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Abstract. Notations develop over time. We propose that they characteristically pass through a series of 

development stages, starting very simple and becoming more complex, reaching a stage of complexity 

that hinders their usability: then, often, a new higher-level notation is developed that is once again simple, 

and will perhaps pass through the same development. Notations develop in this way because the way they 

are used develops. We propose 5 stages;  Iconic, Flowering, Formalising, Support Patchwork, and 

Rebirth. Examples can be found in the development of various software systems, such as programming 

languages, CSS, and content-management systems; also in other domains, such as circuit diagrams and 

music notation. 

Keywords: Notations, Usability, Cognitive Dimensions Framework, Development of Notational 

Systems, Diagrams. 

1   Introduction 

This paper describes the life cycle of notations and how they evolve. Notations that are used to represent data 

and code evolve, just as do natural languages that are used for human-human communication [1], but natural 

languages are unplanned, whereas each successive version of a notation is deliberately intended to be an 

improvement over the previous version – yet by solving some problems, these improvements create new 

problems; solutions to those problems raise further problems, and so on. That is the notational life cycle. 

We start with some short examples of notational development, drawn from accounts of the history of 

dance notation, the history of algebraic notation, and the history of musical notation, and enquire what is 

known about the motivations that forced the changes over time. We claim that these descriptions of 

notational development, which we believe to be typical, give little understanding of the reasons for notational 

development, beyond saying that the notation ‘needed to develop’: and most importantly, these descriptions 

show no awareness that other notations, in other fields, follow parallel courses. 

What might be meant by saying that a notation ‘needs to develop’? Presumably, that it is not doing its job 

well enough any longer. All the accounts cited present insightful comments about what jobs their notation 

needs to do, but none of them gives any more generalised account; so we next consider two attempts to 

describe the features required of notations at a generalised level, focusing on usability in the sense of 

human-computer interaction. But both these accounts are purely synchronic, describing what is required of a 

notation at a particular time, but giving no account of the lifecycles of notations, and so these descriptions are 

of little help to us. 

Is it possible, then, to describe the typical lifecycle of a notation? We claim that it is, and we draw on the 

examples mentioned to postulate five stages of notational development. From here we continue with a case 

study of a particular notation.  

1.1 Examples of development of notations 

Dance Notation. How do notations originate and develop? Waters and Gibbons [24] are among the few 

authors to consider several fields, seeking to discover elements in common. They refer to a ‘design 

language’, which seems to be an informal private language used by the designer, and a public, more formal 

‘notation system’: “[There is a] mutually supportive relationship between the abstract design language as it 
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exists in the designer's mind and the public notational system used to express designs.” To illustrate their 

approach, they consider the field of dance and the historical development of dance notation. Like any other 

notation, dance notation must meet the needs of the various interested parties (dancers, stage designers, 

lighting crew, director, etc). Early dance notations included the well-known woodcuts of Arbeau’s treatise of 

1588 on social dancing, Orchésographie (Figure 1). These early forms were purely pictorial notations.  

 

 

 

Fig. 11 a dance 

movement a 

Orchésographie 

Fig. 22 The basic tango 

step in Labanotation [26] 

Fig. 33 An Example of Sutton Movement Writing [31] 

Dance notation rapidly became more elaborate, more detailed, and more formal, leading to highly detailed 

notations that needed lengthy training to read and write fluently, such as ‘labanotation’ [27] (Figure 2). 

In the late twentieth century, however, we see a return to a form of pictorial notation for dance and other 

forms of movement, the Sutton Method [28]. Waters and Gibbons assert that the Sutton method conveys as 

much information as the Laban notation, but that dancers find it much easier. What have they to say about this 

progression? They have an interesting and insightful section on the interaction between ‘design language’ 

and ‘notation system’, and they correctly observe that a good notation leads to fruitful innovation, but they 

have nothing to say about the progress and lifecycle except that as the design language becomes refined and 

extended, it leads to developments in the notation, which lead to further developments in the design language, 

and so on. 

Algebraic Notation. Stallings [29] describes three major stages in the development of our schoolroom 

algebra, starting with ‘rhetorical algebra’ in which operations were described in words: 

If the instance be, "ten and thing to be multiplied by thing less ten," then this is the same as if it 

were said thing and ten by thing less ten. You say, therefore, thing multiplied by thing is a 

square positive; and ten by thing is ten things positive; and minus ten by thing is ten things 

negative. You now remove the positive by the negative, then there only remains a square. 

Minus ten multiplied by ten is a hundred, to be subtracted from the square. This, therefore, 

altogether, is a square less a hundred. . .  [Nelson, 1993, p 33] 

Or, in modern terms, (x + 10)(x - 10) = x2 - 100. The steps to our modern ‘symbolic’ algerba were gradual. 

The equality sign was developed by Robert Recorde in 1557, who chose two parallel lines of the same length 

because “no 2 things can be more equal” – a picture of equality. Much earlier, Stallings writes, the Rhind 

papyrus of c. 1650 BC contains “one of the earliest known symbols for addition and subtraction; a pair of legs 

walking forward, which denoted addition and a pair of legs walking away for subtraction (Eves, 1983).” 

Once again, we note that these early symbols are pictures. 

Staff Notation of Music. Rastall (1997) presents an excellent overview of the development of Western 

musical notation. The common notation for Western music has undergone a very long course of development 

and the notations of its earliest stages are not well understood; but in the 9th and 10th centuries, we find the 

earliest instances of the use of ‘neumes’ as musical signs, in the manuscripts of the Swiss monastery of St 

Gall. “The earliest neumes were inflective marks which indicated the general shape but not necessarily the 



 

 

 

3 

exact notes or rhythms to be sung” (wikipaedia, under neume). Their function was to remind their reader of 

the essential features of a melody that has already been learnt, rather than to specify the performance exactly. 

Although neumes were already highly developed by the time of the St Gall manuscripts, their appearance is at 

least partly a picture of the trajectory of pitches: the neume called ‘climacus’, for instance, stands for three 

notes descending, and looks exactly like that: 

 

Fig. 44 The climacus neume – three notes descending 

The development of neumes is one of increasing sophistication, from simple lines and dots to fairly 

elaborate flourishes. By a very complex series of developments, notation eventually arrived at our familiar 

staff notation, far more precise and detailed than the neume – though even here, we can distinguish  different 

levels of detail, depending on the genre. Today, three notes descending might be written like this: 

 

Fig. 55 Three different realisations of “three notes descending” 

Unlike neumes, present-day notation offers many possible elaborations, which can give much more 

precision about how the notes are to be played: 

 

 
 

Fig. 66 Three descending notes with more precise 

information about technique 
Fig. 77 one of Wolff's quasi-pictorialsymbols 

 
Rastall distinguishes eight kinds of notation in music, from a pure aide-mémoire, through skeleton 

notations to more and more closely detailed notations and then to ‘inspirational’ notations where “visual 

symbols or ideas expressed graphically and/or in words inspire the performer to certain actions”.  He no 

doubt had in mind such notations as the quasi-pictorial symbols bused by Christian Wolff [32] (Figure 7). 
Wolff’s symbols mean things like ‘make a sound in a middle place, in some respect, of the sounds around 

it,’ make a sound involving stretched material’, or ‘play after a previous sound has begun, hold till it stops’. 

We see here a move away from the high level of formality and precision that had been accumulating in music 

notation and a return to the under-specified world of the neume. 

What have we learnt? Three very different fields of notation have been presented, and in each case we 

have seen that the earliest forms were pictorial or picture-like; that the notations developed in degree of 

formality and in degree of expressiveness and sophistication; and eventually, in at least the dance and music 

fields, a new notation was presented, in which the level of formality was abruptly reduced. 

We have also seen that in all three fields there is no proper account of the development. Nothing is said 

about the fact that the earliest stage was usually pictorial, and nothing is said about the development except 

that it needed to become more expressive. 

Above all, there is no awareness that the course of development in each field is profoundly similar. The 

evidence is that notations start and develop in similar ways, whatever field they may be designed for. The 

purpose of this paper is to make a start at describing the common features of notational development. 
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1.2 What is a ‘good’ notation? 

Although the field of human-computer interaction offers many examples of detailed analysis, there are very 

few attempts to provide evaluation techniques suitable for notations as a class. One such is the ‘cognitive 

dimensions’ framework; another is the so-called ‘physics of notations’ [33]. 

Cognitive Dimensions of Notations. The cognitive dimensions framework [2] sets out to provide a useful 

vocabulary with which to describe important aspects of notational systems at the structural level – that is, it 

explicitly does not deal with details of rendering and presentation. It is important to note that because this 

framework is much concerned with creating or making changes to documents, what is considered is the 

notation in the environment of its editing system, which might be an IDE or might be pen and paper or might 

even be marble and chisel.  Examples of dimensions are viscosity, meaning that local changes need many 

actions to accomplish: changing all the first-level headings of a document to use larger font, for instance, can 

be a tedious job unless a style-sheet system is available. A style-sheet, however, introduces the dimension of 

abstraction level: some users find abstractions to be a serious barrier. A third dimension is hidden 

dependencies, where it is difficult to know what will happen if one object is changed because it is not 

manifest whether other objects will be affected; changing one cell in a spreadsheet, for example, may have 

big knock-on effects. About 16 dimensions are included in the framework. 

Within the framework, no dimension is considered to be evaluative on its own, but only in the context of 

one of the half-dozen archetypal ‘activities’: incrementation (adding more objects to a structure, eg defining 

a new class), modification (changing the structure, eg rebuilding the class hierarchy), transcription (e.g. 

turning arithmetic procedures into program code), search, exploratory design (working out how to write a 

program, composing a piece of music, etc), and exploratory understanding (discovering the internal structure 

and workings, e.g. of a piece of software).  If we know the typical activity that a notation will be used for, we 

can then make some evaluations: a notational system with high viscosity is more suitable for transcription 

activities than for exploratory design, for instance.  

The framework does not claim to offer precise or even vague quantitative predictions, but instead to offer 

‘tools for discussion’ which can lead to improvements in existing notational systems. It has been applied with 

success in many fields, but unfortunately it offers no clue as to the lifecycles of notations. It is a purely 

synchronic evaluation. 

Physics of Notations. Moody [33] claims to have developed ‘principles for designing cognitively effective 

visual notations’, optimised for human communication and problem-solving. These principles are such as 

semiotic clarity, meaning that there should be a 1:1 correspondence between semantic constructs and 

graphical symbols. While it is unclear to us that the principles proposed by Moody merit a comparison to 

physics, what is clear is that this is another purely synchronic form of evaluation, with nothing to say about 

how notations might develop. 

2   The Notational Life Cycle 

We propose that notations generally proceed along a spiral path in five stages, as in Fig. 8: 
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Fig. 88 The notational lifecycle 

Each notational stage will have different characteristic problems. (These ‘stages’ are a convenient 

idealisation, of course, just as the usual colour names – red, orange, yellow ... – are a convenient idealisation 

of continuously changing wavelengths and mixtures of wavelengths.) Every time we see a new cycle start, by 

creating a new notation to replace an older one, we see the stage 5 problems exchanged for the stage 1 

problems. Stage 5 problems include an over-stretched vocabulary with many special cases; on restarting at 

stage 1 the vocabulary will be ‘higher-level’ [2] with new rules for combining components more 

productively, but the environment will be worse and little attention will be paid to issues of any type of 

activity except ‘incrementation’ [2], i.e. adding material. The notational stages are: 

Iconic. When a new notation is created by an unsophisticated person, it will be pictorial or iconic, like early 

circuit diagrams (Figure 9).  

The creator imagines how to add items (more wires or resistors) but does not imagine how to make large 

changes; likewise personal use is imagined, but not collaborative use. In terms of the ‘cognitive dimensions’ 

framework [2], [3], high viscosity and frequent hidden dependencies are acceptable for personal use. Outside 

that framework, there are other types of consequence: the notation will probably be very incomplete, because 

the notation is more of an aide-mémoire than a complete description. 

 

 

 

Fig. 99 Early circuit diagrams [34] Fig. 1010 [Private communication to first author.] 
 

Figure 10 shows a notation devised by a novice to show how to ring a tune on handbells. The bells are 
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numbered 1-10 and they are struck (by different people) in the order specified from left to right. The heavy 

central line is a bar line (US: measure line). The figure 2 across the line is an attempt to indicate a dotted note 

(one-and-a-half beats), and the squiggle at the top right shows a prolonged shake of the bell. The reader is 

expected to know which bell sounds what note. This notation is at the start of stage 1; already it is being 

stressed by the need to accommodate additional features, such as dotted notes.  Notice that it allows a deal of 

slop: bell 3 has been accidentally overlooked, and the second bar (measure) has 4 beats compared to the 3 

beats of the first bar.  

Flowering. The notation becomes popular. It is used by other people for slightly different tasks. The 

vocabulary has to be increased, and consistency falls. As time passes, the early instances of its use need to be 

updated, and maintenance is slowed by the hidden dependencies and viscosity. Collaborative use increases 

and forces users to devise techniques for secondary notation to improve the role-expressiveness; these 

techniques may arise differently and incompatibly among different user groups. The notation is a victim of its 

success, and is stressed by unforeseen problems. 

Formalising. To improve consistency, rules are made explicit. The vocabulary is defined, the syntax is 

defined, and the possible relationships between entities are defined. The notation gets harder to use, although 

it’s more likely that a syntactically correct document means what its creator intended. Labanotation is at this 

formalised stage, for example. 

Support Patchwork. A patchwork of tools appears to support users. For example, because the notation has 

become more formal, it has become harder to sketch casually, so another notation is introduced as a sketching 

tool, before transcribing the sketch into the target notation, which we call ‘decoupling’. A typical example is 

the development of graphical notations for sketching designs for software before starting implementation – 

such as UML, or at a simpler level the humble flowchart. These are what Waters and Gibbons (see above) 

called ‘design languages’, in that they free the user from some of the constraints and details. Typically they 

also free the user from order constraints, because ideas come to the mind in an order dictated by their internal 

logic rather than by the demands of a formal notation. That is to say, if a diagram is in use as a sketching tool, 

new logic can be added to it at any point, arbitrarily, whereas if a class hierarchy is being created in an IDE it 

is usually impossible to create subclasses until their superordinate class has been created: thus, the diagram 

allows free working, whereas the IDE forces the expression of the program to take place in top-down order. 

Rebirth. The vocabulary gets too large and is obviously too low-level. The uses it is put to become more 

complex, and the structures built in it grow so fat that viscosity, hidden dependencies, and poor visibility are 

a serious impediment. The crisis is resolved by creating a new, higher-level notation. This will have its own 

problems, so we are back at stage 1 but at a higher level.  

The Sutton method, a replacement for labanotation, is an example of rebirth. Similar examples can be 

found in the development of various software systems, such as programming languages, CSS, and 

content-management systems; also in other domains, such as circuit diagrams and music notation. 

The proposed stages represent the straight track. However, there are lots of factors that might affect the 

straight track. We proposed 5 factors that may affect the straight track: 

Repurposing. Notations are augmented for a specific purpose. For example, CSS originally described the 

spatial characteristics of typeface, which might include some positional aspects; it is now the primary tool for 

laying out the spatial structure of a webpage.  

Change in Demand. Due to cultural or environmental influences, users may be more sophisticated; new 

groups of users may appear. What they want may change, forcing adaptations.   

Changes in World. Inventions could change the role of the usage of some notations. Thus, the notation has 

had to change dramatically, and many different notations have been created by notational novices, frequently 

starting at stage 1. For example, after introducing the predicate logic, many notational systems were 

developed.    
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Mature Disfluency. Certain notations are so designed that their users’ environments slowly become 

damaged, and the more the notation is used, the worse the damage. An example is the accumulated silt in 

everyone’s computer: dot-files, preference-files and user-manuals for applications long since discarded 

continue to consume space and efficiency.   

Market Forces. Notations do not exist in isolation, and sometimes two notations have the same domain. One 

possible outcome is simple rivalry, as with Leibniz’s and Newton’s notations for calculus. Another possible 

outcome is fusion, as in the Unified Modelling Language. The third possible outcome is sophisticated, 

forward-looking rivalry, in which the creators of one notation attempt to pre-empt rivals by capturing as 

much notational space as possible. 

3   A Pedagogical Example: Constraint Diagrams and their Life Cycle 

To understand our proposed notation lifecycle, we provide a detailed example of the development of an 

existing notation. The Constraint Diagram notation was chosen because many developments happened in a 

short time. 

At stage 1, the notation was designed for one person doing one small job and thus the anticipated activities 

on constraint diagrams were limited to ‘incrementation’ – adding more of the same objects. The notator did 

not look forward to anticipate modifications or other activities, and worked at an individual level, rather than 

collective. This stage produced Fig.11.  

 

Fig. 1111. Stage 1 of Constraint Diagram [4] 

The notation became popular and was used by other people for slightly different tasks such as behavioural 

specification [5], [6]. Thus, the vocabulary increased, leading to stage 2 of constraint diagrams as shown in 

Fig.12. Here we see the notation flowering. 
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Fig. 1212. Stage 2 of Constraint Diagram [5] 

In Stage 3 as shown in Fig. 13, an attempt was made to improve consistency by making rules explicit [7]. 

The vocabulary and the syntax were defined [8]. The notation started to get harder to use and users would be 

categorised as experts or novices; a classic example of the formalised stage of a notation cycle.  

 

Fig. 1313. Stage 3 of Constraint Diagram [7] 

At stage 4 as in Fig. 14, the constraint diagram notation was rigid and thus the constraint tree notation [11] 

was introduced as a complementary notation. Here we see the ‘support systems’ stage of the lifecycle. 

This attempt was improved by introducing reading trees; both explicitly [12], [13], [14], [15], [16] and 

implicitly [17]. There was another attempt [18] of improving this notation using the implicit reading tree with 

the influence of Z notation [19]. 

 

Fig. 1414. Stage 4 of Constraint Diagram [11] 

At this stage, the vocabulary got too large and was obviously too low-level. Thus, new notations needed be 

devised at a higher level of idealization such as Concept Diagrams [20], [21], [22] as in Fig. 15. This is a start 
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of a second life cycle, the ‘rebirth’, in which we return to stage 1 at a higher level. 

 

Fig. 1515. Stage 5 of Constraint Diagram [22] 

4   Conclusion 

In this paper we have argued that notations in very disparate fields develop in very similar ways, and that 

their paths can be characterised by our five-stage model. To our knowledge, this is an entirely novel 

observation. The stages have been closely illustrated in the account of the development of constraint 

diagrams. 

Does this lead to useful advice for the designer of a notation? Both the cognitive dimensions framework 

and the ‘physics of notations’ approach (see above) can offer some useful advice: for instance, the former can 

advise a notation designer to think in terms of activities beyond incrementation, and to beware of, say, hidden 

dependencies in some activities (modification, exploratory understanding) though not all activities 

(transcription), while the ‘physics’ approach can remind the designer that symbols should not be overloaded. 

Yet such advice is purely synchronic. 

It is too early know what benefits, if any, may come from viewing notational design diachronically rather 

than synchronically. However, in this paper, we have focused on their evolution, trying to postulate the 

factors that cause a notation to develop through different stages. This leads to some principles for notational 

design that we believe are novel, in that they are based on the likely evolutionary path of a notation: 

1. Don’t try to create the perfect notation for all time. However perfect the notation might be for the 

present moment, things will change. 

2. Therefore, do try to design a notation that can easily be extended to new activities when they become 

necessary. 

3. Prepare for the patchwork of support that will become necessary, by providing whatever hooks may be 

useful – but in the early stages it may be difficult to foresee the need. 

4. Try to short-circuit the evolution by starting at level 2, the flowering stage, rather than level 1, the iconic 

stage. 

It will be obvious that these recommendations are at present quite untested, and we hope that future 

research on the histories of notations will create a more detailed picture and will correct our thinking where 

necessary. 
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