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Abstract. An ensemble of distributed neural network classifiis composed
when several different individual neural networke @rained based on their lo-
cal training data. These classifiers can provideeeia single class label predic-
tion, or the normalized via the soft max real vatless-outputs that represent
posterior probabilities which give the confidenegdls. To form the ensemble
decision the individual classifier decisions cancbmbined via the well known
majority (or plurality) voting that sums the voties each class and selects the
class that receives most of the votes. While thgority voting is the most
popular combination rule many ties in votes caruocespecially in multi-class
problems. Ties are usually broken either randontigne the unknown instance
is assigned randomly to one of the tied classessorg the class proportions
where the tied class with the largest proportionsvWe present a tie breaking
strategy that uses soft max confidence accumuktiBwery class accumulates
a vote and a confidence for this vote. If a tiewsdahen the tied class with the
maximum confidence sum wins. The proposed tie tingaik the voting proc-
ess performs very well in all cases of differentaddistributions on various
benchmark datasets.

1 Introduction

Ensembles of neural network classifiers [1][2][3]f4e very popular tools in pat-
tern recognition. Ensembles methods [5][6][7] asdl\nown for their high accuracy
and robustness since the combined predictionsvefrakclassifiers outperforms their
individual predictions. In addition to the genezation performance, for which they
are preferred, ensemble methods are usually the dwice available for other rea-
sons like: (i) reduction of computational complgxity partitioning the data set into
several smaller sub-sets, training different ediimsaon these sub-sets, and combin-
ing their predictions, (ii) modularity, by buildingiodular systems that work on dif-
ferent input spaces, (iii) distributed learningrfr@hysically distributed data reposito-
ries as well as Peer-to-Peer systems where gaghlarige volumes of data to a single



location is unfeasible, (iv) their native parakafi and data scaling via the divide-and-
conquer approach.

Distributed data collections can usually lay eitimephysically distributed database
systems, in which case a small number of locatianid large volumes of data, or in
Peer-to-Peer systems, where a large number oidosatave typically small volumes
of data. In any case the individual neural netwddssifiers are independently con-
structed in parallel, based on their local traindzga. After this training phase is fin-
ished, the classification predictions are combiviadseveral schemes [8] in which the
most popular one is majority voting [9][10][11][12} its most frequently used ver-
sion the plurality voting combining scheme. In plity voting (for reviews see [5]
[8] [10][11] [12]) a classification of an unlabel@astance is performed according to
the class that obtains the highest number of votest of the votes). The strict ver-
sion of (majority) voting needs the agreement oferthan half of the participants to
reach a decision, although this scheme can workif@ry class problems only. Thus
in reality, to cover the multi-class problems, t@mmonly used voting process is
plurality voting, which selects the candidate cldedt receives the most votes. That is
why usually one do not distinguish between pluyalitting and majority voting, and
the term “majority voting” is used even if the urlifeéng criterion is plurality voting.
This method is also known as the basic ensemblaadd6].

However there may be more than one class thatves#ie largest number of clas-
sifications (or votes) by the ensemble members.celentie can occur. In real life
cases a tie-breaking chairperson can resolve tbidgm [13]. In classification prob-
lems such ties are usually broken arbitrary by oanlgt selecting one of the tied
classes [5]. This random tie-breaking receivedfjoation by the fact that all possible
ways that other voters can vote are equi-probdbléhe case of strictly binary class
datasets one can just use an odd number of clssifin the case of k-nearest
neighbour classifiers a nearest neighbour tie-biegk be used. Another common
strategy is choosing the class that is selected aften among the tied classes or tied
classifiers [14]. This strategy predicts the cleased on the largest class proportion
among the ties classes. Another similar strategyuse the frequencies of predicted
classes that occur during the training phase.

In this work we utilize confidence (soft max) acauation as a method of break-
ing the ties in majority voting. Our motivation weee fact that a neural network clas-
sifier outputs, by default, the predicted claselaiccompanied by the confidence of
this prediction given by the soft max function. ldepwe have tried to exploit further
this extra information to improve the tie-breakpr@cess and we have find out that it
usually performs much better. Thus, the proposedreaking method requires no
additional computing resources other than thossimple majority voting. It works
with classifiers, like neural networks, than inrmiple can accompany their class-
prediction with a level of confidence, by using taft max function. Every neural
network classifier simply sends the predicted clabgl and its confidenceonf for
this class-prediction. Thus every prediction cdntgs a pair abel, cont. When a tie
occurs in the voting process and two or more clags® the same number of votes
then the proposed tie-breaking method sums upeteived confidences for each of
these tied classes. The class that accumulatesakienum confidence sum wins.



2  Theensemble of distributed regularization networks

We employ Regularization Neural Networks [15] [16F] for implementing the
Neural Network classifiers. Regularization Netwode® well known for using the
real training data points as centers for their éiddeuron kernels. This is valuable
when data features have discrete values, like sesaf image processing, computer
vision and data mining. Using the real trainingadas kernel centers is a common
strategy in kernel methods that can capture tha datseness approximate of any
underlined problem distribution. These qualitieevate such type of stable kernel
based learning methods to state of the art in rmoohechine learning [18].

We assume that each data location hdlgifraining examples and there drelif-
ferent data locations. Thus locatiprcan train a neural network classifigf) based

on its local training se¥,, v} 21:”1- Such an ensemble composed of Regularization
Networks is illustrated in fig. 1 for the threes$acase.
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Fig. 1. An ensemble of Regularization Neural Networksritisted in several locations
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The Regularization Network input neurons are asyneznthe number of data fea-
tures. The hidden neurons are as many as the nwhtier training instances. A loca-
tion p hasN; training instances. The output neurons are as maartpe classes. The
hidden-to-output layer weights are computed for each class-output by solving a
regularized risk functional. Assume three clagse® andC then for the paradigm in
fig. 1 the class output estimations of classifiérfor an unknowrx will be given by:

B0 = D Way Kk X) (1a)
B0 = D", W k(K X) (1b)

B = D" Wiy KXo X) (10)



The class-output with the maximum value is chogentlie predicted class. The
kernel functionk(-,-) can be any symmetric, positive semi-definite tiowg and the
most commonly used is the Gaussian kek(el, x)=exp(—jk.—x |F/c?) centered at a
particularx, point. The local kernel matriX with entriesK;; = k(xi,x;) and sizeNpxN,
contains the information regarding the high denségions inside classes and the
separating planes in between classes. To find gightsw in the Regularization
Network (RN) [15] [16] [17] the learning problem ssated as the minimization on a
Reproducing kernel Hilbert space (RKHS) of a regeéal risk functional which has
the usual data error term plus a regularizatiom trat embodies the stabilizer:

. 1 M —f(x))2 + 2 2
o] L5 005001 @
The data term is scaled proportionally to the nundfelata points, ang> 0 is the
regularization parameter. The minimization solutsen is unique and the weight vec-
torsw,, wg, andwc for the three class paradigm that correspond regalarization
network classifiep are given by solving the linear systems [15] fI{][in eq. 3:

Wa = (K +Npy1) ™ ya (3a)
wg = (K +Npy1)7'ys (3b)
we= (K +Npy 1) ye (3¢)

wherel is the identity matrixK is the local kernel matrix (of sizg,xNy) andya,
ys andyc are the vectors (of sizd,) that hold the desired labels for each class A, B
and C respectively, which in the hot encoding aferlabels of the same class points
and O for the others. The rescaled regularizat@mameteNgy is usually small and
can be found during training via cross validationthe experimental runs we use a
typical valueNgy = 0.1 for all the local Regularization Networks.

For an unknowrx the class-output respondgg(x) f, g(x) andf, /(x) of each neural
networkf, are normalized, so that they fall in the unityeival [0,1] and thus to re-
flect posterior probabilities. These posteriorsdueed by the softmax function are
interpreted as confidence [19]. For instance tHrsxx confidence for the A class is:

hp.A(X) = exppA(X)) / (expfoA(X))+exply a(x))+expfy,o(x))) (4)

Eq. 4 gives theoretically the Bayesian posteriobpbility (see also [19] for proof)
as approximated by the regularization network. Tésaish classifier outputs the pre-
dicted class together with the confidence for théss.

3 Combining predictions using majority voting

In a distributed parallel environment the combimatof the decisions is straight-
forward. The majority voting is used in classificat tasks where the individual clas-
sifiers produce a single class label, where in tlsise each classifier “votes” for a



particular class, and the class with the majoribyevon the ensemble wins. This
means that for an unknowneach classifief,(x) outputs one integer number, given
by the max argument of its class-outpfiis(x), that designates the most probable
class label. WithVl classes and classifiers the correct class is t&class that col-
lects the largest number of votes, given by:

classk) :argrhr/llax( ZL: {if k= argr%ax( fon(X) ) then 1 else 0}) (5)
k=1 p m=1

The simplest method to handle ties relays dtirst Labelledbasis which in case
of a tie favours the class that was labelled eaftie first). The drawback is that in a
tie the class 1 (the first) will never lose, whitee classvl (the last) will never win.

The most commonly used tie-breaking method durhmg woting process is to
break the ties arbitrary bgandomly Selectingne of the tied classes [5]. If a tie oc-
curs this method choose a random class amongettheties.

Differently from the random selection another wayto check which of the tied
classes has higher prior probability and accorgimghke the decision. Usually the
class proportions given by the number of exampiesvery class (for the three class
problem these ar®la/N, Ng/N and Nc/N) can representing the priors. Hence this
method use€lass Proportionsand the ties are going in favour of the largesppr-
tions.

Another way for counting priors is to monitor hovany times a class occurs dur-
ing the training process. Thus if cladsnd clas8 receive the same number of votes
but the clas8 has higher frequency of occurrence, meaning tharédicted more
often that the clasé during the training of all the classifiers, th8nis selected.
Hence this method us€dass Frequencieguring training.

A variant of the previous method is to count therect predictions during the
training of all classifiers and use the3kass Correctly Frequenciess priors.

Using neural networks each classifier can affordeind a pairlfbel, conf, where
labelis the predicted clasa of the unknowrx andconfis the soft max confidence of
this prediction. The proposed method in this papleen a tie occurs is to sum the
confidences for the received votes of the tiedsdasand select the one class that ac-
cumulates thévlaximum Confidence surherefore, withL classifiers which output
their predictionm and their soft max confidendg .{x) when classifying in classm,
the correct class is thé& class that collects the largest confidence suméeq

classk) =argmax( ZL: {if k= argnhqax( for(X) ) thenhy{x) else 0} ) (6)
k=1 p m=1

To provide an example consider the running paradigfig. 1, which illustrates a
three-class problem with 5 neural network classifiwhere each one can produce a
pair {label, conf. Assuming that for an unknowxthe classifief;() votes for class A
with confidence 0.7 which gives a pair {A, 0.7} Wwi,() gives {A, 0.8}, f3() gives
{B, 0.5}, f4() gives {B, 0.6} ands() gives {C, 0.7}. A tie occurs for the classes rda
B with 2 votes each. In this case the class A wiitls sum of confidences 1.5.



4  Experimental smulations

The classification performance of every tie-bregkinethod for majority voting
are measured on a number of publicly available-weald benchmark problems
which are downloaded from the UCI machine learnidgta repository [20]
(http://archive.ics.uci.edu/ml). The specific ditaf these datasets are illustrated in
table 1, where they are ordered by the numberedf thasses.

Table 1. Benchmark dataset details (ordered by class ptpa)a

Dataset Name instances Features Classes
Sonar 208 60 2
Wisconsin (Diagnostic) 683 9 2
Diabetes Pima Indians 768 8 2
Spambase 4601 57 2
Phoneme 5404 5 2
Wine 178 13 3
Vehicle Silhouettes 846 18 4
Ecoli 336 7 5
Page Blocks 5473 10 5
Glass 212 9 6
Dermatology 358 34 6
Satellite Image 6435 36 6
Yeast 1479 8 9
Optical Digits 5620 64 10
Vowel Context 990 11 11
Spectrometer 531 100 24
Letter 20000 16 26

The groups of experiments aim at comparing thereates of the proposed tie-
breaking method and to make direct comparisonsagtie others. The experimental
design is as follows:

0] A dataset is randomly split into a training set%@0and a test set (20%)

with stratification

(i) The training set of sizé&\, is divided equally intd_ disjoint partitions

(Ng=N;=N.=...=N_) which are distributed to the different locations,

(i) every locationp holds N, data and builds a Regularization Neural Net-

work classifierfy() based on its own local examples,

(iv) The classifiers are combined and the ensemblstisden the test set.

(v) The procedure is repeated 30 times for each ben&hdagaset and each

ensemble population.

We measure the classification error rate which todine number of incorrectly
classified examples and divides by the test setijatipn number.

The comparison results of the error rates andtdredard deviations for each data-
set and each tie-breaking method are illustratadtte 2.



Table 2. Error rates for the majority voting tie-breakingtmods.

Dataset Ensemble First Random Class Class Class Use max

size labeled selection Propor-  Fre- Cor- Confi-
tions quencies rectly dence

Sonar 10 25,58 26.35 27.36 27.36 27.36 23.25
6.33 6.47 6.34 6.34 6.34 15.50

Wisconsin 20 4.50 4.28 4.50 4.50 4.50 4.28
.62 +.57 +1.62 +1.62 +1.62 +1.55

Diabetes 20 24.95 25.08 24.95 24.95 24.95 24.27
.42 +2.32 +2.43 +2.43 +2.43 2.54

Spambase 40 9.64 9.66 9.65 9.65 9.65 9.54
10.83 #0.91 #0.95 #0.95 #0.95 #0.90

Phoneme 40 18.42 18.54 18.42 18.42 18.42 18.56
.15 +1.29 +.15 +.15 +.15 .25

Wine 10 2.61 2.52 2.43 2.34 2.43 2.34
2.25 .50 .45 .29 .45 .39

Vehicle 20 31.03 31.55 31.50 31.48 31.77 30.86
12.59 .48 .37 2.47 .30 .63

Ecoli 10 14.25 14.49 14.58 14.58 14.58 13.94
3.26 3.21 3.36 3.36 3.36 3.47

Page Blocks 40 6.37 6.33 6.37 6.37 6.37 6.28
10.35 #0.32 #0.35 #0.35 #0.35 .37

Glass 10 39.55 39.55 39.70 39.70  40.00 39.40
15.33 5.72 5.73 15.87 15.62 15.03

Dermatology 10 3.12 3.56 312 3.60 312 3.51
+1.88 2.27 +1.88 .18 +1.88 .35

Satellite Image 40 12.85 12.89 12.89 12.85 12.85 12.81
1#0.54 #0.55 #0.58 #0.56 #0.56 #0.86

Yeast 20 39.79 39.73 39.79 39.87 39.87 39.65
.95 .02 +1.95 +1.90 +1.90 +.97

Optical Digits 40 2.87 2.83 2.88 2.88 2.88 2.76
#0.41 +0.40 +0.40 +0.41 +0.39 +0.40

Vowel Context 10 24.17 23.95 24.17 24.66 23.85 19.12
+.16 +4.45 +.16 +4.90 +3.85 +4.32

Spectrometer 10 55.66 56.16 56.16 56.19 56.31 54.95
+4.37 +.02 +.64 .72 +4.35 +4.49

Letter 40 11.51 11.44 11.47 11.60 11.45 11.04

#0.59 #0.61 .57 #0.59 10.60 .62

In table 2 the dataset name is in the first coluire second column has the num-
ber of classifiers in the ensemble. The third caluftustrates the tie-breaking using
the simplest “first labelled” method. The fourthlwmn shows the results for the
widely used method of breaking ties arbitrary bgdamly selecting one of the ties
classes in the voting. The fifth column is thelieaking by selecting among the tied



classes the one with the largest “class proportinaimely the largest number of train-
ing examples. The sixth column uses “class fregesh@nd selects among the tied
classes the one class that had the maximum occerduring training process of the
classifiers (the one that appears most frequertly®. seventh column corresponds to
the tie-breaking that uses “class correctly fregiesi which selects the class among
the tied classes that had the maximum number a&ctty occurrences during the
training process. The last column is the proposethad that sums also the received
confidence of those votes and selects the tied el@h themaximum confidence sum
Note that in many cases there are very small @iffees of the proposed method with
the others. The differences depend only on the eurabties since the voting algo-
rithm is otherwise the same. This simply means tloatmany ties where encountered
during the testing.

We run several experiments and in most of the ddeproposed method of using
confidence produces better results than the otbdsréaking strategies. In general,
one can notice from table 2 that the differencethefmethods in the comparisons are
not substantial when not many ties occur. Howeveemseveral ties occur during the
voting process then the difference of the propasethod as compared with the oth-
ers becomes considerable. In some multi-class etatéike the Vowel the proposed
tie-breaking method has 4 units less error rate that of the other methods.

5 Conclusions

Majority or plurality voting is the most popularasion combination rule in neural
network ensembles. In many cases, regardless ob&uof classes and neural net-
works in the ensemble a tie in voting occurs. Ugusdich ties are broken arbitrary.
We present a tie-breaking technique that uses @emdie. Since each neural network
classifier can afford to send by default the pretidabel and the confidence for this
prediction (via the soft max function), the proptgaethod receives pairs of {pre-
dicted class, confidence} for every unknownrhus every class accumulates a voting
sum and a confidence sum. If a tie occurs thetid¢ldeclass with the maximum confi-
dence sum wins. When compared with other tie-brepkiethods, like random class
selection, or class selection using prior clasdabdities, the proposed tie breaking
performs very well in all cases of different daiatgbutions on various benchmark
datasets.
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