N

N

Limited Generalization Capabilities of Autoencoders
with Logistic Regression on Training Sets of Small Sizes

Alexey Potapov, Vita Batishcheva, Maxim Peterson

» To cite this version:

Alexey Potapov, Vita Batishcheva, Maxim Peterson. Limited Generalization Capabilities of Autoen-
coders with Logistic Regression on Training Sets of Small Sizes. 10th IFIP International Conference
on Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. pp.256-264,
10.1007/978-3-662-44654-6_ 25 . hal-01391322

HAL Id: hal-01391322
https://inria.hal.science/hal-01391322
Submitted on 3 Nov 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://inria.hal.science/hal-01391322
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Limited Generalization Capabilities of Autoencoders
with Logistic Regression on Training Sets of Small Sizes

Alexey Potapo¥? Vita Batishchevg Maxim Peterson

1 St. Petersburg National Research University ofrinfition Technologies,
Mechanics and Optics, Kronverkskiy pr. 49,
197101 St. Petersburg, Russia
2 St. Petersburg State University, Universitetskagfa. 7-9, 199034, St.Petersburg, Russia
{pas.aicv, elokkuu, maxim.peterson}@gmail.com

Abstract. Deep learning is promising approach to extractfuiseonlinear
representations of data. However, it is usuallyliadpwith large training sets,
which are not always available in practical tadksthis paper, we consider
stacked autoencoders with logistic regression ascthssification layer and
study their usefulness for the task of image categtion depending on the size
of training sets. Hand-crafted image descriptors aroposed and used for
training autoencoders in addition to pixel-levebtf@es. New multi-column
architecture for autoencoders is also proposed. @iead experiments showed
that useful nonlinear features can be learnt lackstd) autoencoders only using
large training sets, but they can yield positiveutss due to redundancy
reduction also on small training sets. Practicaeful results (9.1% error rate
for 6 classes) were achieved only using hand-adéatures on the training set
containing 4800 images.
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1 Introduction

Classes of patterns in pattern recognition ardydireearly separable, and nonlinear
methods should be used. Classical nonlinear metbbgsttern recognition can be
treated as linear methods operating in some extefefdure space. However, these
methods use fixed sets of nonlinear transformattonsap initial features into new
space, and these transformations can be inapptepoiseparate classes in a specific
task. Thus, learning appropriate nonlinear feat(weslata representations in general)
is the central problem in pattern recognition amdtipularly in its application to
computer vision (e.g. [1]). One modern approachlern such features is deep
learning.

Deep learning exploits the fact that adding extidden layers in a multi-layer
classifier helps to learn more complex features tanitnprove their representational
power [2, 3]. The key problem here is to train swtdssifiers. Earlier, training of
shallow feed-forward networks with the back-propéga algorithm yielded better



results than training deep networks with it, sibodétom layers are difficult to train
because of exponentially quick gradient vanishsugthese layers usually correspond
to random (not useful or even harmful) nonlineaatfiee mappings. Successful
training of such networks was achieved [4, 5, 6thwihe help of consequent
unsupervised pre-training of each hidden layer, asd of supervised training
afterwards.

However, successful supervised training of malyidr perceptrons (resulting in a
very low 0.35% error rate on the MNIST benchmarksvalso achieved recently [7].
The way of achieving this is remarkable. It corsigh intensive training of
perceptrons using relevantly (with affine and étashage deformations) transformed
patterns. Even overlearning is avoided in spitextfemely large number of neurons
(free parameters), because “the continual defoonatdf the training set generate a
virtually infinite supply of training examples” [7)One can also see [8] that many
good results for MNIST are obtained using similafadmations of training patterns
and convolutional nets, which additionally explgitift invariance. It is obvious, that
if one substitutes non-image patterns for trairéngh classifiers, their results will be
rather poor. Thus, this is not an appropriate vealgarn (problem-specific) invariant
features, which are not known a priori.

Necessity of extremely large (with account foratefations of training patterns)
training sets indicates that deep networks dondllye generalize, but only
approximate invariants. Moreover, classifiers witany free parameters appear to be
better than with fewer parameters. It can be coepawnith approximation of
exponent with polynomials (or some other basis tions). Very many points should
be used to get precise approximation with very dempodel, but only few points
are enough for exact generalization (if one hasnsé¢a represent and find it). At the
same time, humans have capabilities to learn comipleariant features from few
examples [9]. Thus, interesting question consiatdearning capabilities of deep
networks on small training sets, that is, whetheeytare able to learn useful
representations from such sets.

Here we analyze this question on example of (st@dclkutoencoders with logistic
regression as the classification layer appliedhéotask of image categorization. Pixel-
level and hand-crafted features are used for exygerts.

2 Autoencoders

We selected stacked autoencoders as the unsupklaisers with logistic regression
as the classification layer. Single autoencoder hgmit, hidden, and output
(reconstruction) layers. The input layer accepteetor x J[01]N of dimensionN,
which is transformed to activities of neurons oé thidden layery = s(Wx +b),
y[01]¢, corresponding to new features (hidden represenjatwhereW is adxN
matrix of connection weightd) is a bias vector, and is the activation (sigmoid)
function. Activities of neurons of the last layereacalculated similarly as
z=s(W'y+b'), zO[01]" . Autoencoders differ from other feed-forward netieo
in that they are trained to minimize differenceviegnx andz (for patterns from a



training set), that i8V' is the matrix of the reverse mappivyg: is frequently taken as
W'. One can calculate gradient of the reconstrucémor relative to connection
weights and bias vectors and to train the autoesrcaing stochastic gradient
descent.

In the case of stacked autoencoders, each autbenam the next level takes
outputs of the hidden (not reconstruction) layertle# previous autoencoder as its
input performing further nonlinear transformationconstructed latent representation
of the previous level. Each next autoencoder imddh after training its preceding
autoencoder. Outputs from the hidden layer of &t dutoencoder are passed to the
supervised feed-forward network.

Multinomial logistic regression computes probadigt of a pattern to belong to
different classes based on softmax applied to finembinations of features.

expigx+b,) @
zgzleXp(WZ'X +bc’) ,

wherex is the input vector is the class indeX; is the total number of classéd, is
the weight matrix composed b§ vectorsw,, b. are biases. Parameters of the
classifier are learnt using stochastic gradientcelels minimizing negative log-
likelihood.

One common modification is denoising autoencofH} in which reconstruction
during training is calculated using patterns witlraduced noise, but reconstruction
errors are calculated relative to initial pattemishout this artificial noise. Thus, a
denoising autoencoder learns to reconstruct a dhgart from a corrupted one. This
is a way to deform input patterns efficiently ingseng the training set size, but in the
least problem-specific fashion.

We introduce some additional modifications intaaising stacked autoencoders.
One madification consists in that only the lastgfession) layer is trained in the
supervised fashion. This helps to check usefuloésssupervised features.

The second modification (which is to be comparethwhe basic version) consists
in constructing multi-column autoencoders. Multitoon deep neural networks were
already used (e.g. [11]), but each column in suetwarks is usually trained as a
separate deep network, and predictions of all cokirare then averaged. In our
modification, the number of columns correspondghi® number of classes. Each
column is trained for its own class to produce somom-linear features. These
features are then gathered and passed as thedngat logistic regression layer.

p(y =c|x,W)=

3 Image Features

We took the task of image categorization for inigeging behavior of autoencoders.
In this task, images can vary considerably, ancciapdand-crafted features are
usually used, that doesn’t eliminate necessityetorl non-linear features, especially
when different hand-crafted features are combined.



We used three types of image features for imageriion: color histograms,
edge direction histogram (EDH) [12] and Haralicteégtural features based on gray-
level co-occurrence matrices (GLCM) [13].

Color features are built as concatenation of thi@dnistograms calculated for LAB
components. Histogram for each component contdjin82 bins, so the total size of
the color vector is9.=96.

In order to build an edge direction histogram ywplg Deriche filtration [14] at the
first step. Then we get an assessment of orientatistribution by computing the
direction of gradient vector at local maximums cddjent magnitude. Initial range of
edge orientation angles [0°, 360°) is quantizetNfdins (we use 72 bins). The last
bin in histogram represents the amount of imagelpithat don’t belong to edges.
Finally, because of possible difference in imageesi all bins are normalized by
corresponding values [12]

EDH (i) = EDH (i)/ Ny, 10[0, N, 1]; )
EDH(N,) =EDH(N,)/N,,

where EDH (i) - value in biri of the histogramNee is total amount of edge points
in the imageN,is total number of pixels.

Unfortunately EDH gives no information about Idoatof contours on the image
plane, so we tried to compensate this by splitimgge intoK parts K=3) and
computing the histogram for each of them. Thus, Bi@H descriptor size is
K(Ng+1)=219.

The last part of our image descriptor is computedn normalized GLCM. Co-
occurrence matrices represent texture properties, tiey are inconvenient for
matching two textures, because of big number ohelgs, thus we used five features
of normalized GLCMCy, proposed in [13]:

« angular second moment: chd
«  entropy: —ZZCd j)logCyli, j);

« contrast: ZZ i—j)Ycy(.j)
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 correlation: — ,
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wherey;, ;, oi, o; are the means and standard deviations of rowsalodns ofCyg,
d is a displacements vector, for which co-occurremedrix is computed (we usel
options ofd for each image).
In order to consider color information, initial BGmages were transformed to

HSV representation, so GLCM was computed for humturation and value

« inverse difference moment: ZZ




components, which in turn were preliminarily noripadl to fit [0, 255] range. The
size of modified GLCM descriptor (five GLCM basezhfures for each of H, S and V
component for 5 displacement vectors and 3 diresjiappeared to be 5x3x5x3=225.

Thus, the image descriptor is constructed by demedion of LAB histogram and
modified EDH and GLCM parts. The total size of tlmage descriptor is
96+219+225=540. Reduced descriptor containing ohko sets of features
(96+219=315 features) was also considered for casgra

4 Experiments

We conducted experiments with the neural netwodmposed of autoencoders and
logistic regression layer described above. For empts, two training sets were
constructed. Variability of images in these tragnisets was different. The first set
(DB1) contained heads of cats of 5 breeds — Eurof®eorthair, British Shorthair,
Exotic Shorthair, Burmese, Abyssinian; examplesved of them are presented in
fig. 1. The second set (DB2) contained images ofafegories — city, flowers
(garden), indoor, mountains, forest, sea (beae®fig. 2. DB1 was composed of 330
images, from which small training set was extractéith 50 (10 per class) images.
DB2 was composed of 6000 images, and experiments two training sets
containing 60 (10 per class) and 4800 (800 peskiazages were conducted.

P | J’
F|g 2. Examples of i |mages from two classes (categoriesearies) of DB2.

Logistic regression with and without autoencodesss tested separately using
RGB values of pixels (on images rescaled to siZe®r64, 28x28, and 20x20) and
hand-crafted descriptors as initial features osdh®o databases (three training sets).
Results are presented in table 1.

It can be seen that hand-crafted features araln@tys very informative. Reduced
image descriptors (315 features) gave worse resmliisenhanced descriptors (540
features) gave similar results in comparison wiikeplevel features on DBI1.
However, for more complex image classes (DB2) tHeatures yield better results,
and results are greatly improved (in contrast t@lpievel features) with increase of



the size of training sample. Of course, pixel-lefestures contain more information,
but it is clearly seen that classes under congiderare not linearly separable in this
feature space (but better linearly separable insffece of hand-crafted features), so
one might expect that autoencoders would help frore recognition rate for pixel-
level features more than for hand-crafted featurgsvever, conducted experiments
showed that this assumption is not correct. Thelteare presented in table 2.

Table 1. Recognition error rates of the logistic regressiassifier

DB1 DB2 DB2
(10 per class) | (10 per class) | (800 per class)

Hand-crafted 0.356 0.505 0.118
features (540)
Hand-crafted 0.436 0.535 0.188
features (315)

64x64x3 0.361 0.620 0.583

28x28x3 0.382 0.598 0.580

20x20x3 0.401 0.615 0.571

Table 2. Best recognition error rates of the autoencodeifs lvgistic regression classifier

DB1 DB2 DB2
(10 per class) | (10 per class) | (800 per class)
Hand-crafted 0.323 0.41 0.091
features (540)
Hand-crafted 0.359 0.445 0.122
features (315)
20x20x3 0.418 0.601 0.353

It appeared to be very difficult to train autoeders in the case of pixel-level
features and small training sets. Too small or lewge number of training epochs
leaded to recognition of all patters as belongmgrie same class. The best achieved
error rates for DB1 and DB2 (using 10 training imager class) are 0.418 and 0.601
correspondingly with the use of multi-column autoester with one layer containing
1000 neurons (with 20x20x3=1200 inputs). That istoancoders failed to learn
useful features from small amount of raw data, #ved/ only didn't ruined initial
features in fortunate cases.

Training multi-column one layer autoencoders orD §ier class DB2 images
resulted in 0.353 error rate (one-column autoensogave 0.383 error rate), which is
much better than the error rate of the logistiagesgion on pixel-level features, but is
much worse than the error rate of the logistic @sgion on hand-crafted features.
That is, some useful nonlinear features were ledmnt they were worse than both
(reduced and enhanced) hand-crafted featuresoitidtbe noted that we also tested
autoencoders on the MNIST database with 50000 itigdinmages, and they
considerable reduced error rate relative to thistimgyegression (from 8% to 2% only



for two layers and can be reduced further) evenhawit using convolution
autoencoders or additional image transformatiominduraining. This implies that
more complex nonlinear features indeed can be tiégrautoencoders, but this result
can be achieved in the case of very low variabditpatterns and using large training
sets.

Autoencoders trained using patterns representdehhy-crafted features appeared
to be more useful (see table 2). The achieved ematr (~9%) for the scene
classification task with 6 classes is rather higlg.( in [12], 6% error rate is achieved
while distinguishing only two classes — city anddacape images, and 9% error rate
is achieved for forest-mountain-sunset classiftegti so this result is interesting by
itself.

However, it is also interesting to compare resuitgables 1 and 2. In the case of
hand-crafted features, larger improvement is addew the case of small training
sets. In the case of pixel-level features, resaés opposite implying that nature of
this improvement may be different. Possibly, dimengeduction of linear features
has stronger influence in the first case (andithschievable on small training sets),
while only construction of nonlinear features heipsncrease recognition rate in the
second case (and this requires large training.sets)

Consider also results in fig. 3-6. In all casasprerates vary insignificantly for a
wide range of hidden layer sizes. Best resultsaatieved on intermediate sizes,
while the error rate rapidly increases for smatlden layers (in which too much
information is lost), and gradually increases witie number of hidden neurons
exceeding the number of features meaning that teduof features redundancy is
more useful than construction of complex nonlingaproximation on small training
sets.
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Fig. 3. Error rates of one-layer autoencoders of differkiskden layer sizes with logistic
regression layer on DB1 (540 features)
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It can also be seen that multi-column autoencodrrgperform one-column
autoencoders on more difficult image classes (DB#) have similar performance on
simpler classes. Although multi-column autoencodesatain much more hidden
neurons, they don't suffer from overlearning moharnt one-column autoencoders
(with the same number of neurons per column).

Finally, stacked autoencoders were tested. Howetmyy yielded very small
decrease of the error rate. For example, multiroollautoencoders with two layers
(400, 300) helped to decrease the error rate fr@20to 0.324, and for one-column
autoencoders the error rate decreased from 0.3231® on DB1. One might expect
that multi-level autoencoders will be more usefulthie case of pixel-level features
and larger training sets, but adding the secondrlayas unsuccessful resulting in
increase of the error rate from 0.353 to 0.373sPbg larger training sets or training
image deformations are necessary for multi-levelo@ncoders to learn useful
complex features.

5 Conclusion

Stacked autoencoders with logistic regression ldger classifying images were
considered. Original modification of multi-columntaencoders was proposed. Their
performance was evaluated on pixel-level featumed special hand-crafted image
descriptors. These descriptors were composed of,aptadient and texture features.
Tests were conducted on two data sets — cat beggbisnage categories (city, indoor,
forest, mountains, beach, flowers).

Training on hand-crafted features appeared to behnmore successful than on
pixel-level features (without introducing deforneats of training images). Error rates
of 9.1% and 35.3% were achieved on the trainingsetaining 4800 images for the
task of recognizing 6 image categories using haafterd and pixel-level features
correspondingly. Thus, only hand-crafted featurieddgd practically usable results.
Training autoencoders on small (10 patterns pessgl@amples using pixel-level
features failed. In contrast, it stably improved ¢iomparison with single logistic
regression) recognition rate in the case of haaften features.

From the gathered experimental data one can cdecthat useful nonlinear
features can be learnt by (stacked) autoencoddysusing large training sets, since
these networks don't recover true underlying regtigs in data, but approximate
them by complex (multi-parametric) models. Most ipos effect from usage of
autoencoders on small training sets is possiblyneoted with redundancy reduction,
and not with construction of nonlinear features.ughsome principal ways of
efficiently extracting nonlinear representationgpafterns from small training sets or
constructing some general representations (sintdlgie proposed hand-crafted image
descriptors which are applicable for recognizindgfedént image categories) are
required.
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