
HAL Id: hal-01391048
https://inria.hal.science/hal-01391048

Submitted on 2 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

CSMR: A Scalable Algorithm for Text Clustering with
Cosine Similarity and MapReduce

Giannakouris-Salalidis Victor, Plerou Antonia, Sioutas Spyros

To cite this version:
Giannakouris-Salalidis Victor, Plerou Antonia, Sioutas Spyros. CSMR: A Scalable Algorithm for
Text Clustering with Cosine Similarity and MapReduce. 10th IFIP International Conference on
Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. pp.211-220,
�10.1007/978-3-662-44722-2_23�. �hal-01391048�

https://inria.hal.science/hal-01391048
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

CSMR: A Scalable Algorithm for Text Clustering with

Cosine Similarity and MapReduce

Giannakouris - Salalidis Victor, Plerou Antonia, Sioutas Spyros

Ionian University, Department of Informatics, Greece

{p12gian1,tplerou,sioutas}@ionio.gr

Abstract. As Internet develops rapidly huge amounts of texts need to be pro-

cessed in a short time. This entails the necessity of fast, scalable methods for

text processing. In this paper a method for pairwise text similarity on massive

data-sets, using the Cosine Similarity metric and the tf-idf (Term Frequency-

Inverse Document Frequency) normalization method is proposed. The research

approach is mainly focused on the MapReduce paradigm, a model for pro-

cessing large data-sets in parallel manner, with a distributed algorithm on com-

puter clusters. Through MapReduce model application on each step of the pro-

posed method, text processing speed and scalability is enhanced in reference to

other traditional methods. The CSMR (Cosine Similarity with MapReduce)

method’s implementation is currently at the implementation stage. Precise and

analytical conclusions concerning the efficiency of the proposed method are to

be reached upon completion and review of the overall project phases.

Keywords: MapReduce, Hadoop, TF-IDF, Text Mining, Cosine Similarity

1 Introduction

Nowadays, as the data amount grows rapidly, challenge of big data need to be faced

[1] in various domains such as Business Intelligence [2] or Bioinformatics [3, 4].

With ever increasing volume of text documents, the abundant texts flowing over the

Internet, huge collections of documents in digital libraries and digitized personal in-

formation are collected quickly every day [5]. In this paper, an innovative method for

text similarity measuring with the use of common techniques and metrics is proposed.

In particular, a prospective of applying tf-idf [6] and Cosine Similarity [7] measure-

ments on distributed text processing is further analyzed. The CSMR (Cosine Similari-

ty with MapReduce) method includes the component of document pairwise similarity

calculation. Especially, CSMR method performs pairwise text similarity with the use

of a parallel and distributed algorithm which scales up, regardless the massive input

size. This is utilized with the use of MapReduce component of the Hadoop Frame-

work. The authors’ proposed method consists by two main components: tf-idf and

Cosine Similarity. In this study, these components are designed by following the con-

cept of the MapReduce programming model. Initially, the terms of each document are

counted. Secondly, texts are normalized with the use of tf-idf. Finally, Cosine Simi-

larity of each document pair is calculated and results are given as an output. The

CSMR method is proposed as a faster and more efficient method comparing to the

traditional methods. This is due to MapReduce model implementation in each algo-

rithmic step tends to enhance method’s efficiency as well as to the aforementioned

techniques innovative blend.

2 Related Work

There are quite many cases where several methods have been used for measuring

similarity among texts.

Tamer Elsayed et.al [8] method focuses on a MapReduce algorithm for computing

pairwise document similarity in large document collections. The algorithm proposed

exhibits linear growth in running time and space, in terms of the number of docu-

ments. This algorithm is suggested as an example of a programming paradigm that

could be useful for a broad range of text analysis problem. Another approach has been

proposed by Bin Li et.al [9], i.e. a tf-idf algorithm based on the Hadoop framework.

This method is using the MapReduce model provided by Hadoop in order to improve

the efficiency of traditional tf-idf algorithm. This case study showed that in the case

of massive data computing, Hadoop framework implementation is more efficient

comparing to the traditional method.

Jacob Bank et.al [10] use a different approach in order to analyze the vast amounts of

data associated with large-scale social networks on the web with the use of the

MapReduce program. The Jaccard similarity coefficient between users of Wikipedia

based on co-occurrence of page edits is proposed. After several separate linear time

computations it was con-firmed that this approach was superior to quadratic computa-

tions on long lists of data. Calculating the Jaccard Similarity Coefficient with Map

Reduce for Entity Pairs in Wikipedia.

Furthermore, Jian Wan et.al [11] proposed an approach about how document cluster-

ing for large collection could be efficiently implemented with MapReduce. Addition-

ally tf-idf and K-Means algorithm on MapReduce design and implementation is de-

scribed in order to improve algorithm efficiency and effectiveness. Experimentation

confirmed the scalability of processing mass data proposed method.

Ping Zhou et.al [12] supplementary research in reference to large-scale data sets clus-

tering amplification a parallel K-Means algorithm based on MapReduce framework is

proposed. Model’s implementation results illustrated that the proposed clustering

algorithm running on Hadoop cluster preserve a higher performance while handling

large-scale document automatic classification. In the above mentioned methods deal-

ing with text clustering, there is none or only a slight and indirect approach via Cosine

Similarity in order to improve processing speed and scalability.

Finally, according to Rada Mihalcea et.al [13] approach a method for measuring the

semantic similarity of short texts, using corpus-based and knowledge-based measures

of similarity is presented. Through experiments per-formed on a paraphrase data set,

semantic similarity method outer-forms methods based on simple lexical matching,

resulting in up to 13% error rate reduction with respect to the traditional vector-based

similarity metric. On the contrary, they focus to the aspect that Cosine Similarity, tf-

idf as well as other methods can be used for text similarity measuring. There are also

some approaches using MapReduce but, according to authors’ knowledge, none of

them proposes a model with tf-idf and Cosine function.

Authors’ proposed method combines overall of these 3 powerful techniques, i.e. tf-

idf, Cosine Similarity and MapReduce and provides a powerful and scalable algo-

rithm suitable for various purposes on Data Mining, especially on Text Processing on

big, massive data-sets.

3 Basic Background

According to the project needs, three techniques had been chosen: The Vector Space

Model, tf-idf and Cosine Similarity. Each of these techniques is being described in

detail below.

3.1 Vector Space Model

Vector Space Model is an algebraic model for representing text documents as vectors.

[14] With the use of this model, each term of a document and each number of occur-

rences in the document could be represented [15]. For instance, the document d1 =

“This is a vector, this is algebra” based on a vocabulary 𝑉(𝑡) could be represented as

follows:

1, " "

2, " "

() 3, " "

4, " "

5, " lg "

t this

t is

V t t a

t vector

t a ebra

 
 


  

  
 
 

  

 𝑑1 = (𝑡𝑓(1, 𝑑1), 𝑡𝑓(2, 𝑑1), 𝑡𝑓(3, 𝑑1), 𝑡𝑓(4, 𝑑1), 𝑡𝑓(5, 𝑑1))

= (2,2,1,1,1)

Where d1 is the document and (,)itf t d is the term frequency of the t-term in the ith

document.

3.2 Tf-Idf

In Text Mining, tf-idf (Term Frequency-Inverse Document Frequency) [6] is a numer-

ical statistic that reflects the significance of a term in a document in a corpus. The

importance increases proportionally to the number of times a word appears in the

document but is offset by the frequency of the word in the corpus. Tf-idf algorithm is

usually used in search engine, web data mining, text similarity computation and other

applications [16]. These applications are often faced with massive data processing.

According to Bin Li [9]approach the tf-idf of a term is calculated with the use of the

following formula:

 , | |
log

| | | : |

i j

j

n D
TF IDF

t d d D t d
  

  

3.3 Cosine Similarity

Cosine Similarity is a measure of similarity between two vectors of an inner product

space that measures the cosine of the angle between them [17]. For document cluster-

ing, there are different similarity measures available. The Cosine function is proposed

as the most commonly used. For two documents A and B, the similarity between them

is calculated with the use of the following formula:

1

1 2 2

1 1

cos(A,B)
|| A || || B ||

() ()

n
i i

n
i

i i

i i

A BA B

A B


 


 




 

When the cosine value is computed to be 1, that indicates that the two documents are

identical and while it is computed to be 0 if there is nothing in common between them

(i.e., their document vectors are orthogonal to each other). The attribute vectors A and

B are usually the term frequency vectors of the documents.

3.4 Hadoop & MapReduce

Hadoop software library [18], is a framework developed by Apache, suitable for scal-

able, distributed computing. It allows storage and large-scale data processing across

clusters of commodity servers [19]. The innovative aspect of Hadoop is that there is

no absolute necessity of expensive, high-end hardware. Instead, it enables distributed

parallel processing of massive amounts of data [20] on industry-standard servers with

high scalability for both data storing and processing. Therefore it is considered to be

one of the most popular frameworks for Big Data Analytics. Especially, Hadoop has

two main subprojects: HDFS (Hadoop Distributes File System) & MapReduce.

MapReduce [21] is the main component of Hadoop. It’s a programming model that

allows massive data processing across thousands of servers in a Hadoop cluster. The

MapReduce paradigm is derived from the Map and Reduce functions of the Function-

al Programming model [22]. A MapReduce program constitutes from the Mappers

and the Reducers. In the Map phase, the master node the master node divides the in-

put into smaller partitions and distributes them to the worker nodes. Then a worker

node may repeat the same step recursively. As soon as this procedure is completed,

the master node collects the key-value pairs resulted from the Mappers and distributes

them to the Combiners to combine the pairs with the same key. This phase is known

as the Shuffle & Sort phase. Finally, the key-value pairs are distributed to the Reduc-

ers that produce the final output. This step is called the Reduce phase. MapReduce

program procedure is visualized as follows:

Fig. 1. MapReduce Procedure Visualization

4 Method

4.1 Description

Authors’ proposed method for measuring text similarity applying MapReduce con-

sists of 4 stages. At the first stage, occurrences of each term in our documents are

counted. Then, the term frequency of every one term in each document is measured.

Thereafter the tf-idf of each term is measured and finally the cosines of the pairs are

calculated in order to estimate the similarity among them. MapReduce model was

used in order to design each one of the above mentioned steps. The algorithm para-

digm in pseudocode and further analysis of each step is disposed in details in the next

section.

4.2 MapReduce Stages

In the 1st implementation stage the occurrences of each term in every document are

counted. The algorithm applied is as follows:

Algorithm 1: Word Count

1: class Mapper

2: method Map(document)

3: for each term ∈ document

4: write ((term , docId) , 1)

5:

6: class Reducer

7: method Reduce((term , docId) , ones[1 , 1 , … , n])
8: sum = 0

9: for each one ∈ ones do

10: sum = sum +1

11: return ((term , docId) , o)
12:

13: /* { o ∈ N : the number of occurrences } */

Initially, each document is divided into key-value pairs. The term is selected as the

key as well as the number one as the value. That is denoted as (term, 1) where key

corresponds to the term and the value to the number one respectively. This phase is

known as the Map Phase. In the Reduce Phase each pair is taken and the sum of the

list of ones for the term is computed. Finalizing, the key is set as the tuple (document,

term) and the value as the number of occurrences respectively.

In the 2nd implementation phase the overall number of terms of each document is

computed.

Algorithm 2: Term Frequency

1: class Mapper

2: method Map((term , docId) , o)

3: for each element ∈ (term , docId)

4: write (docId, (term, o))

5:

6: class Reducer

7: method Reduce(docId, (term, o))

8: N = 0

9: for each tuple ∈ (term, o) do

10: N = N + o

11: return ((docId, N), (term, o))

By this algorithm implementation, concerning the Map Phase, the input is divided

into key-value pairs while the docId is set as the key in addition to the tuple (term, o)

as the value. In the reduce phase the total of terms in each document is counted and

the key-value pairs are returned with the (DocId, N) as the key as well as the tuples

(term, o) as the value (N is the total of terms in the document). The key-value pairs

are returned with the tuples (docId, N) as the key and the tuples (term, o) as the value,

where N is the total of terms in the document.

In the 3rd implementation stage the tf-idf of each term in a document is computed with

the use of the following formula:

| |

|{ : |

n D
tfidf

N d D t d


 

Where |D| is the number of the documents in corpus and |{ : }|d D t d  number of

documents where t-term appears.

Algorithm 3: Tf-Idf

1: class Mapper

2: method Map((docId , N), (term , o))

3: for each element ∈ (term , o)

4: write (term, (docId, o, N))

5:

6: class Reducer

7: method Reduce(term, (docId , o , N))

8: n = 0
9: for each element ∈ (docId , o , N) do

10: n = n + 1

11: tf = o / N

12: idf =  log | D | /(1 n)

13: return (docId, (term , tf×idf))

14:

15: /* Where |D| is the number of documents in the corpus */

Applying the aforementioned algorithm, during the Map Phase the term is set as

the key as well as the tuple (docId, o, N) as the value. In that case, the number of

documents is calculated by the reducer, where the term appears and the result to

the n variable is set. The term frequency is subsequently calculated plus the in-

verse document frequency of each term as well. Finally, key-value pairs with the

docId as the key and the tuple (term, tf×idf) as the value are taken as a result.

In the 4th and final implementation phase all the possible combinations of two

documents pairs are provided and cosine for each of them is computed. Assum-

ing that there are n documents in the corpus, a similarity matrix of size is gener-

ated as follows:

!

2 2!(2)!

n n

n

 
 

 

Algorithm 4: Cosine Similarity

16: class Mapper

17: method Map(docs)

18: n = docs.length

19:

20: for i = 0 to docs.length

21: for j = i+1 to docs.length

22: write ((docs[i].id, docs[j].id),(docs[i].tfidf, docs[j].tfidf))

23:

24: class Reducer

25: method Reduce((docId_A, docId_B),(docA.tfidf, docB.tfidf))

26: A = docA.tfidf

27: B = docB.tfidf

28: cosine = sum(A×B)/ (sqrt(sum(A2))× sqrt(sum(B2)))

29: return ((docId_A, docId_B), cosine)

In the Map phase, implementing the abovementioned algorithm, every potential

combination of the input documents is generated and the document IDs for the

key as well as the tf-idf vectors for the value is set. Within the Reduce phase, co-

sine for each document pair is calculated and the similarity matrix is also provid-

ed. Algorithm 4 is visualized as follows:

Doc1,Doc2

[Doc1 TF-IDF], [Doc2 TF-IDF]

Doc1,Doc3

[Doc1 TF-IDF], [Doc3 TF-IDF]

Doc1,Doc4

[Doc1 TF-IDF], [Doc4 TF-IDF]

Doc4,Doc10

[Doc4 TF-IDF], [Doc10 TF-IDF]

DocM,DocN

[DocM TF-IDF], [DocN TF-IDF]

Map

Doc1,Doc2

Cosine(Doc1, Doc2)

Doc1,Doc3

Cosine(Doc1, Doc3)

Doc1,Doc4

Cosine(Doc1 ,Doc4)

Doc4,Doc10

Cosine(Doc4, Doc10)

DocM,DocN

Cosine(DocM, DocN)

Reduce

Input Output

Fig. 2. Algorithm 4 Visualization

5 Discussion

In this case study, popular methods for measure the similarity of texts had been used.

In particular, tf-idf and Cosine Similarity were adjusted with the MapReduce model in

order to propose an innovative and scalable method. Authors’ approach enhances the

innovative aspect of the MapReduce programming paradigm in the field of text pro-

cessing. The key contribution is that the proposed method enhances the procedure of

measuring the text similarity with the Cosine metric and increase algorithm scalabil-

ity. The implementation of the aforementioned techniques on computer clusters run-

ning the Hadoop Distributed File System (HDFS) blended with MapReduce also en-

sure algorithms effectiveness. The proposed method is currently at the design and

implementation stage. Therefore, more clear and specific conclusions for its efficien-

cy, as well as proposals for revisions and improvement, are to be provided after the

projects' overall implementation.

Authors’ future work concerns the finalized proposed method version as well as sta-

tistically analyzed results of the data collected during piloting implementation proce-

dure presentation. In addition the software’s design and development for the CSMR

algorithm implementation on real text files is ongoing. An additional research ap-

proach is the implementation of the abovementioned algorithm with the use of tools

like Apache Spark and Scala [23] as well as an Open Source project implemented in

Java.

Acknowledgements. This research has been co-financed by the European Union

(European Social Fund – ESF) and Greek national funds through the Operational

Program "Education and Lifelong Learning" of the National Strategic Reference

Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge

society through the European Social Fund.

References

1. Wu X, Zhu X, Member S (2014) Data Mining with Big Data. 26:97–107.

2. Chen H, Storey VC (2012) B USINESS I NTELLIGENCE AND A NALYTICS : F ROM B
IG D ATA TO B IG I MPACT. 36:1165–1188.

3. Taylor RC (2010) An overview of the Hadoop/MapReduce/HBase framework and its current

applications in bioinformatics. BMC Bioinformatics 11 Suppl 1:S1. doi: 10.1186/1471-
2105-11-S12-S1

4. Matsunaga A, Tsugawa M, Fortes J (2008) CloudBLAST: Combining MapReduce and

Virtualization on Distributed Resources for Bioinformatics Applications. 2008 IEEE
Fourth Int Conf eScience 222–229. doi: 10.1109/eScience.2008.62

5. Huang A (2008) Similarity Measures for Text Document Clustering.

6. Ramos J, Eden J, Edu R Using TF-IDF to Determine Word Relevance in Document Queries.

7. Tata S, Patel JM, Science C, Arbor A (2007) Estimating the Selectivity of tf-idf based

Cosine Similarity Predicates. 36:7–12.

8. Elsayed T, Lin J, Oard DW (2008) Pairwise Document Similarity in Large Collections with

MapReduce. 265–268.

9. Bin L, Yuan G (2012) Improvement of TF-IDF Algorithm Based on Hadoop Framework.
Proc 2nd Int Conf Comput Appl Syst Model 391–393. doi: 10.2991/iccasm.2012.98

10. Bank J, Cole B (2008) Calculating the Jaccard Similarity Coefficient with Map Reduce for
Entity Pairs in Wikipedia.

11. Wan J, Yu W, Xu X (2009) Design and Implement of Distributed Document Clustering
Based on MapReduce. 7:278–280.

12. Zhou P, Lei J, Ye W (2011) Large-Scale Data Sets Clustering Based on MapReduce and
Hadoop. 16:5956–5963.

13. Mihalcea R, Corley C, Strapparava C (2005) Corpus-based and Knowledge-based Measures
of Text Semantic Similarity.

14. Turney PD (2010) From Frequency to Meaning : Vector Space Models of Semantics.

37:141–188.

15. Raghavan V V., Wong SKM (1986) A critical analysis of vector space model for
information retrieval. J Am Soc Inf Sci 37:279–287. doi: 10.1002/asi.4630370502

16. Terms RT NRC Publications Archive Archives des publications du CNRC Coherent

Keyphrase Extraction via Web Mining Coherent Keyphrase Extraction via Web Mining
*.

17. Kalaivendhan K, Sumathi P (2014) An Efficient Clustering Method To Find Similarity
Between The Documents. 2:2532–2535.

18. Shvachko K, Kuang H, Radia S, Chansler R (2010) The Hadoop Distributed File System.

2010 IEEE 26th Symp Mass Storage Syst Technol 1–10. doi:

10.1109/MSST.2010.5496972

19. Lin X, Meng Z, Xu C, Wang M (2012) A Practical Performance Model for Hadoop

MapReduce. 2012 IEEE Int Conf Clust Comput Work 231–239. doi:
10.1109/ClusterW.2012.24

20. Ekanayake J, Pallickara S, Fox G (2008) MapReduce for Data Intensive Scientific
Analyses. 2008 IEEE Fourth Int Conf eScience 277–284. doi: 10.1109/eScience.2008.59

21. Dean J, Ghemawat S MapReduce : Simplified Data Processing on Large Clusters. 1–13.

22. Lämmel R (2008) Google’s MapReduce programming model — Revisited. Sci Comput

Program 70:1–30. doi: 10.1016/j.scico.2007.07.001

23. Zaharia M, Chowdhury M, Franklin MJ, et al. Spark : Cluster Computing with Working

Sets.

