
HAL Id: hal-01383328
https://inria.hal.science/hal-01383328

Submitted on 18 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Sound and Complete Axiomatic System for Modality
ϕ ≡ _1ϕ ∧ _2ϕ

Shaobo Deng, Meiying Sun, Cungen Cao, Yuefei Sui

To cite this version:
Shaobo Deng, Meiying Sun, Cungen Cao, Yuefei Sui. A Sound and Complete Axiomatic System for
Modality ϕ ≡ _1ϕ ∧ _2ϕ. 8th International Conference on Intelligent Information Processing (IIP),
Oct 2014, Hangzhou, China. pp.152-160, �10.1007/978-3-662-44980-6_17�. �hal-01383328�

https://inria.hal.science/hal-01383328
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A Sound And Complete Axiomatic System For
Modality �ϕ ≡ �1ϕ ∧�2ϕ

Shaobo Deng∗,∗∗, Meiying Sun∗,∗∗, Cungen Cao∗, Yuefei Sui∗

*Key Laboratory of Intelligent Information Processing,
Institute of Computing Technology,
Chinese Academy of Science,
Beijing,
100190,
China
houjiyuan2002@163.com
**University of Chinese Academy of Sciences,
Beijing,
100049,
China

Abstract: An axiomatic system is presented in this paper, which has a modal
operator � such that �ϕ ≡ �1ϕ ∧ �2ϕ, where �1 and �2 are the modal
operators of the language for the axiom system S5. The axiomatic system for
� is proved to be sound and complete.
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1 Introduction

The modal logic has many axiomatic systems, such as K,T,D,B, S4 and
S5 ([1]). The axiom system S5 is characterized by all equivalence frames([1]).
The approximation spaces for Rough sets can be used as the possible-world
semantics for S5. Let an approximate space (U,R) be an equivalence frame
〈W,R〉 for S5, i.e., U = W . Then for any formula ϕ, if the interpretation of
ϕ corresponds to a subset X of U, then the lower and upper approximations
of X correspond to the interpretations of �ϕ and ♦ϕ, respectively, and the
equivalence relation R corresponds to the accessibility relation for �([2]).

Given two approximation spaces (U,R1) and (U,R2), R1 ∪ R2 may not be
an equivalence relation. Given two modal operators �1 and �2, let R1 and R2

be the accessibility relations for �1 and �2, respectively. Let � be a modal
operator such that R1∪R2 is the accessibility relation for �, that is, M,w � �ϕ
iff for any w′ ∈ W if (w,w′) ∈ R1 ∪ R2 then M,w′ � ϕ, which implies and is
implied by that for any w′ ∈ W if (w,w′) ∈ R1 then M,w′ � ϕ and for any
w′ ∈ W if (w,w′) ∈ R2 then M,w′ � ϕ, i.e., M,w � �1ϕ and M,w � �2ϕ if
and only if M,w � �ϕ.
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Let � be a modal operator such that for any possible world w,M,w � �ϕ
iff M,w � �1ϕ and M,w � �2ϕ, i.e., for any formula ϕ, �ϕ ≡ �1ϕ ∧�2ϕ. In
this paper, we consider the modal operator �ϕ ≡ �1ϕ ∧ �2ϕ. We shall give
the language, the syntax and the semantics for the modal logic with modal
operator �ϕ ≡ �1ϕ ∧ �2ϕ. The axiomatic system for � will be given and
proved to be sound and complete.

The main contribution of this paper is that a propositional modal logic
with a modal operator �ϕ ≡ �1ϕ ∧ �2ϕ. The axiomatic system for � is
sound, and complete with respect to the class of all reflective and symmetric
frames, where the accessibility relation R for � is equivalent to R1 ∪R2, where
Ri is the equivalence relation for �i and i = 1, 2.

If R1 = R2, then the axiomatic system for � turns out to be S5.
This paper is organized as follows: the propositional modal logic with modal

operator �ϕ ≡ �1ϕ ∧ �2ϕ is described in section 2, including the language,
the syntax and the semantics for the logic. Then we shall give the axiomatic
system for � and prove the soundness theorem and the completeness theorem.
Section 3 summaries results of the paper and discusses some possible extension
of the logic.

2 The propositional modal logic with modal operator �ϕ ≡ �1ϕ∧�2ϕ

In this section, we shall give the language, the syntax and the semantics
for the propositional modal logic with the modality �ϕ ≡ �1ϕ ∧ �2ϕ. The
axiomatic system for � is denoted by S51∧S52 , then we prove that S51∧S52 is
sound and complete.

2.1 The language, syntax and semantics for the logic

The language for S51∧S52 contains the following symbols:
• propositional variables: p0, p1, ...;
• logical connectives: ¬,→;
• modalities: �,�1,�2;
• auxiliary symbols: (,).
Formulas:

ϕ := p|ϕ1 → ϕ2|¬ϕ1|�ϕ1;
�ϕ := �1ϕ1 ∧�2ϕ1.

Other operators:

(α ∨ β) =def (¬α→ β);
(α ∧ β) =def ¬(α→ ¬β);
(α↔ β) =def ((α→ β) ∧ (β → α));
(♦α) =def (¬�¬α).
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Definition 2.1. A frame F is a triple 〈W,R1, R2〉, where W is a non-empty
set of possible worlds, and R1 ⊆W 2 and R2 ⊆W 2 are the equivalence relations
defined over the members of W and the accessibility relations for �1 and �2,
respectively.

Definition 2.2. A modelM is a quadruple 〈W,R1, R2, I〉, where 〈W,R1, R2〉
is a frame and I is an interpretation such that for any propositional variable p
I(p) ⊆W and for any w ∈ I(p) p is true in w.

A satisfaction relation �, between any formula ϕ and any possible world w,
is defined as follows:

Definition 2.3. Given any model M , any possible world w ∈ W and any
formula ϕ,

M,w � ϕ iff


w ∈ I(p) if ϕ = p
M,w 2 ϕ1 if ϕ = ¬ϕ1

M,w � ϕ1 ⇒M,w |= ϕ2 if ϕ = ϕ1 → ϕ2

for all w′ ∈ W if wR1w
′ then M,w′ � ϕ1, and

for all w′ ∈ W if wR2w
′ then M,w′ � ϕ1 if ϕ = �ϕ1

By the definition of the satisfaction relation, we can give the following
definition:

Definition 2.4. A formula ϕ is valid in a model M , dented by M � ϕ, iff
for any w ∈W M,w � ϕ; a formula ϕ is valid in a frame F , denoted by F � ϕ,
iff for any model M based on F M � ϕ; let C be a class of frames. A formula
ϕ is valid in C iff for any F ∈ C F � ϕ; Σ �C ϕ iff for any frame F ∈ C if
F � Σ then F � ϕ. If Σ = ∅ then �C ϕ.

Now we give the following axiom schemas and inference rules for S51∧S52 :
• Axiom schemes:

L1 ϕ→ (ψ → ϕ)
L2 (ϕ→ (ψ → µ))→ ((ϕ→ ψ)→ (ϕ→ µ))
L3 (¬ψ → ¬ϕ)→ (ϕ→ ψ)
L4 �(ϕ→ ψ)→ (�ϕ→ �ψ)
L5 �ϕ→ ϕ
L6 ϕ→ �♦ϕ
L71 �1ϕ→ �1�1ϕ
L72 �2ϕ→ �2�2ϕ

• Inference rules:

(MP )
ϕ,ϕ→ ψ

ψ

(N)
ϕ

�ϕ
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Definition 2.5. A formula ϕ is provable from Γ, denoted by Γ ` ϕ, if there
is a sequence of formulas ϕ1, ..., ϕn such that ϕ = ϕn, and for each 1 ≤ i ≤ n,
either ϕi is an axiom or a formula in Γ, or is deduced from the previous formulas
via one of the deduction rules.

2.2 The Soundness Theorem

This section is to prove the soundness theorem by induction on the length
of proofs. Before giving the proof, we give the following lemmas:

Lemma2.1. Each axiom schema is valid.
Proof . As for the axiom schema L1, L2, L3, we do not check their validity

and two references are [1] and [3].
(L5) By the definition 2.3, it is easy to prove it.
(L6) By the definition 2.3, it is easy to prove it.
(L71) Since the accessibility relation R1 for �1 is an equivalence relation,

it follows that �1ϕ→ �1�1ϕ is valid.
(L72) Since the accessibility relation R2 for �2 is an equivalence relation,

it follows that �2ϕ→ �2�2ϕ is valid.
�

Lemma2.2. The deduction rules preserve validity.
Proof. We prove that (N) preserves the validity. Since for any model

〈W,R1, R2, I〉 based on any frame 〈W,R1, R2〉 and any w ∈W , M,w |= ϕ.
Let w1 be any possible world. Since R1 and R2 are the equivalence relations

on W , we can obtain that for any w′1 ∈W if w1R1w
′
1 then M,w′1 |= ϕ, and for

any w′′1 ∈W if w1R2w
′′
1 then M,w′′1 � ϕ. It follows that M,w1 � �ϕ. Since for

any w1 ∈W M,w1 � �ϕ, it follows that � �ϕ.
�

Theorem 2.1(The Soundness Theorem). For any set of formulas Γ
and formula ϕ, if Γ ` ϕ, then Γ � ϕ.

Proof. For any set of formulas Γ and formula ϕ, since Γ ` ϕ, ϕ is the last
member of a sequence which is a deduction from Γ. So we can use induction
on the number of the sequence to prove this theorem as follows:

For the base step, the sequence has only one formula, namely ϕ. Then ϕ
must be an axiom of S51∧S52 or a member of Γ, and then Γ |= ϕ.

Now suppose that the sequence contains n formulas,where n>1,and suppose
as induction hypothesis that Γ |= α follows from Γ ` α ,which sequence is fewer
than n members. There are the following cases:

Case a. ϕ is an axiom of S51∧S52 or a member of Γ, then we have Γ |= ϕ
Case b. ϕ is obtained by modus ponens rule from a formula ψ and a

formula ψ → ϕ in the sequence. So by induction hypothesis, it obtains that
Γ |= ψ and Γ |= ψ → ϕ, then it follows that Γ |= ϕ.

Case c. ϕ = �ψ is obtained by the inference rule N from ψ. So by induc-
tion hypothesis, it follows that Γ |= ψ. Since if for any model 〈W,R1, R2, I〉
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based on any frame 〈W,R1, R2〉 and any w ∈W M,w � ψ then for any model
〈W,R1, R2, I〉 based on any frame 〈W,R1, R2〉 and any w ∈ W M,w � �ψ, it
follows that Γ |= �ψ.

�

2.3 The completeness theorem

The completeness theorem is to be proved in this section. The proof method
of the complete theorem is similar to the classical canonical model method ([1]).
We shall construct two relations on W and prove whether the two relations are
equivalence relations or not. And one relation corresponds to the accessibility
relation for �1, while the other corresponds to the accessibility relation for �2.

Definition 2.6. Γ is consistent iff there is no finite set {ϕ1,...,ϕn} ⊆ Γ
such that:

` ¬(ϕ1 ∧ ... ∧ ϕn).

By definition 2.6, we can prove that Γ is inconsistent iff there is some formula
ϕ such that Γ ` ϕ and Γ ` ¬ϕ.

Lemma 2.3. Suppose that Σ is a consistent set of formulas. Then there is
a maximal consistent set of formulas Σ∗ such that Σ ⊆ Σ∗.

In constructing a model in which the possible worlds are maximal consistent
sets of formulas we will have to specify when one world is accessible from
another(that model, in this paper, is also called canonical model). Thereby, the
accessibility relation R1 and R2, in the canonical model, is defined as follows:

Definition 2.7. For any two distinct maximal consistent sets Σ∗1,Σ∗2, we
define two binary relations R1 and R2 on W as follows:

(1) We shall say that Σ∗1R1Σ∗2 iff Σ∗1 and Σ∗2 satisfy the following condition:
For any formula ϕ if �ϕ ∈ Σ∗1 then ϕ ∈ Σ∗2 (written:S−(Σ∗1) = {ϕ : �ϕ ∈ Σ∗1

}).
(2) We shall say that Σ∗1R2Σ∗2 iff Σ∗1 and Σ∗2 satisfy the following condition:
For any formula ϕ if �ϕ ∈ Σ∗1 then �ϕ ∈ Σ∗2 (written: S(Σ∗1) = {�ϕ :

�ϕ ∈ Σ∗1 }).
Lemma 2.4. Let Γ∗ = {Σ∗0,Σ∗1, ...} be the set of all maximal consistent

sets. If for any i, j ∈ N we define Σ∗iR1Σ∗j iff S−(Σ∗i ) ⊆ Σ∗j , and Σ∗iR2Σ∗j iff
S(Σ∗i ) ⊆ Σ∗j , then both the relation R1 and R2 are equivalence relations on W .

Proof. (1) In order to prove that R1 is an equivalence relation, we shall
prove the following three conditions:

1) For any i ∈ N , if Σ∗i ∈ Γ∗ then Σ∗iR1Σ∗i .
2) For any Σ∗i ,Σ

∗
j ∈ Γ∗, if Σ∗iR1Σ∗j then Σ∗jR1Σ∗i .

3) For any Σ∗1,Σ
∗
2,Σ

∗
3 ∈ Γ∗, if Σ∗1R1Σ∗2 and Σ∗2R1Σ∗3 then Σ∗1R1Σ∗3.

1). For any i ∈ N , we shall prove S−(Σ∗i ) ⊆ Σ∗i . For any formula ϕ, if
�ϕ ∈ Σ∗i then ϕ ∈ S−(Σ∗i ). Since �ϕ → ϕ(L5) and �ϕ ∈ Σ∗i , ϕ ∈ Σ∗i . It
follows that S−(Σ∗i ) ⊆ Σ∗i .
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2). We shall prove that if S−(Σ∗i ) ⊆ Σ∗j then S−(Σ∗j ) ⊆ Σ∗i , that is to say,
we shall prove that for any formula β if �β ∈ Σ∗j then β ∈ Σ∗i . Suppose β /∈ Σ∗i .
¬β ∈ Σ∗i . By L6 and ¬β ∈ Σ∗i it follows that �♦¬β ∈ Σ∗i .

Since S−(Σ∗i ) ⊆ Σ∗j , it follows that ♦¬β ∈ Σ∗j , that is, ¬�β ∈ Σ∗j . Since
¬�β ∈ Σ∗j and �β ∈ Σ∗j , Σ∗j is not consistent, which is a contradiction to the
hypothesis of this lemma.

3). We need to prove that if S−(Σ∗1) ⊆ Σ∗2 and S−(Σ∗2) ⊆ Σ∗3 then S−(Σ∗1) ⊆
Σ∗3, that is to say, for any formula β, if �β ∈ Σ∗1 then β ∈ Σ∗3. We can prove it
by L5 and L71.

What we need to explain is that R1 is the accessibility relation for �1 and
in this case for any formula ϕ �ϕ ≡ �1ϕ. Thereby, we can use the axiom
schema L71.

(2) Now, we prove that the relation R2 is an equivalence relation. the
following three conditions shall be proved:

1) For any i ∈ N , if Σ∗i ∈ Γ∗ then Σ∗iR2Σ∗i .
2) For any Σ∗i ,Σ

∗
j ∈ Γ∗, if Σ∗iR2Σ∗j then Σ∗jR2Σ∗i .

3) For any Σ∗1,Σ
∗
2,Σ

∗
3 ∈ Γ∗, if Σ∗1R2Σ∗2 and Σ∗2R2Σ∗3 then Σ∗1R2Σ∗3.

It is easy to prove the item 1)-3). We omit the proof procedures.
�

Lemma 2.5. Let Γ be any consistent set of formulas containing ¬�ψ, then
S−(Γ)∪{¬ψ} is consistent and S(Γ)∪{¬ψ} is consistent, where S−(Γ) = {ϕ :
�ϕ ∈ Γ } and S(Γ) = {�ϕ : �ϕ ∈ Γ }.

Proof. (1) We shall prove that S−(Γ) ∪ {¬ψ} is consistent as follows:
Suppose that S−(Γ)∪{¬ψ} is not consistent. Then there exists some finite

subset {ϕ1, ..., ϕn} ∪ {¬ψ} of S−(Γ) ∪ {¬ψ} such that ` ¬(ϕ1 ∧ ... ∧ ϕn ∧¬ψ).
Then

` (ϕ1 ∧ ... ∧ ϕn)→ ¬ψ iff ` �(ϕ1 ∧ ... ∧ ϕn)→ ψ
iff ` �(ϕ1 ∧ ... ∧ ϕn)→ �ψ
iff ` (�ϕ1 ∧ ... ∧�ϕn)→ �ψ
iff ` ¬(�ϕ1 ∧ ... ∧�ϕn ∧ ¬�ψ)

Thereby, {�ϕ1, ...,�ϕn} ∪ {¬�ψ} is not consistent. By the definition of
S−(Γ) it follows that {�ϕ1, ...,�ϕn} ∪ {¬�ψ} is a subset of Γ. Thereby, Γ is
not consistent, which is a contradiction to the hypothesis of this lemma.

(2) We shall prove that S(Γ) ∪ {¬ψ} is consistent as follows. Suppose
that S(Γ) ∪ {¬ψ} is not consistent. Then there exists some finite subset
{�ϕ1, ...,�ϕn} ∪ {¬ψ} of S(Γ) ∪ {¬ψ} such that ` ¬(�ϕ1 ∧ ... ∧ �ϕn ∧ ¬ψ).
Then

` (�ϕ1 ∧ ... ∧�ϕn)→ ¬ψ iff ` �(�ϕ1 ∧ ... ∧�ϕn)→ ψ
iff ` �(�ϕ1 ∧ ... ∧�ϕn)→ �ψ
iff ` (�ϕ1 ∧ ... ∧�ϕn)→ �ψ
iff ` ¬(��ϕ1 ∧ ... ∧��ϕn ∧ ¬�ψ)
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Thereby, {��ϕ1, ...,��ϕn} ∪ {¬�ψ} is not consistent. For any �ϕi, by
L72(�ϕ ≡ �2ϕ) it follows that ��ϕ ∈ Γ, where i=1,...,n. Thereby, {��ϕ1, ...,
��ϕn} ∪ {¬�ψ} is a subset of Γ. Then Γ is not consistent, which is a contra-
diction to the hypothesis of this lemma.

What we need to explain is that R2 is the accessibility relation for �2 and
in this case for any formula ϕ �ϕ ≡ �2ϕ. Thereby, we can use the axiom
schema L72.

�
The canonical model for S51∧S52 , M , is like any other model, a quadruple

〈W,R1, R2, I〉. W is the set of all sets of maximal consistent sets of formulas.
I.e. w ∈ W iff w is a maximal consistent set of formulas. If w and w′ are
both in W , then wR1w

′ iff S−(w) ⊆ w′. And if w and w′ are both in W , then
wR2w

′ iff S(w) ⊆ w′. For any propositional variable p I(p) ⊆ W , and for any
w ∈ I(p) p is true in w iff p ∈ w. For any other formula this has to be proved
as follows:

Lemma 2.6. Let M = 〈W,R1, R2, I〉 be the canonical model for S51∧S52 .
Then for any formula ϕ and any world w, M,w � ϕ iff ϕ ∈ w.

Proof. We prove the lemma by induction on the structure of formulas.
Case a. ϕ := p: By definition, this lemma holds.
Case b. ϕ := ¬α:

M,w � ¬α iff M,w 2 α
iff α /∈ w
iff ¬α ∈ w

Case c. ϕ := α→ β:

α→ β /∈ w iff ¬(α→ β) ∈ w
iff α ∈ w and ¬β ∈ w
iff M,w � α and M,w 2 β
iff M,w 2 α→ β

Case d. ϕ := �α:
(⇐) Subcase d.1. �α ∈ w: By the definition of R1, R2, we have the

following two cases:
(1) For any w′ ∈ W , if wR1w

′ then α ∈ w′. α ∈ w′ iff M,w′ � α by
induction hypothesis. Then M,w � �α because for any w′ if wR1w

′ and
M,w′ � α.

(2) For any w′ ∈W , if wR2w
′ then �α ∈ w′. Since �α ∈ w′ and �α→ α,

α ∈ w′. α ∈ w′ iff M,w′ � α by induction hypothesis. Then M,w � �α
because for any w′ if wR2w

′ and M,w′ � α.
Subcase d.2. ¬�α ∈ w: By the lemma 2.5 , both S−(w) ∪ {¬α} and

S(w)∪{¬α} are consistent. By the lemma 2.3, we can enlarge S−(w)∪{¬α} and
S(w)∪ {¬α} into maximal consistent sets of formulas w1 and w2, respectively.
Thereby, there exist w1, w2 such that S−(w) ⊆ w1 and S(w) ⊆ w2.
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Since S−(w) ⊆ w1 and S(w) ⊆ w2, by the definition of R1 and R2, it
follows that wR1w1 and wR2w2. For ¬α ∈ w1 and ¬α ∈ w2, it follows that
M,w1 |= ¬α and M,w2 |= ¬α by induction hypothesis. So there exist w1, w2

such that wR1w1 and wR2w2 and M,w1 |= ¬α and M,w2 |= ¬α. Therefore,
by the definition 2.3, it follows that M,w 2 �α.

(⇒) Subcase d.3. M,w � �α: By the definition 2.3, we have:
(1) For any w′ ∈W , if wR1w

′ then M,w′ � α; and
(2) For any w′ ∈W , if wR2w

′ then M,w′ � α.
From (1), we have:

(3) For any w′ ∈W , if wR1w
′ then α ∈ w′ by induction hypothesis.

From (2),we have:
(4) For any w′ ∈W , if wR2w

′ then α ∈ w′ by induction hypothesis.
Assume ¬�α ∈ w. Since w is a maximal consistent set of formulas, it follows

that there exists w1, w2 ∈ W such that wR1w1 and wR2w2 and ¬α ∈ w1

and¬α ∈ w2 by the lemma 2.5. So ¬α ∈ w1 is a contradiction to (3), and
¬α ∈ w1 and ¬α ∈ w2 is also a contradiction to (4). Thereby, �α ∈ w for w is
a maximal consistent set of formulas.

Subcase d.4. M,w 2 �α: By the definition 2.3, we have:
(1) There exists w1 ∈W such that wR1w1 and M,w1 2 α; or
(2) There exists w2 ∈W such that wR2w2 and M,w2 2 α.

From (1), by induction hypothesis, ¬α ∈ w1; and from (2), ¬α ∈ w2. Suppose
�α ∈ w, by the definition of R1 and R2, it follows that:

(3) For any w′ ∈W if wR1w
′ then α ∈ w′; and

(4) For any w′ ∈W if wR2w
′ then �α ∈ w′.

From (4) and L5, we have:
(5) For any w′ ∈W if wR2w

′ then α ∈ w′.
It follows that (3) is in contradiction with wR1w1 and ¬α ∈ w1. And (5) also
is in contradiction with wR2w2 and α ∈ w2. Thereby, ¬�α ∈ w for that w is
a maximal consistent set of formulas.

�
Theorem 2.2(The Completeness Theorem): For any set of formulas

Γ and formula ϕ, if Γ � ϕ, then Γ ` ϕ.
Proof. Suppose Γ 0 ϕ, so Γ ∪ {¬ϕ} is consistent. Then there is a maximal

consistent set of formulas w such that Γ ∪ {¬ϕ} ⊆ w by the lemma 2.3.
Let M = 〈W,R1, R2, I〉 be a canonical model, where W is the set of all sets

of maximal consistent sets of formulas. I.e. w ∈W iff w is a maximal consistent
set of formulas. If w and w′ are both in W , then wR1w

′ iff S−(w) ⊆ w′. And
if w and w′ are both in W , then wR2w

′ iff S(w) ⊆ w′. By the lemma 2.4 it
follows that R1 and R2 are the equivalence relations on W .

For any formula α ∈ Γ ∪ {¬ϕ}, α ∈ w. By the theorem 2.6, M,w � α. So
M,w � Σ and v � ¬ϕ, which is a contradiction to Σ � ϕ.

So for any set of formulas Γ and formula ϕ, if Γ � ϕ, then Γ ` ϕ.
�
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3 Conclusion

In this paper, we present an axiomatic system for a modality �ϕ ≡ �1ϕ ∧
�2ϕ, and prove that the axiomatic system for � is sound and complete. The
axiomatic system for � is different from S5. What we need to point out is that
L71 and L72 are not the axiom schemas for �, which is needed when proving the
completeness theorem. An interesting problem is to give a sound and complete
axiomatic system for the modality corresponding to the accessibility relation
R = R1 ∩R2, where the equivalence relation Ri is the accessibility relation for
�i, i = 1, 2.
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