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Chapter 11

REINFORCEMENT LEARNING USING
MONTE CARLO POLICY ESTIMATION
FOR DISASTER MITIGATION

Mohammed Talat Khouj, Sarbjit Sarkaria, Cesar Lopez and Jose Marti

Abstract

Urban communities rely heavily on the system of interconnected critical
infrastructures. The interdependencies in these complex systems give
rise to vulnerabilities that must be considered in disaster mitigation
planning. Only then will it be possible to address and mitigate major
critical infrastructure disruptions in a timely manner.

This paper describes an intelligent decision making system that opti-
mizes the allocation of resources following an infrastructure disruption.
The novelty of the approach arises from the application of Monte Carlo
estimation for policy evaluation in reinforcement learning to draw on
experiential knowledge gained from a massive number of simulations.
This method enables a learning agent to explore and exploit the avail-
able trajectories, which lead to an optimum goal in a reasonable amount
of time. The specific goal of the case study described in this paper is
to maximize the number of patients discharged from two hospitals in
the aftermath of an infrastructure disruption by intelligently utilizing
the available resources. The results demonstrate that a learning agent,
through interactions with an environment of simulated catastrophic sce-
narios, is capable of making informed decisions in a timely manner.

Keywords: Disaster response, Monte Carlo estimation, decision assistance agent

1.

Introduction

All of modern society, but in particular urban communities, rely heavily on
the system of interconnected critical infrastructures. These systems are inher-
ently complex in terms of interconnections and interdependencies. Thus, they
are vulnerable to major disruptions that could cascade to other dependent sys-
tems with possible disastrous consequences. For example, the Indian Blackout
of 2012 — the largest power blackout in history — caused massive disruptions
to medical facilities, transportation systems, water treatment plants and other
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interconnected infrastructures. It resulted in the loss of power to 600 million
people, trapping miners, stranding railway passengers and plunging hospitals
into darkness [6]. Such catastrophic incidents reveal the need for efficient plan-
ning and, more importantly, the need for careful decisions to be taken during
the first few hours following an incident. The decisions are critical to success-
ful mitigation, damage management, death prevention, injury, structural loss,
control of financial costs and, ultimately, the overall resolution of the crisis [9].

This paper describes an intelligent decision making system that optimizes
the allocation of resources following an infrastructure disruption and suggests
how the resources may be utilized during disaster response. An underlying
intelligent learning agent interacts continuously with a simulated environment
and uses reinforcement learning (RL) to discover a policy that optimizes a long-
term reward. The learning system employs Monte Carlo (MC) estimation for
policy evaluation in reinforcement learning to gain experiential knowledge over
a massive number of simulations using the interdependent critical infrastructure
simulator (i2Sim). The approach enables the learning agent to explore and
exploit the possible trajectories that lead to an optimum goal in a reasonable
period of time.

2. Related Work

This section describes related work in the areas of disaster mitigation in
interdependent critical infrastructures, agent-based modeling for disaster miti-
gation and disaster mitigation applications using reinforcement learning.

2.1 Disaster Mitigation

Critical infrastructures are characterized by complex interconnections and
interdependencies. These systems are vulnerable to major disturbances that
can cascade to other dependent systems, potentially leading to national dis-
asters (Figure 1). Interdependencies between infrastructures are bi-directional
relationships through which the state of one infrastructure is influenced by or
correlated with the states of other infrastructures [15]. Thus, it is essential
to address the resource allocation problem in the context of interdependent
critical infrastructures for better mitigation planning.

The optimization of resource allocation in interconnected critical infrastruc-
tures is a topic that has been addressed extensively. For instance, Min, et al. [13]
have presented an integrated system to model the physical and financial im-
pacts attributed to critical infrastructure interdependencies. Their framework
comprises a system dynamics model, functional model and a non-linear opti-
mization model. The purpose of the system dynamics model is to analyze the
interdependencies between individual infrastructure components. The func-
tional model is used to define the data requirements and the information ex-
changed between the models. The non-linear model enables the determination
of optimal values of the control variables. The purpose of the work is to enable
officials to respond to potential disruptions in a timely and effective manner.
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Figure 1. Interconnected critical infrastructures.

O’Reilly, et al. [14] have specified a system dynamics model that describes
the interactions between interconnected critical infrastructures. They use the
model to analyze the impact of a telecommunications infrastructure failure on
emergency services. The important conclusion is that lost communications
negatively impacts medical services and drastically increases treatment costs.

Similarly, Arboleda, et al. [2] have addressed the impact of failures of inter-
dependent infrastructure components on the operation of healthcare facilities.
The goal was to determine the unsatisfied demand of interconnected infras-
tructure systems and the resulting costs using a network flow model. Linear
programming was used to assess the level of interdependency between a health-
care facility and the primary infrastructure systems linked to it.

In other work, Arboleda and colleagues [1] examined the internal operating
capabilities of healthcare facilities in terms of the interactions between different
service areas (emergency room, intensive care unit, operation room and wards).
This was performed using a system dynamics simulation model. The goal was
to assess the vulnerabilities of a healthcare facility during a disaster. The
approach enabled the identification of policies to best mitigate the effects of a
disruption.

Arboleda, et al. [3] have also integrated a network flow model and system
dynamics model. This was done to simulate the impact of infrastructure system
disruptions on the provision of healthcare services.

These studies and others make it clear that wise decisions to reallocate and
utilize the available resources are vital when dealing with interconnected critical
infrastructures. Informed decisions can potentially mitigate death and devas-
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tation following natural or human-initiated catastrophes. The decisions must
be made on the basis of sound knowledge and experience. In fact, the work de-
scribed in this paper is motivated by the fact that decisions need to be carefully
studied and pre-assessed before they are implemented. Moreover, they must
be monitored and modified as the situation evolves. The next section discusses
the application of agent-based models to address these issues.

2.2 Agent-Based Modeling

An agent-based model is a system of multiple autonomous decision mak-
ing entities called agents. The agents are capable of sensing and interacting
with each other within a modeled environment based on a set of predefined
rules. The rules govern the behavior of the modeled agents and enable them
to perform appropriate actions.

Agent-based modeling offers three key advantages in the context of real-
world applications [5]. First, it can capture emergent behavior that results from
the interaction of individual entities (agents). Second, it facilitates detailed
system descriptions by modeling and simulating the behavior of interacting
entities. Third, it provides great flexibility to tune the complexity of individual
entities to scenarios of interest.

These advantages have encouraged the application of agent-based modeling
approaches by the disaster response community, the objective being to enhance
disaster mitigation efforts. Atanasiu and Leon [4] have developed a multi-agent
system based risk assessment tool for seismic hazards. Their tool, which incor-
porates an adaptive knowledge base, is designed to help create a risk manage-
ment plan for better earthquake safety and response. The approach simulates
emergency response actions for a set of earthquake scenarios at different ur-
ban locations. The results, which are displayed using a geographic information
system (GIS), helps improve the quality of decision making. The decisions
are typically made post-event for restoration and recovery operations aimed at
rehabilitating the damaged infrastructure.

Thapa, et al. [18] have proposed an agent-based model for patient informa-
tion acquisition and real-time decision making during emergencies. The model
seeks to promote timely diagnosis and treatment of high-risk patients during
emergency situations. The approach engages reinforcement learning in con-
junction with an embedded dynamic programming mechanism to evaluate and
improve a system value function and its policy.

2.3 Reinforcement Learning

Applications of reinforcement learning in agent-based models have attracted
the interest of the critical infrastructure research community. The machine
learning technique enables an agent to gain experiential knowledge by interact-
ing with a massive number of disaster scenarios. The trained agent is then able
to assist in disaster mitigation.
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Wiering and Dorigo [19] have developed an intelligent system that enables
decision makers to mitigate the consequences of natural and human-initiated
disasters (e.g., forest fires). Such disasters involve many interacting sub-pro-
cesses that make it difficult for human experts to estimate costs. The system
of Wiering and Dorigo uses reinforcement learning to learn the best policy or
actions to be chosen in a variety of simulated disaster scenarios.

Su, et al. [16] have proposed a path selection algorithm for disaster response
management. The algorithm is designed for search and rescue activities in
dangerous and dynamic environments. The algorithm engages reinforcement
learning to help disaster responders discover the fastest and shortest paths to
targeted locations. To accomplish this, a learning agent interacts with a two-
dimensional geographic grid model. After a number of trials, the agent learns
how to avoid dangerous states and to navigate around inaccessible states.

3. Intelligent Decision Making

This section discusses how a reinforcement learning agent can be used for
resource allocation in simulated interdependent critical infrastructures. The
scenarios are modeled using i2Sim, a hybrid discrete-time simulator, which
can handle vast numbers of interactions with the reinforcement learning agent.
The simulated environment is based on an urban community similar to the
Downtown Vancouver Model [8]. The model incorporates four electrical power
substations (P1, P2, P3 and P4), a water pumping station (W) and infras-
tructure assets such as venues (V1 and V2) and hospitals (H1 and H2). The
continued interactions enable the agent to learn, improve its performance and
make optimal decisions.

3.1 i2Sim

i2Sim is a hybrid discrete-time simulator that combines agent-based model-
ing with input-output production models. The simulator can model and play
out scenarios involving interdependent systems. i2Sim is designed as a real-
time simulator that can also serve as a decision support tool while a disaster is
actually occurring. The simulation capability of i2Sim enables decision mak-
ers to evaluate the predicted consequences of suggested actions before they are
executed [10].

The dynamic aspects of an i2Sim model are implemented by the movement
of tokens between i2Sim production cells (i.e., modeled infrastructures such as
power stations) through designated channels (i.e., lifelines such as water pipes).
In fact, i2Sim cells and channels correspond to discrete entities in the real world.
Figure 2 presents an example i2Sim model.

In i2Sim, each production cell performs a function. A function relates the
outputs to a number of possible operating states — physical modes (PM) and
resource modes (RM) — of the system. At every operating point along an
event timeline, the i2Sim description corresponds to a system of discrete time
equations expressed as a transportation matrix (Figure 3). The transportation
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Figure 3. Transportation matrix showing infrastructure interdependencies [11].

matrix shows the interdependencies between the simulated quantities. In par-
ticular, the matrix in Figure 3 relates input quantities (XP1, XP2, ..., XS8,
XS9) that arrive at the cells with the quantities that are produced as outputs
of other cells (YP10, YP11, ..., YS17, YS18). These outputs can be distributed
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(via distributors) or aggregated (via aggregators) before being supplied to other
cells. For instance, a water pumping station depends on water and electricity
that are supplied by other cells (water supply and electrical power station). In
row W5 of the transportation matrix, XW5 (water arriving at cell 5) comprises
water that outputs from cells YW13, YW14 and YW15 (through X coefficients
(internal links)) and power that outputs from cell YP10 (through Y coeffi-
cients (interdependent links)). The pumped water is distributed to a number
of interconnected critical infrastructures [11].

3.2 Reinforcement Learning

Reinforcement learning [17] is a machine learning technique based on in-
teractions between an agent and its environment. These interactions enable
a reinforcement learning agent to maximize a time-delayed goal in the pres-
ence of uncertainty. Reinforcement learning occurs through the accumulation
of experience, with the goal of finding actions that yield the greatest long-term
rewards.

The actions taken in a given situation are determined by a policy realized by
an action-value function. In general, reinforcement learning provides three ways
of learning the policy: (i) dynamic programming; (ii) Monte Carlo estimation;
and (iii) temporal difference. Monte Carlo estimation and temporal difference
are the favored methods because they are model free. We have chosen to employ
Monte Carlo estimation because it is well suited to learning from episodic prob-
lems of the type encountered in the disaster mitigation domain. Experimental
results involving similar work [8] reveal that convergence using step-by-step up-
dates as prescribed by temporal difference learning take 2.6 times longer than
episode-by-episode based updates as used in Monte Carlo estimation. The goal
of the learning agent is to approximate the optimal action-value function lead-
ing to the best long-term reward that corresponds to the best trajectory. This
recursive-learning algorithm uses incremental episode-by-episode back-ups to
solve the well-known Bellman equation [17].

The back-up formula is defined by the following equations for terminal and
non-terminal states, respectively:

Q(s,a) «— Q(s,a)+ a[Rr +vRr — Q(s,a)] (terminal) (1)
Q(s,a) «— Q(s,a)+ a[R; +ymaz,Q(s’,a") — Q(s,a)] (non-terminal) (2)

where Q(s,a) is the action-value function of the current state-action pair;
Q(s',a’) is the action-value function of the next state-action pair; a is the
learning rate (i.e., extent to which the newly-required information overrides
old information); R; is the immediate reward; Ry is the terminal reward; and
~ is the discount rate (i.e., influence that future rewards have on the learning
process).

In Monte Carlo estimation, the back-up equation is used to recursively apply
the terminal reward starting at the terminal state and back-stepping all the way
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Table 1. Sample lookup table (s: state, a: action).

(<s>,<a>) Q(s,a)
(< PMXP4, RMY P4, PMXW,RMYW >,< DP4, DW >) -

to the start state. The estimate is computed by averaging the samples that are
returned.

The action-value function can be implemented as a lookup table. The table
associates a long-term predicted reward Q(s,a) value with each state-action
pair defined for the modeled system. The table represents the acquired expe-
rience of the reinforcement learning agent and is updated during the learning
process.

Note that the simulated system presents the state of the modeled environ-
ment that is detected by the learning agent. In the example considered here,
the state is defined using two critical infrastructures: Power Station 4 and the
Water Pumping Station. The physical mode (PM) and the resource mode (RM)
of Power Station 4 and the Water Pumping Station are specified as PMXP4 and
RMYP4 for power, and PMXW and RMYW for water. The values of X and Y
range from one to five. When X has a value of one, the modeled infrastructure
has no physical damage; when X is equal to five, the modeled infrastructure
has collapsed completely. Similarly, when Y has a value of one, all the required
resources to maintain the minimum functionality of the modeled infrastructure
are available; when Y is equal to five, the required resources are not available.

Table 1 presents a sample lookup table used by the learning agent. In the ta-
ble, the state-action pairs are captured using the variables: PMXP4, the Power
Station 4 physical mode (state); RMYP4, the Power Station 4 resource mode
(state); PMXW, the Water Pumping Station physical mode (state); RMYW,
the Water Pumping Station resource mode (state); DP4, the Power Station 4
distributor (action); and DW, the Water Pumping Station distributor (action).

3.3 RL-MC Based Learning

The primary contribution of this paper is the application of reinforcement
learning with Monte Carlo estimation (RL-MC) to problems involving intercon-
nected and interdependent critical infrastructures. In the RL-MC approach, the
problem is formulated as follows: the operating mode (physical mode and re-
source mode) of each modeled infrastructure unit represents the state of the
targeted system. The distribution ratio of the available resources (associated
with every modeled critical infrastructure) represents the actions that the agent
can perform at every visited state. Every state-action pair is represented by a
utility function that estimates the probability of obtaining the long-term reward
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upon choosing action a in state s. The estimate is computed by averaging the
sampled returns over the long term. (In the scenario considered in this paper,
the return is the expected number of discharged patients from two hospitals,
H1 and H2). Terminal (R7) and immediate rewards (R;) are applied in the
RL-MC approach.

The learning system (RL-MC) is implemented as a Java program that com-
municates with the simulator (i2Sim), which is realized in MATLAB (Figure 4).
Communications are established via a software interface designed to support
data transfer between MATLAB and the Java program. The interface allows
the states of the simulated system and actions from the learning agent to be
exchanged [7]. From i2Sim, the agent recognizes the state of the simulated en-
vironment based on the physical operability (PM) and the resource availability
(RM) of the modeled infrastructures. The state is identified by the operating
conditions of two critical infrastructures, Power Station 4 and Water Pumping
Station (PMXP4, RMYP4, PMXW, RMYW). Accordingly, the agent selects
the best distribution ratios (actions) for the distributors associated with Power
Station 4 and the Water Pumping Station (DP4 and DW). The chosen ac-
tion uses the distribution of the monitored resources (power and water) that
maximizes the total number of discharged patients from hospitals H1 and H2.

The choice of Monte Carlo estimation over the temporal difference and dy-
namic programming approaches is also motivated by the need to reduce intra-
system communications in the architecture. In a reinforcement learning with
temporal difference (RL-TD) approach, communications between the agent and
i2Sim (Figure 4) introduce an overhead that is incurred at every time step [8].
In fact, a significant portion of the computational time is due to the MATLAB-
Java communications interface alone. In the case of RL-MC, the communica-
tions overhead occurs only twice per episode, once at the beginning and once at
the end. Consequently, the communication time is reduced by almost a factor
of three, which is advantageous when modeling complex systems.
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3.4 RL-MC Algorithm

This section provides a technical description of how the RL-MC approach is
realized within i2Sim.

In the RL-MC approach, the learning agent interacts with the modeled en-
vironment episodically. The agent follows a policy defined by the state-action
value function. The agent attempts to learn an optimal policy. This sampling
process terminates at a terminal state. At the terminal state, the estimation
of the terminal state-action value function Q(s,a) is determined based on the
total return that is observed at the end of each episode using Equation (1).
This process averages the observed total returns of the visited states in the
trajectory. For non-terminal states, the estimation of Q(s,a) occurs by back-
stepping Equation (2) to all state-action values in the sampled trajectory for
each episode. In the limit, the learning agent successfully discovers the opti-
mum trajectory.

The learning system implements the tabular form of the Q-learning algo-
rithm using RL-MC. The lookup table is used to determine the action that is
to be performed at the next state of the modeled environment. At any given
state s, the learning agent performs an action a that delivers an adequate
amount of resources (power and water) to the interconnected infrastructures.
Note that 110 actions (N, = 110) and 225 states (N5 = 225) are considered in
modeled system. Each action a comprises instructions that specify the ratios of
the five outputs of the P4 distributor (DP4) and the two outputs of the water
distributor (DW). DP4 distributes power from Power Station 4 to five intercon-
nected critical infrastructures: Hospital 1 (H1), Water Pumping Station (W),
Venue 1 (V1), Power Station 2 (P2) and other interconnected infrastructures
(Oth.). DW distributes the pumped water to the two modeled hospitals, H1
and H2.

The action vector a expresses the distribution ratios of the two distributors:

DP4 — H1
DP4 — W
DP4 — V1
a= DP4 — P2 (3)
DP4 — Oth.
DW — H1
DW — H2

Given an initially-untrained lookup table, the RL-MC algorithm seeks to
find the optimal action to perform in each state (optimum trajectory). If it is
available, real-world experience could be used to initialize the lookup table as
a starting estimate of the optimum schedule.

The environment state s is a vector that represents the operating conditions
of the two modeled production cells (Power Station 4 and Water Pumping Sta-
tion). The Power Station 4 and Water Pumping Station states are given by
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PMXP4 and RMYP4 for power and PMXW and RMYW for water, respec-
tively. This can be represented at any given time by:

PM1P4 RM1P4 PM1W RM1W
PM1P4 RM1P4 PM1W RM2W

PM1P4 RM5P4 PMS5W RMOS5W
PM2P4 RM2P4 PM1IW RM1W
PM2P4 RM2P4 PMI1W RM2W

s=| PM2P4 RM5P4 PM5W RM5W (4)
PM3P4 RM5P4 PM5W RM5W

PM4P4 RMbHP4 PMOJW RMOHW

PM5P4 RM5P4 PM5W RM5W

The first row in the equation above corresponds to state s; = (PM1P4, RM1P4,
PMIW, RM1W), where PM1P4 is the Physical Mode 1 of Power Station 4,
RM1P4 is the Resource Mode 1 of Power Station 4, PM1W is the Physical
Mode 1 of the Water Pumping Station and RM1W is the Resource Mode 1 of
the Water Pumping Station.
The number of states Ny in the model (total number of rows in vector s) is
given by:
N, = ZzK =152 = 225 states (5)

where Z is the number of resource modes available for each controlled produc-
tion cell; and K is the number of controlled production cells.
The number of available actions N, is given by:

N, = DP4 x DW =10 x 11 = 110 actions (6)

where D P4 is the distributor associated with Power Substation 4; and DW is
the distributor associated with the Water Pumping Station.
The size of the lookup table Lg is given by:

Ls = Ny, x N, =225 x 110 = 24, 750 rows. (7)

The states and actions, as described above, suggest a theoretical maximum
lookup table size of 24,750 elements.

As the simulation progresses, the history of actions and immediate rewards
of each visited state (according to the policy) are accumulated. The immediate
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reward Rj is applied at every time step by computing the difference in the
discharged patients between the current and previous states:

RI = (NHI + NH2)current - (NHl + NH?)prem‘ous (8)

where Ny is the number of discharged patients from Hospital 1; and Npgo is
the number of discharged patients from Hospital 2. Note that the intermediate
reward is a function of the number of patients discharged.

The terminal reward Ry is calculated and applied at the final time step only
(terminal state) based on the total number of discharged patients from both
hospitals:

Ry = Ny1 + Npa. 9)

Each state-action value Q(s,a) is updated according to Equation (1) for a
terminal state or according to Equation (2) for a non-terminal state.

At the end of the episode, according to the RL-MC algorithm, this infor-
mation and the terminal reward Ry are back-stepped through the sequence of
state-action values performed during the episode.

4. Example Scenario

This section uses an example scenario to demonstrate the application of the
learning agent to an urban community model simulated by i2Sim (Figure 5).
The goal of the agent is to find the optimum trajectory that leads to the
maximum outcome. The expectation is that this approach will converge quickly
to the maximum number of discharged patients.

4.1 Environment Description

The simulated urban community model consists of nine interdependent crit-
ical infrastructure cells. The modeled cells are connected to each other through
channels (e.g., underground cables, water pipes and roads). The resources gen-
erated by different cells are aggregated or distributed to other interconnected
cells by control elements called aggregators and distributors such as power ag-
gregators and water distributors. A pre-defined scenario defines the capacity
and the operating parameters (input variables) of the modeled entities. The
information is obtained from public domain data or directly from facility man-
agers.

Four power cells are incorporated in the electricity infrastructure: Power
Station 1, Power Station 2, Power Station 3 and Power Station 4. The cells
determine the amount of power distributed to the system that comes in from
the high-voltage supply system. The stations are geographically separated.
Each power substation supplies a specific amount of power to its interconnected
critical infrastructures. For example, Power Station 4 supplies 586 MW to its
connected infrastructures (Hospital 1 and Water Pumping Station).

Similarly, the Water Pumping Station provides water to the connected hos-
pitals (Hospital 1 and Hospital 2). The Water Pumping Station obtains power
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from Power Station 4 and water from an external source. The output of the
cell is high pressure pumped water that goes to a water distributor, which
distributes the water via water channels (water pipes).

Venue 1 and Venue 2 are facilities that contain large numbers of people.
Venue 2 is more than 65,000 m? in area and hosts up to 60,000 people. Venue
1 is slightly smaller at about 44,000m? and hosts up to 20,000 people. It is
assumed that both venues are hosting events and are fully occupied. Thus, the
total population is 80,000.

Two hospitals are modeled, Hospital 1 (main hospital) and Hospital 2 (al-
ternative hospital). The input resources come from the four electrical power
stations (electricity) and the water pumping station (water). Based on the
availability of these resources, the rate of discharged patients for each hospital
is known from historical data.

4.2 Scenario Description

The scenario was configured to reflect the damage caused by an earthquake.
The simulated earthquake damaged Power Station 4. The physical structure
of the power substation was not affected, but the resource availability RM was
reduced due to a failure in one of the electrical feeders, RM2P4. Subsequently,
as a result of the reduced electrical power, the water facility was not able to
operate at full capacity and the power delivered to the venues and hospitals
was also affected.

The earthquake produced casualties due to panic and chaos as people at-
tempted to leave the venues. It was assumed that medical triage at the venues
takes an average of 30 minutes per injured person. Upon completion of the
assessment, emergency vehicles carried injured people to the emergency units
at the hospitals for treatment. The travel time was assumed to be ten minutes.

At the emergency units, all the arriving patients were served on a first-come-
first-serve basis. Thirty minutes was assumed to be required to stabilize each
trauma patient. The ability of the hospital to function at full capacity was, of
course, impacted due to the limited supply of power and water.

The goal of the learning agent was to experience this scenario and to suggest
a way to mitigate the impact on the hospitals. This was accomplished by ad-
justing the distribution ratios of the power and water distributors intelligently,
as discussed in the next section.

4.3 Simulation Results

The simulations involved 100 scenarios per test, where each scenario repre-
sented a ten-hour period following the disaster event. Upon starting a scenario,
the physical operability that represents the damage to the cells and channels
was set to model a disaster. Following this, no further changes were made with
regard to the extent of the damage. However, the available resources of the as-
sociated infrastructures change as the scenario evolves. The lookup table was
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Figure 6. Agent learning behavior under RL-MC.

initialized randomly at the start of the first scenario and learning continued
from one scenario to the next.

The model simulated a period of ten hours in five-minute increments. The
statistics and system latencies used by the simulator were taken from an internal
technical report [7]. The report helped guide the rates used in the simulation.
For example, a crowd of 80,000 is expected to have up to 480 injuries.

Figure 6 shows the results for two consecutive sets of trials that were ini-
tialized independently (light and dark lines). In both cases, the convergence to
an optimum solution occurred and all 480 patients were discharged from both
emergency units during the lifetime of the simulation.

During the early phases of learning in both trials, the agent had little or
no experience and was unable to maximize the number of discharged patients.
However, this was not the case in the later runs, where the agent showed
an ability to fully satisfy the demands of the modeled interconnected critical
infrastructures by carefully balancing resources across all the infrastructure
components.

In contrast, a naive decision maker might select a resource configuration
that would only favor the hospitals, but this would be a sub-optimal solution.
Instead, the actions taken by the trained agent were those that intelligently
utilized the available limited resources (power and water) without exhausting
them, which ultimately satisfied the sudden needs of all the interconnected crit-
ical infrastructures, including the venues and, most importantly, the hospitals.
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The simulation of each scenario required about three minutes using a com-
puter with an Intel Core i5 2.8 GHz CPU and 8 GB RAM. In total, 100 runs
took about 600 minutes. This is important in real-world deployments because
simulations should be faster than real time in order to assist emergency respon-
ders in making informed decisions as a situation unfolds.

4.4 System Deployment

We envisage that the intelligent agent would be deployed as part of a larger
software system aimed at providing decision assistance during actual emergen-
cies. The software system would incorporate an i2Sim simulator, a learning
agent, a library of pre-configured scenarios and an interface through which a
user would interact with the system.

The suggested usage flow would first require the user to identify the disaster
taking place in terms of the affected infrastructures. The system would provide
a list of scenarios from which the user would pick the best match (instead of
defining and entering a new scenario from scratch). In addition to the pre-
configured scenario, the system would make available a pre-trained agent for
the scenario. Should the scenario match be satisfactory, the human emergency
responder can look to the agent for suggested actions in the situation at hand.
If the scenario does not match the actual disaster, the user would have to
manually adjust the scenario to accurately reflect the real-world situation. The
pre-trained agent for the closest-matching scenario could still be used as a
starting point.

Using a pre-trained agent is the best option for reducing agent learning
time; learning by a trained agent is much faster than when an agent starts
with a blank slate. A second approach relies on human knowledge acquisition.
Important components of the knowledge and experience of trained emergency
responders would have to be identified and captured. The output of this activity
would be used to initialize the agent to reduce its learning time.

5. Conclusions

The modeling and analysis framework presented in this paper is an innova-
tive approach for studying the impact of natural or human-initiated disasters on
critical infrastructures and optimally allocating the available resources during
disaster response. The framework relies on i2Sim and reinforcement learning
using Monte Carlo policy estimation (RL-MC). i2Sim permits the simulation
of complex interconnected critical infrastructures while the RL-MC approach
supports rapid learning based on experiential knowledge in order to provide
intelligent advice on allocating limited resources. The experimental results re-
veal that decision makers can reduce the impact of disruptions by employing
the look-ahead and optimization features provided by the framework. The
loosely coupled nature of reinforcement learning also enables it to be applied
to a variety of resource optimization scenarios.
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Our future research will analyze the computational aspects of the learning
system. A speed versus accuracy trade-off exists between approaches that use
the conventional lookup table implementation of an action-value function and
other approaches that use function approximation techniques.
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