic random variables with a
scatter reflecting the physical range of desigmesl A novelty of the approach is the
utilization of the efficient small-sample simulationethod LHS used for the stochas-
tic preparation of the training set utilized initiag the ANN. The calculation of
reliability is performed using the first order adility method (FORM). Once the
ANN has been trained, it represents an approximationsequently utilized in an
opposite way: To provide the best possible setesfgh parameters corresponding to
prescribed reliability.

The procedure of ANN based inverse reliability nogths illustrated by a simple
flow chart as shown in Figure 1 and is implemeragsdollows:

1. The design parameters are considered as randoablesiwith selected (physical-
ly reasonable) appropriate scatter and probadhilisyribution. Rectangular distri-
bution is often used.

2. Random samples of design parameters (possibly lated} are generated using
LHS simulation method.

3. Stochastic model of analyzed problem is preparetlidiing generated samples of
design parameters.

4. Reliability analyses are performed repeatedly folividual samples of design pa-
rameters and set of reliability measures like failprobabilities or reliability indi-
ces are calculated.

5. Reliability measures obtained from simulations tbge with set of random design
parameters serve as training set for ANN trainibgring training an error between
simulated and desired outputs of ANN (here in fafSE) is minimized using
appropriate optimization technique (e.g. back pgagian methods, evolutionary
algorithms).

6. Desired reliability measures are used as an inmrabk which is distributed
through ANN structure to its output where optimesigin parameters are obtained.

7. Verification of the results by calculation of faitu probabilities related to limit
state functions using the optimal parameters igethout. A comparison with tar-
get failure probabilities will show the extent tdiah the inverse analysis was suc-
cessful.

In the case of inverse reliability analysis a deustiochastic analysis is needed for
the training set preparation for ANN (steps 2 andf4he procedure). In the outer
loop random realizations of design parameters aremted using the LHS simula-
tion technique. The inner loop represents the iy calculation for one particular



realization of design parameters. Here, the FORBr@pmation method is recom-
mended due to computational demands. The numbsinaflations in outer loop is
driven by ANN and only tens of simulations are ulyuaeeded.

Preparation of stochastic model
of design parameters (DP)
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Fig. 1. A flow chart of proposed inverse reliability metho

2.2 Solution by Small-sample Double-loop Reliability-based Optimization
Typically, reliability-based optimization is formated as:

find x
min f (x) 3)
subjectta P;[g(x,z)<0]<PR,, I<x<u

with P; the probability of constraint satisfaction. Thanili stateg = 0 separates the
region of failure(g <0) and safe regiofg > 0) and is a function of the design varia-
blesx (andl andu are lower and upper bounds) and the uncertairahi@sz. P, is
the reliability level or performance requirementheTabove inequality can be ex-
pressed by a failure probability multi-dimensioigkgral with the joint probability
density function of probabilistic variables Formulation based on reliability index
instead of failure probability is popular espegidah the context of FORM approxi-
mation.



From the theoretical point of view, RBO has beewadll-established concept.
However, computing failure probabilities appearsaagchnically involved problem
analytically tractable for very simple cases orilis is because it is often a multi-
dimensional integral equation for which the joimblpability density function and/or
limit state functiong is unknown in explicit form, like FEM computatidnanodel.
The same difficulty is with objective functidiix) — it can be computationally de-
manding FEM analysis and the use of classical dpéition technique is problematic
or even impossible. Then an application of RBOr&al-world problem is difficult.

Computational demands of reliability-based optiie@a are obvious from the
formulation above. For the purposes of stochagtiinmozation it is necessary to re-
peatedly generate random realizations within thegmespace. It is also necessary for
each of these realizations to calculate the prdibabr failure in the general case by
computationally demanding (mostly numerical) intgigm of the equation (2). There-
fore we suggest here an original small-sample dslddp RBO methodology where
lower computational burden exists in case of bafteoloop — minimization of objec-
tive function and inner loop — calculation of fa#uprobability (or reliability index).
A practical solution to the above-defined optimiaatproblem is performed using the
so-called double-loop approach. The algorithm imposed of two basic loops:

e The outer loop represents the optimization part of the procesedan small-
sample simulation Latin hypercube sampling. Theusation within the design
space is performed in this cycle. For obtained giesiectors ofn-dimensional
spacexi=(x1, X2,.., Xn) Objective function values are calculated. The beatiza-
tion is then selected based on these values almbdtbptimization method. Con-
sequently the best realization of random vegtqk: is compared with optimization
constraints. These constraints may be formulatedary deterministic function
which functional value can be compared with a dafimterval of allowed values.
Constraints are also possible to formulate as a&tbimterval of reliability indeys
for any limit state function (within design spadegoven problem). Calculations of
reliability index of each generated random veciptsikes place in the inner loop.
Note that it is necessary to use some of advanegd-heuristic optimization tech-
nigues (e.g. simulated annealing or genetic algms) to avoid local minima.

* Theinner loop is used to calculate reliability index (FORM-basedther for the
need of checking of generated solutions — if theiss/ constraints, or to calculate
the actual value of the objective function, if taeget reliability index is set as goal
of optimization process.

3 Numerical Example

Selected application originates from the civil evegiring field of structural mechan-
ics. The aim is to design the dimensions of a repttar cross-section with width
and height of a simply—supported beam made of timber (Fi@)ré8oth dimensions
are considered as random variables with a variatid%. The mean values bfand

h are design parameters in the inverse reliabiliobfem.



Fig. 2. Scheme of a simply—supported beam with a rectangubss-section.

The design is performed fully according to Eurocéd&he ultimate limit state (ULS)
as well as the serviceability limit state (SLSYdken into account. Target reliability
indices aref; = 3.8,4, = 1.5. The limit states are described by the foitg limit
state functiong; andg,:

g, =Mz —M¢ @)

92 = Uiy, fin ~ Unet, fin

where Mg is the bending moment of resistands is the bending moment of load
action, Ujimsin is the final limit deflection andie i, is the final deflection caused by
load action. Bending momenit4z andMg are calculated as:

1

Mg = 6 = DN*Kpoq

mod 'm

1 )]
Me ='9E§(9+C|)|2

whereb andh are the width and height of rectangular crossisect is the length of
the beamf,, is flexural strengthik..q is the modification factor taking into account the
effect on the strength parameters of the duratfcdtheload and the moisture content
in the structure (valuk,.g = 0.8 was consideredy,is permanent loadj is variable
load and& and & are the model uncertainties of resistance and dmédn. Deflec-
tions in the second limit state functignare calculated as:

Uiim, fin = 200
Unet, fin = G (ul,fin + Uz,fin)
_5 g°*
Uy fin = @1—3 (1+ Ky et ) (6)
E—bh
12
5 |4
U fin = @2— (1+ Ko, der )
E——bh®

12

whereu, s, andu, s, are the final deflections caused by the permaloaat and varia-
ble load,E is the modulus of elasticity of timbel; 4 iS a factor which takes into



account the increase in deflection with time du¢h® combined effect of creep and
moisture and it belongs to permanent load lanpgd is the same factor but for variable
load (values ok g = 0.8 andk; 44 = 0.25 were used). Table 1 summarizes all ran-
dom variables and their randomization. The valdeth® material parameters corre-
spond to spruce timber. Randomization was carngaocording to the recommenda-
tions of JCSS probabilistic model code [17]. Religbanalysis was carried out using
the FORM method; the starting values were measestderance for convergence was
10*. For both a training set preparation and purpdseptimization the design pa-
rameters were considered as random variables wttamgular distribution, see Ta-
ble 2.

Table 1. Random variables and design parameters

Variable  Distribution Mean Std Cov
I [m] Normal 3.5 0.175 0.05
b [m] Normal ? - 0.05
h [m] Normal ? - 0.05

E[GPa] Lognormal (2 par) 10 13 0.13
fn[MPa] Lognormal (2 par) 34 8.5 0.25
g[kN/m] GumbelmaxEV1 1.686 0.169 0.10
g[kN/m] GumbelmaxEV 1l 2565 0.770 0.30
&1 Lognormal (2 par) 1 0.1 0.10
&1 Lognormal (2 par) 1 0.1 0.10

Table 2. Randomization of design parameters for trainingpseparation and purpose of opti-
mization

Variable Distribution Mean Std a b
meanb) Rectangular 0.125 0.0144 0.10 0.15
meanf)) Rectangular 0.225 0.0144 0.20 0.25

3.1 ANN Inverse Analysis

First, ANN inverse reliability analysis was carriedt. The ANN (see Figure 3) con-
sisted of one hidden layer having four nonlineauraas (hyperbolic tangent transfer
function) and an output layer having two output no@s (linear transfer function)
which correspond to two design parameters — thenmaalues of widttbh and height
h. The ANN has two inputs which correspond to twecsfied reliability indices;
andf,. For preparation of training set one hundred ramdamples of design parame-
ters were generated using LHS method accordingothastic model in Table 2 and
stochastic analyses were carried out to obtairespanding reliability indices.



The resulting design parameter values are givélrable 3. To check their accura-
cy these values were used in equations (4) tor(@)reliability indices were calculat-
ed; see the comparison with the target reliabiliyices in Table 3. In the case of
practical design the dimensions of cross-secti@ulshbe selected from available set
of dimensions. In our example, the resulting widtid height would bé = 140 mm
and h=220 mm which gives the final reliability indiceg s, =4.068 and
,szﬁn =1.912.

y, (mean (b))

y, (mean (h))

Fig. 3. A scheme of artificial neural network

3.2 Double-L oop Optimization Approach

If we define optimization problem according to défon at section 2.2 then inverse
reliability problem can be also solved using dodbiep reliability-based optimization
approach. During the solution of the problem arnaopto determine a target value of
reliability index for the selected limit state fdioen was utilized. Therefore target
reliability index for the limit state functiog, was defined a8, = 1.5. As a constraint
an interval (3.75, 3.85) of allowable values oifaility index £, for the limit state
functiong; was set.

During solution of the task using aimed multilegaimpling (AMS) optimization
algorithm [15] the total number of 300 simulatiomas used. The result solution of
the task is displayed in Table 3 and in FigureidaFsolution corresponds well to the
values obtained using ANN inverse analysis. Theilltieg cross-sectional area is
2.8302x10 m? compared to 2.8385xF0m? obtained from ANN inverse analysis.
The graph in Figure 4 shows the gradual convergehgenerated solutions toward
the required values of reliability indices.

Table 3. Resulting values of design parameters and religlildicess obtained by double-
loop optimization approach

Approach mearty) mean() A B Bitage  Botarget
ANN inverse analysis 0.13244 0.21432  3.8001 1.5001 38 15
Double-loop optimization 0.1311555 0.215135 3.793 .50009 ' '
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Fig. 4. Evolution of values of reliability indices durirgptimization

4 Conclusion

The paper presents two alternative approacheslte sverse analysis task. Both
approaches provide very good results, as is inglicat numerical example. Some
advantages and disadvantages of the methods daghighted:

ANN inverse analysis will be probably more accuratel capable to solve also
highly nonlinear problems. But more simulations geaerally needed for good train-
ing of ANN (in case of very small numbers — tragicannot be simply done at all).
The step “training of ANN” requires deeper involvemh of a user, which makes the
usage of the approach difficult.

On the other hand the double-loop reliability-basgdimization approach can
solve problem satisfactorily using small numbesiofiulations, but the lower accura-
cy can be expected. In case of highly nonlineableros less efficiency can be ex-
pected comparing to ANN inverse analysis approdtie. advantage of double-loop
optimization approach is a transparency of soluind better understanding by gen-
eral engineering practice.

The above mentioned summary is formulated basetksting approaches using
limited number of numerical examples. The moreaysttic verification and testing
are needed. Presents results indicate that botloagipes have very good potential to
solve inverse reliability task using small-samptaidation.
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