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Abstract. Deep learning is promising approach to extract useful nonlinear 
representations of data. However, it is usually applied with large training sets, 
which are not always available in practical tasks. In this paper, we consider 
stacked autoencoders with logistic regression as the classification layer and 
study their usefulness for the task of image categorization depending on the size 
of training sets. Hand-crafted image descriptors are proposed and used for 
training autoencoders in addition to pixel-level features. New multi-column 
architecture for autoencoders is also proposed. Conducted experiments showed 
that useful nonlinear features can be learnt by (stacked) autoencoders only using 
large training sets, but they can yield positive results due to redundancy 
reduction also on small training sets. Practically useful results (9.1% error rate 
for 6 classes) were achieved only using hand-crafted features on the training set 
containing 4800 images. 
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1   Introduction 

Classes of patterns in pattern recognition are rarely linearly separable, and nonlinear 
methods should be used. Classical nonlinear methods of pattern recognition can be 
treated as linear methods operating in some extended feature space. However, these 
methods use fixed sets of nonlinear transformations to map initial features into new 
space, and these transformations can be inappropriate to separate classes in a specific 
task. Thus, learning appropriate nonlinear features (or data representations in general) 
is the central problem in pattern recognition and particularly in its application to 
computer vision (e.g. [1]). One modern approach to learn such features is deep 
learning. 
 Deep learning exploits the fact that adding extra hidden layers in a multi-layer 
classifier helps to learn more complex features and to improve their representational 
power [2, 3]. The key problem here is to train such classifiers. Earlier, training of 
shallow feed-forward networks with the back-propagation algorithm yielded better 



results than training deep networks with it, since bottom layers are difficult to train 
because of exponentially quick gradient vanishing, so these layers usually correspond 
to random (not useful or even harmful) nonlinear feature mappings. Successful 
training of such networks was achieved [4, 5, 6] with the help of consequent 
unsupervised pre-training of each hidden layer, and use of supervised training 
afterwards. 
 However, successful supervised training of multi-layer perceptrons (resulting in a 
very low 0.35% error rate on the MNIST benchmark) was also achieved recently [7]. 
The way of achieving this is remarkable. It consists in intensive training of 
perceptrons using relevantly (with affine and elastic image deformations) transformed 
patterns. Even overlearning is avoided in spite of extremely large number of neurons 
(free parameters), because “the continual deformations of the training set generate a 
virtually infinite supply of training examples” [7]. One can also see [8] that many 
good results for MNIST are obtained using similar deformations of training patterns 
and convolutional nets, which additionally exploit shift invariance. It is obvious, that 
if one substitutes non-image patterns for training such classifiers, their results will be 
rather poor. Thus, this is not an appropriate way to learn (problem-specific) invariant 
features, which are not known a priori. 
 Necessity of extremely large (with account for deformations of training patterns) 
training sets indicates that deep networks don’t really generalize, but only 
approximate invariants. Moreover, classifiers with many free parameters appear to be 
better than with fewer parameters. It can be compared with approximation of 
exponent with polynomials (or some other basis functions). Very many points should 
be used to get precise approximation with very complex model, but only few points 
are enough for exact generalization (if one has means to represent and find it). At the 
same time, humans have capabilities to learn complex invariant features from few 
examples [9]. Thus, interesting question consists in learning capabilities of deep 
networks on small training sets, that is, whether they are able to learn useful 
representations from such sets. 
 Here we analyze this question on example of (stacked) autoencoders with logistic 
regression as the classification layer applied to the task of image categorization. Pixel-
level and hand-crafted features are used for experiments. 

2   Autoencoders 

We selected stacked autoencoders as the unsupervised layers with logistic regression 
as the classification layer. Single autoencoder has input, hidden, and output 
(reconstruction) layers. The input layer accepts a vector N]1,0[∈x  of dimension N, 
which is transformed to activities of neurons of the hidden layer )( bWxy += s ,  

d]1,0[∈y , corresponding to new features (hidden representation), where W is a d×N 
matrix of connection weights, b is a bias vector, and s is the activation (sigmoid) 
function. Activities of neurons of the last layer are calculated similarly as 

)( byWz ′+′= s ,  N]1,0[∈z . Autoencoders differ from other feed-forward networks 
in that they are trained to minimize difference between x and z (for patterns from a 



training set), that is W'  is the matrix of the reverse mapping. W'  is frequently taken as 
WT. One can calculate gradient of the reconstruction error relative to connection 
weights and bias vectors and to train the autoencoder using stochastic gradient 
descent. 
 In the case of stacked autoencoders, each autoencoder on the next level takes 
outputs of the hidden (not reconstruction) layer of the previous autoencoder as its 
input performing further nonlinear transformation of constructed latent representation 
of the previous level. Each next autoencoder is trained after training its preceding 
autoencoder. Outputs from the hidden layer of the last autoencoder are passed to the 
supervised feed-forward network. 
 Multinomial logistic regression computes probabilities of a pattern to belong to 
different classes based on softmax applied to linear combinations of features. 
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where x is the input vector, c is the class index, C is the total number of classes, W is 
the weight matrix composed by C vectors wc, bc are biases. Parameters of the 
classifier are learnt using stochastic gradient descent minimizing negative log-
likelihood. 
 One common modification is denoising autoencoders [10], in which reconstruction 
during training is calculated using patterns with introduced noise, but reconstruction 
errors are calculated relative to initial patterns without this artificial noise. Thus, a 
denoising autoencoder learns to reconstruct a clean input from a corrupted one. This 
is a way to deform input patterns efficiently increasing the training set size, but in the 
least problem-specific fashion. 
 We introduce some additional modifications into denoising stacked autoencoders. 
One modification consists in that only the last (regression) layer is trained in the 
supervised fashion. This helps to check usefulness of unsupervised features. 

The second modification (which is to be compared with the basic version) consists 
in constructing multi-column autoencoders. Multi-column deep neural networks were 
already used (e.g. [11]), but each column in such networks is usually trained as a 
separate deep network, and predictions of all columns are then averaged. In our 
modification, the number of columns corresponds to the number of classes. Each 
column is trained for its own class to produce some non-linear features. These 
features are then gathered and passed as the input to the logistic regression layer. 

3   Image Features 

We took the task of image categorization for investigating behavior of autoencoders. 
In this task, images can vary considerably, and special hand-crafted features are 
usually used, that doesn’t eliminate necessity to learn non-linear features, especially 
when different hand-crafted features are combined. 



 We used three types of image features for image description: color histograms, 
edge direction histogram (EDH) [12] and Haralick’s textural features based on gray-
level co-occurrence matrices (GLCM) [13]. 
 Color features are built as concatenation of three 1D histograms calculated for LAB 
components. Histogram for each component contains Nc=32 bins, so the total size of 
the color vector is 3Nc=96. 
 In order to build an edge direction histogram we apply Deriche filtration [14] at the 
first step. Then we get an assessment of orientation distribution by computing the 
direction of gradient vector at local maximums of gradient magnitude. Initial range of 
edge orientation angles [0°, 360°) is quantized to Nq bins (we use 72 bins). The last 
bin in histogram represents the amount of image pixels that don’t belong to edges. 
Finally, because of possible difference in image sizes, all bins are normalized by 
corresponding values [12] 
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where )(iEDH  – value in bin i of the histogram, Nedge is total amount of edge points 
in the image, Np is total number of pixels. 
 Unfortunately EDH gives no information about location of contours on the image 
plane, so we tried to compensate this by splitting image into K parts (K=3) and 
computing the histogram for each of them. Thus, the EDH descriptor size is 
K(Nq+1)=219. 
 The last part of our image descriptor is computed from normalized GLCM. Co-
occurrence matrices represent texture properties, but they are inconvenient for 
matching two textures, because of big number of elements, thus we used five features 
of normalized GLCM Cd, proposed in [13]: 

• angular second moment:   ( )∑∑
i j

ji,2
dC ; 

• entropy:    ( ) ( )∑∑−
i j
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where µi, µj, σi, σj are the means and standard deviations of rows and columns of Cd, 
d is a displacements vector, for which co-occurrence matrix is computed (we used D 
options of d for each image). 
 In order to consider color information, initial RGB images were transformed to 
HSV representation, so GLCM was computed for hue, saturation and value 



components, which in turn were preliminarily normalized to fit [0, 255] range. The 
size of modified GLCM descriptor (five GLCM based features for each of H, S and V 
component for 5 displacement vectors and 3 directions) appeared to be 5×3×5×3=225. 
 Thus, the image descriptor is constructed by concatenation of LAB histogram and 
modified EDH and GLCM parts. The total size of the image descriptor is 
96+219+225=540. Reduced descriptor containing only two sets of features 
(96+219=315 features) was also considered for comparison. 

4   Experiments 

We conducted experiments with the neural networks composed of autoencoders and 
logistic regression layer described above. For experiments, two training sets were 
constructed. Variability of images in these training sets was different. The first set 
(DB1) contained heads of cats of 5 breeds – European Shorthair, British Shorthair, 
Exotic Shorthair, Burmese, Abyssinian; examples of two of them are presented in 
fig. 1. The second set (DB2) contained images of 6 categories – city, flowers 
(garden), indoor, mountains, forest, sea (beach); see fig. 2. DB1 was composed of 330 
images, from which small training set was extracted with 50 (10 per class) images. 
DB2 was composed of 6000 images, and experiments with two training sets 
containing 60 (10 per class) and 4800 (800 per class) images were conducted. 
 

      
Fig. 1. Examples of images from two classes (breeds of cats) of DB1. 

 

      
Fig. 2. Examples of images from two classes (categories of scenes) of DB2. 

 
 Logistic regression with and without autoencoders was tested separately using 
RGB values of pixels (on images rescaled to sizes of 64x64, 28x28, and 20x20) and 
hand-crafted descriptors as initial features on these two databases (three training sets). 
Results are presented in table 1. 
 It can be seen that hand-crafted features are not always very informative. Reduced 
image descriptors (315 features) gave worse results and enhanced descriptors (540 
features) gave similar results in comparison with pixel-level features on DB1. 
However, for more complex image classes (DB2) these features yield better results, 
and results are greatly improved (in contrast to pixel-level features) with increase of 



the size of training sample. Of course, pixel-level features contain more information, 
but it is clearly seen that classes under consideration are not linearly separable in this 
feature space (but better linearly separable in the space of hand-crafted features), so 
one might expect that autoencoders would help to improve recognition rate for pixel-
level features more than for hand-crafted features. However, conducted experiments 
showed that this assumption is not correct. The results are presented in table 2. 

Table 1. Recognition error rates of the logistic regression classifier 

 DB1 
(10 per class) 

DB2 
(10 per class) 

DB2 
(800 per class) 

Hand-crafted 
features (540) 

0.356 0.505 0.118 

Hand-crafted 
features (315) 

0.436 0.535 0.188 

64x64x3 0.361 0.620 0.583 
28x28x3 0.382 0.598 0.580 
20x20x3 0.401 0.615 0.571 

Table 2. Best recognition error rates of the autoencoders with logistic regression classifier 

 DB1 
(10 per class) 

DB2 
(10 per class) 

DB2 
(800 per class) 

Hand-crafted 
features (540) 

0.323 0.41 0.091 

Hand-crafted 
features (315) 

0.359 0.445 0.122 

20x20x3 0.418 0.601 0.353 
 
 It appeared to be very difficult to train autoencoders in the case of pixel-level 
features and small training sets. Too small or too large number of training epochs 
leaded to recognition of all patters as belonging to one same class. The best achieved 
error rates for DB1 and DB2 (using 10 training images per class) are 0.418 and 0.601 
correspondingly with the use of multi-column autoencoder with one layer containing 
1000 neurons (with 20x20x3=1200 inputs). That is, autoencoders failed to learn 
useful features from small amount of raw data, and they only didn’t ruined initial 
features in fortunate cases. 
 Training multi-column one layer autoencoders on 800 per class DB2 images 
resulted in 0.353 error rate (one-column autoencoders gave 0.383 error rate), which is 
much better than the error rate of the logistic regression on pixel-level features, but is 
much worse than the error rate of the logistic regression on hand-crafted features. 
That is, some useful nonlinear features were learnt, but they were worse than both 
(reduced and enhanced) hand-crafted features. It should be noted that we also tested 
autoencoders on the MNIST database with 50000 training images, and they 
considerable reduced error rate relative to the logistic regression (from 8% to 2% only 



for two layers and can be reduced further) even without using convolution 
autoencoders or additional image transformations during training. This implies that 
more complex nonlinear features indeed can be learnt by autoencoders, but this result 
can be achieved in the case of very low variability of patterns and using large training 
sets. 
 Autoencoders trained using patterns represented by hand-crafted features appeared 
to be more useful (see table 2). The achieved error rate (~9%) for the scene 
classification task with 6 classes is rather high (e.g., in [12], 6% error rate is achieved 
while distinguishing only two classes – city and landscape images, and 9% error rate 
is achieved for forest-mountain-sunset classification), so this result is interesting by 
itself. 
 However, it is also interesting to compare results in tables 1 and 2. In the case of 
hand-crafted features, larger improvement is achieved in the case of small training 
sets. In the case of pixel-level features, results are opposite implying that nature of 
this improvement may be different. Possibly, dimension reduction of linear features 
has stronger influence in the first case (and this is achievable on small training sets), 
while only construction of nonlinear features helps to increase recognition rate in the 
second case (and this requires large training sets). 
 Consider also results in fig. 3-6. In all cases, error rates vary insignificantly for a 
wide range of hidden layer sizes. Best results are achieved on intermediate sizes, 
while the error rate rapidly increases for small hidden layers (in which too much 
information is lost), and gradually increases with the number of hidden neurons 
exceeding the number of features meaning that reduction of features redundancy is 
more useful than construction of complex nonlinear approximation on small training 
sets. 
 

0,3

0,32

0,34

0,36

0,38

0,4

0,42

0,44

10 100 200 300 400 500 600

%
, e

rr

multi-column

single

 
Fig. 3. Error rates of one-layer autoencoders of different hidden layer sizes with logistic 
regression layer on DB1 (540 features) 
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Fig. 4. Error rates of one-layer autoencoders of different hidden layer sizes with logistic 
regression layer on DB1 (315 features) 
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Fig. 5. Error rates of one-layer autoencoders of different hidden layer sizes with logistic 
regression layer on DB2 (540 features) 
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Fig. 6. Error rates of one-layer autoencoders of different hidden layer sizes with logistic 
regression layer on DB2 (315 features) 



 It can also be seen that multi-column autoencoders outperform one-column 
autoencoders on more difficult image classes (DB2) and have similar performance on 
simpler classes. Although multi-column autoencoders contain much more hidden 
neurons, they don’t suffer from overlearning more than one-column autoencoders 
(with the same number of neurons per column). 
 Finally, stacked autoencoders were tested. However, they yielded very small 
decrease of the error rate. For example, multi-column autoencoders with two layers 
(400, 300) helped to decrease the error rate from 0.329 to 0.324, and for one-column 
autoencoders the error rate decreased from 0.323 to 0.319 on DB1. One might expect 
that multi-level autoencoders will be more useful in the case of pixel-level features 
and larger training sets, but adding the second layer was unsuccessful resulting in 
increase of the error rate from 0.353 to 0.373. Possibly, larger training sets or training 
image deformations are necessary for multi-level autoencoders to learn useful 
complex features. 

5   Conclusion 

Stacked autoencoders with logistic regression layer for classifying images were 
considered. Original modification of multi-column autoencoders was proposed. Their 
performance was evaluated on pixel-level features and special hand-crafted image 
descriptors. These descriptors were composed of color, gradient and texture features. 
Tests were conducted on two data sets – cat breeds and image categories (city, indoor, 
forest, mountains, beach, flowers). 
 Training on hand-crafted features appeared to be much more successful than on 
pixel-level features (without introducing deformations of training images). Error rates 
of 9.1% and 35.3% were achieved on the training set containing 4800 images for the 
task of recognizing 6 image categories using hand-crafted and pixel-level features 
correspondingly. Thus, only hand-crafted features yielded practically usable results. 
Training autoencoders on small (10 patterns per class) samples using pixel-level 
features failed. In contrast, it stably improved (in comparison with single logistic 
regression) recognition rate in the case of hand-crafted features. 
 From the gathered experimental data one can conclude that useful nonlinear 
features can be learnt by (stacked) autoencoders only using large training sets, since 
these networks don’t recover true underlying regularities in data, but approximate 
them by complex (multi-parametric) models. Most positive effect from usage of 
autoencoders on small training sets is possibly connected with redundancy reduction, 
and not with construction of nonlinear features. Thus, some principal ways of 
efficiently extracting nonlinear representations of patterns from small training sets or 
constructing some general representations (similar to the proposed hand-crafted image 
descriptors which are applicable for recognizing different image categories) are 
required. 



Acknowledgements 

This work was supported by the Russian Federation President’s grant Council (MD-
1072.2013.9) and the Ministry of Education and Science of the Russian Federation. 

References 

1. He, Y., Kavukcuoglu, K., Wang, Y., Szlam, A., Qi, Y.: Unsupervised Feature Learning by 
Deep Sparse Coding. arXiv:1312.5783 [cs.LG] (2013) 

2. Le Roux, N., Bengio, Y.: Representational Power of Restricted Boltzmann Machines and 
Deep Belief Networks. Neural Computation. 20(6),1631–1649 (2008) 

3. Gregor, K., Mnih, A., Wierstra, D.: Deep AutoRegressive Networks. arXiv:1310.8499 
[cs.LG] (2013) 

4. Hinton, G. E., Osindero, S., Teh, Y.: A Fast Learning Algorithm for Deep Belief Nets. 
Neural Computation. 18, 1527–1554 (2006) 

5. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy Layer-Wise Training of 
Deep Networks. Advances in Neural Information Processing Systems. 19 (NIPS 2006), 
153–160 (2007) 

6. Ranzato, M.A., Poultney, Ch., Chopra S., LeCun, Y.: Efficient Learning of Sparse 
Representations with an Energy-Based Model. Advances in Neural Information Processing 
Systems. 19 (NIPS 2006), (2007) 

7. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep Big Simple Neural 
Nets Excel on Handwritten Digit Recognition. arXiv:1003.0358 [cs.NE] (2010) 

8. LeCun, Y., Cortes, C.: MNIST handwritten digit database. 
http://yann.lecun.com/exdb/mnist/ 

9. Tenenbaum, J. B., Kemp, C., Griffiths, T. L., and Goodman, N. D.: How to Grow a Mind: 
Statistics, Structure, and Abstraction. Science. 331 (6022), 1279–1285 (2011) 

10. Vincent, P., Larochelle, H., Bengio, Y., Manzagol P.-A.: Extracting and composing Robust 
Features with Denoising Autoencoders. Proc. 25th International Conference on Machine 
Learning. 1096–1103 (2008) 

11. Cireşan, D., Meier, U., Masci, J., Schmidhuber, J.: Multi-Column Deep Neural Network for 
Traffic Sign Classification. Neural Networks. 32, 333–338 (2012) 

12. Vailaya, A., Jain, A., Zhang, H. J.: On Image Classification: City Images vs. Landscapes. 
Pattern Recognition. 31 (12), 1921–1935 (1998) 

13. Haralick, R.M., Shanmugam, K., Dinstein I. Textural Features for Image Classification. 
IEEE Transactions on Systems, Man, and Cybernetics. SMC-3 (6), 610–621 (1973) 

14. Deriche, R.: Using Canny's Criteria to Derive a Recursively Implemented Optimal Edge 
Detector. International Journal of Computer Vision. 1(2), 167–187 (1987) 

 

 

 


