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Efficient identity-based signature from lattices

Miaomiao Tian ⋆ and Liusheng Huang

School of Computer Science and Technology, University of Science and Technology of China

Abstract. Identity-based signature is an important technique for light-weight authenti-
cation. Recently, many efforts have been made to construct identity-based signatures over
lattice assumptions since they would remain secure in future quantum age. In this paper
we present a new identity-based signature scheme from lattice problems. This scheme
is more efficient than other lattice-based identity-based signature schemes in terms of
both computation and communication complexities. We prove its security in the random
oracle model under short integer solution assumption that is as hard as approximating
several worst-case lattice problems.
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1 Introduction

As the rapid development of networks, authentication between users is becoming increasingly
important. In many scenarios, improving the performance of authentication is crucial. For
example, in wireless sensor network and mobile social network, the battery life of devices is so
short that complex authentication protocols are intolerable. Since digital signature is a main
building block of authentication, reducing its complexity is an apparent approach towards
meeting this demand. One way of reducing the complexity of signatures is to use identity-based
signatures instead of regular signatures (which rely on certificates).

Identity-based signature (IBS) is a basic component of identity-based cryptography that
was first introduced by Shamir [18] in 1984. As an alternative of traditional certificate-based
cryptography, identity-based cryptography possesses an arresting advantage, i.e., it eliminates
the onerous certificate management procedure in traditional certificate-based cryptography. To
achieve the merit, each user in identity-based cryptosystem sets his identity (e.g. his e-mail
address) as his public key (while in traditional certificate-based cryptosystem, users’ public
keys are random strings). The secret key of any user is generated by a trusted Private Key
Generator (PKG) from PKG’s secret key and the user’s identity. Thanks to this advantage,
IBSs are more preferable than regular signatures in many real-world applications.

After Shamir’s seminal work, several IBSs emerged (e.g. [9]), however fully practical imple-
mentations are recently proposed due to the work of [6]. In [6], Boneh and Franklin designed
an efficient identity-based encryption scheme by utilizing bilinear pairings. Since then, many
excellent proposals for IBS appeared based on pairings [11,8,5,15]. These IBS proposals are very
efficient for practical applications, whereas they all substantially rely on the discrete logarithm
problem that is facile for quantum computers [19]. In view of the recent progresses of quantum
computer, looking for quantum-immune IBSs is no longer alarmist. To achieve this, new mathe-
matical tool on which cryptographic schemes are built should be developed. Lattice seems to be
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our best option because cryptographic schemes based on lattices are supported by worst-case
hardness assumption and conjectured to withstand quantum attacks. Moreover, lattice-based
cryptographic schemes are also easy to implement since typical computations involved in them
are only integer matrix-vector multiplication and modular addition. (See [16] for an overview
on lattice-based cryptography.)

In 2010, Rückert [17] successfully constructed the first two (hierarchical) IBSs over lattice
assumptions. One is secure in the random oracle model and the other is secure in the stan-
dard model. Later on, some other lattice-based IBSs also appeared, e.g., [20,12]). All of the
IBS constructions followed the signature framework of Gentry, Peikert and Vaikuntanathan
[10]. According to the framework, the signing key S of a user is a trapdoor of the function like
fA(x) = Ax mod q, where A is a user-related matrix. Typically S is a short basis of the lattice
defined by A. Armed with the signing key S, the user can run a preimage sampling algorithm
for the function fA to obtain a signature sig. For those lattice IBS schemes, the generation of
users’ signing keys requires lattice basis delegation technique [7,2,1]. Since the signing key size
and the signature length will increase dramatically after lattice basis delegation, those IBSs
would be inefficient in practice. In addition, the short basis (signing key) extraction algorithms
involved in them are also very expensive, thus PKG will be overburdened.

Our Contributions. In this paper, we construct a new IBS scheme over lattice assumptions,
which does not follow the signature framework of [10]. Actually, our IBS scheme adopts the
rejection sampling technique of [13] and can be viewed as an identity-based version of Lyuba-
shevsky’s signature scheme [13]. Compared with other lattice-based IBS schemes, our scheme
is much more efficient in terms of both communication and computation overhead. We prove
the IBS scheme is secure against adaptive chosen message and identity attacks in the random
oracle model under conventional short integer solution (SIS) assumption which, in turn, leads
our IBS scheme to be secure under the worst-case hardness of approximating several classic
lattice problems, by the results of [14].

Paper Organization. The remainder of this paper is organized as follows. Section 2 and Sec-
tion 3 respectively give some preliminaries and an efficient signing key extraction algorithm to
be used in this work. Section 4 provides our lattice-based IBS scheme. Section 5 concludes the
whole paper.

2 Preliminaries

2.1 Notation

Throughout this paper, the security parameter is a positive integer n. For a positive integer k,
[k] denotes the set {1, · · · , k}. Vectors are assumed to be in column form and are written as
bold low-case letters, e.g., v. The ith component of v is represented by vi, and the ℓp norm
of v is denoted by ||v||p (we will avoid writing p if p = 2). Matrices are represented by bold
upper-case letters, e.g., A. Let the ith column of A be ai and define ||A||p = maxi(||ai||p). For
a full rank square matrix A, its Gram-Schmidt orthogonalization is denoted as Ã.

We say a function f(n) is negligible if it is smaller than all polynomial fractions for suffi-
ciently large n, and we use negl(n) to denote a negligible function of n. We say an event occurs
with overwhelming probability if its probability is 1− negl(n).

2



The statistical distance between two distributions X and Y over some finite set F is defined
as maxe⊆F |X(e)−Y (e)|. We say that two distributions are statistically close if their statistical
distance is negligible.

2.2 Lattices

An m-dimensional lattice Λ is a full-rank discrete subgroup of Rm. In this paper, we focus on
integer lattices, i.e., those lattices whose points have coordinates in Zm. Among these lattices
are the “q-ary” lattices.

Definition 1. For prime q, u ∈ Zn
q and A ∈ Zn×m

q , define the “q-ary” lattices as follows:

Λ⊥(A) = {e ∈ Zm : Ae = 0 (mod q)},
Λu(A) = {e ∈ Zm : Ae = u (mod q)}.

2.3 Gaussians on Lattices

The Gaussian function is a useful tool in lattice-based cryptography.

Definition 2. For any s > 0 and c ∈ Rm, define the Gaussian function as:

gs,c(x) = exp(−π||x− c||2/s2).

Let gs,c(Λ) be a sum of gs,c over the lattice Λ. The discrete Gaussian distribution over Λ with
center c and parameter s is defined as

GΛ,s,c = gs,c(x)/gs,c(Λ).

For notational convenience, in the rest of the paper, gs,0 and GΛ,s,0 will be abbreviated as gs
and GΛ,s, respectively.

The following facts about discrete Gaussian distribution are very useful in this work. They
are from [14] and [10], respectively.

Lemma 1. Let q prime and integer m ≥ 2n log q and let Gaussian parameter s ≥ ω(
√
logm).

For any u ∈ Zn
q , we have:

1. For all but a q−n fraction of A ∈ Zn×m
q , Pr[ x← GΛu(A),s : ||x|| > s

√
m ] ≤ negl(n).

2. For all but a 2q−n fraction of A ∈ Zn×m
q , if e ← GZm,s, then the distribution of the

syndrome t = Ae (mod q) is statistically close to uniform over Zn
q .

2.4 Hardness Assumption

The security of our signature scheme rests on the hardness of SIS problem [3].

Definition 3. Given an integer q > 0, a matrix A ∈ Zn×m
q and a real γ, the SIS problem is

finding a vector v ∈ Zm\{0} such that Av = 0 (mod q) and ||v|| ≤ γ.

For the hardness of SIS problem, Micciancio and Regev [14] have showed that, for any
polynomial-bounded m, γ and for any prime q ≥ γ · ω(

√
n log n), solving SIS on the average is

as hard as approximating some intractable lattice problems such as the shortest lattice vector
problem in the worst case.
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2.5 Short Bases of Lattices

Short basis of a lattice is an important concept in many lattice-based cryptographic schemes.
Here, we recall two useful theorems on short lattice bases. The first theorem is adapted from
Lemma 3.5 of [4] that shows a recent result on how to generate a short basis of an approximate
uniform lattice. The second theorem comes from [10] that is about how to use a short lattice
basis to solve a kind of SIS problems.

Theorem 1. Let q ≥ 3 be odd and m > 5n log q. There is a probabilistic polynomial-time (PPT)
algorithm TrapGen(q, n) that outputs a matrix A ∈ Zn×m

q and a basis B ∈ Zm×m of Λ⊥(A)

such that A is statistical close to uniform, and ||B|| ≤ O(n log q) and ||B̃|| ≤ O(
√
n log q) with

overwhelming probability.

Theorem 2. Let m ≥ n be an integer and q be prime. Let Λ⊥(A) be a lattice defined by matrix

A ∈ Zn×m
q and B be a basis of Λ⊥(A). If s ≥ ∥B̃∥ · ω(

√
log n), then for any u ∈ Zn

q , there is a
PPT algorithm SamplePre(A,B, s,u) that outputs a vector v ∈ Λu(A) from a distribution that
is statistically close to GΛu(A),s.

2.6 Discrete Normal Distribution

This work will also make use of the discrete normal distribution.

Definition 4. For any σ > 0 and c ∈ Zm, define the continuous normal distribution as:

ρmσ,c(x) = (2πσ2)−
m
2 exp(−||x− c||2

2σ2
).

Let ρmσ,c(Zm) be a sum of ρmσ,c over Zm. The discrete normal distribution over Zm centered at
c ∈ Z with parameter σ is defined as

Dm
σ,c(x) = ρmσ,c(x)/ρ

m
σ,c(Zm).

In the rest of the paper, we will abbreviate ρmσ,0 and Dm
σ,0 as ρmσ and Dm

σ .
The following lemma shows two basic properties of such distributions [13,14].

Lemma 2. For any σ > 0 and positive integer m, we have:

1. Pr[x← D1
σ : |x| > 12σ] < 2−100.

2. Pr[x← Dm
σ : ||x|| > 2σ

√
m ] < 2−m.

Lyubashevsky [13] also shows the following interesting fact on the distribution.

Lemma 3. For any v ∈ Zm and positive real α, if σ = ω(||v||
√
logm), we have

Pr[x← Dm
σ : Dm

σ (x)/Dm
σ,v(x) = O(1)] = 1− 2ω(logm),

and more specifically, if σ = α||v||, then

Pr[x← Dm
σ : Dm

σ (x)/Dm
σ,v(x) < e12/α+1/(2α2)] > 1− 2−100.
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2.7 Rejection Sampling Technique

The core idea of rejection sampling technique for a signature scheme is to make the distribution
of the outputted signatures is independent of signing key. To achieve this goal, rejection sampling
technique works as follows. When signing a message, a signer with signing key s first chooses
a random y from some distribution and computes the candidate signature sig that is in the
form of y adding to (or multiplying by) some function of s. Let the target distribution of the
outputted signatures be f which is independent of s, and let the distribution of all candidate
signatures be g which may be related to s. If f(x) ≤ Mg(x) for all x and some real M > 0,
then the candidate signature sig can be output with probability f(sig)/(Mg(sig)). By [21], we
know if the signer follows the above process, then the distribution of the outputted signatures
is f and the expected number of times this process will output a signature is M .

As an example of how to use the rejection sampling technique, consider the signature scheme
of Lyubashevsky [13]. Its target distribution is Dm

σ . To sign a message µ, first select a random y
from Dm

σ and compute z = y+Sc, where S is a signing key and c is a hash value on the inputs
of y and µ. The candidate signature is (c, z). Notice that the z’s distribution is Dm

σ,Sc and, by
Lemma 3, Dm

σ (y)/Dm
σ,Sc(y) ≈ e. Therefore, according to the rejection sampling technique, we

know there exists a small M(≈ e) such that if we output the candidate signature (c, z) with

possibility min(1,
Dm

σ (z)
MDm

σ,Sc(z)
) then z’s distribution is Dm

σ (in this case, by Lemma 2, we have

||z|| ≤ 2σ
√
m with a high probability) and the expected number of running the signing process

is no more than M .

3 Matrix Sampling Algorithm

In our construction, we need an efficient algorithm to extract each user’s signing key that is a
short matrix S satisfying AS = U (mod q) for some user-defined matrix U. We address this
problem by introducing the algorithm SampleMat that is an extension of the preimage sampling
algorithm SamplePre of [10].

The algorithm SampleMat(A,B, s,U) works as follows.

1. Input A ∈ Zn×m
q and U ∈ Zn×k

q , a basis B of Λ⊥(A) and parameter s ≥ ∥B̃∥ · ω(
√
log n).

2. For each i ∈ [k], run algorithm SamplePre(A,B, s,ui)→ si ∈ Zm.
3. Output S = [s1, · · · , sk] ∈ Zm×k.

By Theorem 2, we know, for any u ∈ Zn
q , the algorithm SamplePre(A,B, s,u) will sample a

vector v ∈ Λu(A) from a distribution that is statistically close to GΛu(A),s. Therefore, we can
easily check that the output S of the above algorithm SampleMat(A,B, s,U) satisfies AS = U
(mod q) and its distribution is statistically close to GΛu1 (A),s×· · ·×GΛuk (A),s (thus ||S|| ≤ s

√
m

with overwhelming probability by Lemma 1). As a result, we have the following lemma.

Lemma 4. Let m ≥ n and k ≥ 2 be positive integers, and let q be prime. Let Λ⊥(A) be a lattice

defined by matrix A ∈ Zn×m
q and B be a basis of Λ⊥(A). If parameter s ≥ ∥B̃∥ · ω(

√
log n),

then for any U ∈ Zn×k
q , there is a PPT algorithm SampleMat(A,B, s,U) that outputs a matrix

S ∈ Zm×k from a distribution that is statistically close to GΛU(A),s such that AS = U (mod q)
and ||S|| ≤ s

√
m with overwhelming probability, where GΛU(A),s = GΛu1 (A),s × · · · ×GΛuk (A),s.
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4 An efficient IBS scheme from lattices

We here give the description of our efficient IBS scheme based on lattice assumptions.

4.1 Construction

Our IBS construction involves a few parameters defined below:

– prime q ≥ 3, real M , m > 5n log q, k, λ are all positive integers.

– bound L̃ = O(
√
n log q), Gaussian parameter s = L̃ · ω(

√
log n), σ = 12sλm.

The IBS scheme works as follows.

Setup(n). Given a security parameter n, do the following:
1. Run TrapGen(q, n) to output an approximate uniform matrix A ∈ Zn×m

q along with a

basis B ∈ Zm×m
q of Λ⊥(A) such that ||B̃|| ≤ L̃.

2. Select two hash functions H : {0, 1}∗ → {v : v ∈ {−1, 0, 1}k, ||v||1 ≤ λ} and H1 :
{0, 1}∗ → Zn×k

q .
3. Output the public parameters params = {A,H,H1} and PKG’s secret key SK = B.

Extract(params, SK, ID). Given the public parameters params, PKG’s secret key SK = B and
an identity ID ∈ {0, 1}∗, run algorithm SampleMat(A,B, s,H1(ID)) to obtain a signing
key skID = SID ∈ Zm×k for the user with identity ID. The correctness of SID can be
verified by checking if ASID = H1(ID) and ||SID|| ≤ s

√
m.

Sign(params, µ, skID). Given the public parameters params, a message µ ∈ {0, 1}∗ and a
signing key skID = SID, do the following:
1. Select a random y← Dm

σ .
2. Compute h = H(Ay, µ) and z = SIDh+ y.

3. Output sig = (h, z) with probability min(1,
Dm

σ (z)
MDm

σ,SIDh(z)
). If nothing is outputted,

repeat the algorithm Sign(params, µ, skID).
Verify(params, sig, µ, ID). Given the public parameters params, a signature sig = (h, z), a

message µ and an identity ID, output 1 if and only if h = H(Az − H1(ID)h, µ) and
||z|| ≤ 2σ

√
m.

4.2 Correctness

Theorem 3. The identity-based signature scheme above satisfies correctness.

Proof. According to the construction of the IBS scheme, we know that

Az−H1(ID)h

= Az−ASIDh

= A(z− SIDh)

= Ay

Therefore, we have H(Az−H1(ID)h, µ) = H(Ay, µ) = h.
By simply combining the rejection sampling technique described in Section 2.7 with Lemma

3, we know the distribution of z is very close to Dm
σ . Therefore, by Lemma 2, we have ||z|| ≤

2σ
√
m with probability at least 1−2−m.
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4.3 Efficiency

The most efficient (presently known) lattice-based IBS schemes are those ones that are secure
in the random oracle model, e.g., the IBS schemes1 proposed respectively by Rückert [17] and
Tian et al. [20]. We now compare the performance of our IBS scheme to that of the two schemes.

Table 1 lists the comparison on the communication overhead of the three schemes for the
same security parameter n, where the constant c is the bit length of all identities in Rückert’s
scheme with random oracle, s̄ = s

√
(c+ 1)mω(

√
log n) and ŝ = s ·mω(log3/2 n) are extended

Gaussian parameters, and other parameters are the same as those in Section 4.1. Since m≫ k
and n≫ λ(log k + 1) for reasonable security (e.g., 512 bits or more), one can easily check that
the signing key size and the signature length of our scheme are both much smaller than those
of Rückert’s scheme as well as those of Tian et al.’s scheme.

Table 1. Comparison of several lattice-based IBS schemes

Scheme Signing key size Signature size

Rückert [17] with RO
(
m(c+ 1)

)2
log(s̄

√
(c+ 1)m) m(c+ 1) log(s̄

√
(c+ 1)m) + n

Tian et al. [20] m2 log(ŝ
√
m) m log(ŝ

√
m) + n

This work mk log(s
√
m) m log(12σ) + λ(log k + 1)

In terms of computation complexity, we can see that the signing and verification algorithms
of our scheme are very simple because they only take matrix-vector multiplication, integer
addition and hash operations, whereas signing a message in the schemes of Rückert and Tian
et al. both need to run the more complicated algorithm SamplePre. Moreover, the signing key
extraction algorithm in our scheme is the algorithm SampleMat, which is much faster than the
algorithm RandBasis used in the extraction algorithms of Rückert and Tian et al.’s schemes.

Therefore, we can conclude that our IBS scheme is more efficient than other lattice-based
ones in terms of both communication and computation overhead.

4.4 Security

Theorem 4. The proposed identity-based signature scheme is existential unforgeable against
adaptive chosen message and identity attacks in the random oracle model, assuming the hardness
of SIS problem.

The proof of Theorem 4 will appear in the full version of this paper.

5 Conclusion

In this paper, we presented the first lattice-based IBS scheme that dose not employ the signature
framework of [10]. We proved its security in the random oracle model under the SIS assumption.
Our IBS scheme is more efficient than others based on lattices. We believe the ideas and
techniques used in this work will also be helpful for designing other lattice-based signatures.

1 Notice that these IBS schemes are both generalized ones, i.e., they may have more than two hierar-
chies. For comparability, we here set their hierarchy depth as 2 (including the PKG).
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