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Abstract. Memory disclosure attacks, such as cold-boot attacks and DMA at-
tacks, allow attackers to access all memory contents, therefore introduce great
threats to plaintext sensitive data in memory. Register-based and cache-based
schemes have been used to implement RSA securely, at the expense of decreased
performance. In this paper, we propose another concept named register buffer,
which makes use of all available registers as secure data buffer, no matter scalar
registers or vector registers. The plaintext sensitive data only appear in register
buffer. Based on this concept, we finish a security implementation of 2048-bit
RSA called RegRSA, to defeat against memory disclosure attacks. The 1024-bit
Montgomery multiplication in RegRSA runs entirely in register buffer, by per-
forming computations using scalar instructions and registers, maintaining inter-
mediate variables in vector registers. Due to the size limitation of register buffer,
several variables out of Montgomery multiplications are spilled into memory. Re-
gRSA encrypts these variables with AES before saving in memory. Furthermore,
RegRSA employs a windowing method and the CRT speed-up to accelerate R-
SA, and minimizes the data exchange between registers and memory to reduce
the workload of AES encryption/decryption. The evaluation on Intel Haswell i7-
4770R shows that, the performance of RegRSA achieves a factor of 0.74 com-
pared to the regular RSA implementation in OpenSSL and is much greater than
PRIME, the existing register-based scheme for 2048-bit RSA. Moreover, RegR-
SA allows multiple instances to run on a multi-core CPU simultaneously, which
makes it more practical for the real-world applications.
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1 Introduction

RSA [26] is the most prevalent asymmetric cryptographic algorithm. Although this al-
gorithm is considered computationally secure, the RSA implementations face various
security threats. Memory disclosure attacks, such as cold-boot attacks [15] and DMA
attacks [28], allow attackers to obtain all memory contents, which makes plaintext pri-
vate keys in memory unsafe. Besides, the sensitive data used or produced during RSA
private-key operations, which can be used to derive the private key, should not appear in
memory in plaintext. These sensitive data shall be stored in some secure storage when
they participate in the private-key computations.

Registers and L1 caches in CPUs dedicated to one core, become the required se-
cure storage because they are exclusive to the thread currently running on this CPU
core under certain controls [10, 11]. L1 caches are much larger than registers and pro-
grammes can be coded in high-level languages. But malicious binaries running on one
CPU core could exploit the last-level cache (LLC) to flush a L1 cache line of other
cores to memory with the hardware cache coherence mechanism. The existing cache-
based scheme [11] forces all other cores that share LLC, into the no-fill cache mode
during the cryptographic computations, and sharply reduces the memory access per-
formance of these cores. Moreover, it does not support multiple instances on the cores
that shares LLC. The advantage of register-based scheme is that registers are unaffected
by other cores, which builds the possibility of executing multiple instances on a multi-
core CPU simultaneously. However, the challenge is that registers might be not enough
for the asymmetric cryptographic implementation, which requires (sensitive) data to
be swapped between registers and memory frequently (results in frequent symmetric
encryptions before being written into memory and decryptions after being loaded into
registers). So the key point of register-based schemes is to implement the most frequent
function entirely in registers as far as possible.

In order to implement an efficient register-based RSA system against memory dis-
closure attacks, we should choose an implementation method of RSA which has advan-
tages both on speed and storage consuming. Redundant representation [14] is the major
method for vector-instruction implementations, which achieves high speed but demands
much more storage space. PRIME [10] adopts redundant representation method. In or-
der to finish register-based RSA implementation, PRIME has to abandon CRT method
and its performance is greatly degraded. Another vector approach [6] adopts 2-way sin-
gle instructions to implement Montgomery multiplication, which consumes less storage
than redundant representation method. But the authors in [6] point out that its speed is
lower than 64-bit scalar implementation. So the register-based scheme adopting 64-bit
scalar instructions is our mainly concerned.

1.1 Contributions

In this paper, we propose an 2048-bit RSA implementation named RegRSA, resistant
to memory disclosure attacks. Our basic idea is to keep all plaintext sensitive data only
in registers when being used in RSA private-key computations. The performance of
RegRSA is close to the implementation in OpenSSL and it allows multiple instances
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to run on a multi-core CPU simultaneously. Our major contributions are described as
follows:

• We propose a concept named register buffer that makes use of all available registers
as secure data buffer. We also summarize the available registers in newer CPUs and
the instructions used to move data between different kinds of registers.
• We make full use of 704-byte register buffer in Intel Haswell CPU to implement an

1024-bit Montgomery multiplication running entirely in register buffer, by perform-
ing computations using scalar instructions and registers, maintaining intermediate
variables in vector registers.
• We use a fixed windowing method to speed up Montgomery exponentiation, and

finish a CRT-enabled 2048-bit RSA implementation. The precomputed table and
intermediate variables are encrypted and stored in OS kernel heap or stack. We
present several improvements on using AES-NI [13] to reduce the cost of AES key
expansion for each data block.

1.2 Related Work

Cold-boot attacks and DMA attacks have been explored to access sensitive data in mem-
ory. The first attack exploiting the remanence effect of RAM was reported in [1]. In
2008, the work in [15] presented an cold-boot attack which recovered cryptographic
keys by freezing the RAM chips. The study in [28] provided an overview of cold-boot
attacks and the proposed counter-measures. DMA attacks are launched from peripher-
als through high-speed peripheral ports like PCI [8] and Firewire [4]. TRESOR-HUNT
[3] presented an advanced DMA attack to get the AES key in privileged registers by
compromising the integrity of OS kernel.

In order to resist memory disclosure attacks, register-based and cache-based schemes
are proposed. The register-based schemes employ registers as the secure storage, such
as AESSE [23], Amnesia [27] and TRESOR [24] which keep AES keys in registers
and computed AES using registers only. PRIME [10] is the first register-based scheme
for 2048-bit RSA private-key operations, but its performance is greatly degraded. The
study in [29] proposed an elliptic curve cryptography implementation using CPU regis-
ters. On the other hand, the cache-based schemes employ caches to store sensitive data.
FrozenCache [25] exploited CPU caches to store keys outside RAM. Copker [11] pro-
posed a method to perform RSA private-key operations within CPU caches. Existing
RSA implementations against memory disclosure attacks including PRIME and Cop-
ker, cannot support simultaneous multiple instances on multi-core CPUs well. Mimosa
[12] is the first work to protect sensitive data using hardware transactional memory,
which essentially stores data in caches; but it requires special CPU hardware features.

1.3 Outline

The rest of this paper is organized as follows. Section 2 introduces the available registers
in CPU. Sections 3 and 4 describe the design and the implementation of RegRSA. In
Section 5, we evaluate RegRSA in terms of security and performance. We conclude this
paper in Section 6.
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2 Available Registers in Commodity CPUs

Registers are classified into user-accessible registers and special internal registers. User-
accessible registers can be read or written by CPU instructions, while internal registers
cannot be accessible by instructions. On Intel CPUs, the most commonly-used x86
platform, instructions include scalar instructions and vector instructions. Firstly, scalar
integer instructions operate on scalar registers, also called general purpose registers
(GPRs); and scalar floating-point instructions operate on floating-point registers. Sec-
ondly, Intel vector instruction sets include MMX [9], SSE [18] and AVX [21]. The
registers for MMX are called MM registers, which are physically the same registers
with floating-point registers. The registers for SSE are called XMM registers, and the
registers for AVX are the extensions of XMM registers called YMM registers. XMM
registers are the low 128-bit of YMM registers. A 64-bit CPU has more registers and
every scalar register is double size. Users on 64-bit OS can manipulate these greater-
size registers. For example, on an Intel Haswell CPU, there are sixteen 64-bit GPRs,
eight 64-bit MM registers and sixteen 256-bit YMM registers. The total space of these
registers is 704-byte. Besides, there are four 64-bit debug registers (DRs) available if
the operating system prohibits debugged applications access these registers [24].

Table 1. Instructions used to move data between different kinds of registers

GPR MM XMM YMM DR

GPR MOV MOV VMOV/PINR/VPINR - MOV
MM MOV MOV MOVQ2DQ - -

XMM VMOV/PEXTR/VPEXTR MOVDQ2Q MOVDQA/VMOVDQA VINSERTI128 -
YMM - - VEXTRACTI128 VMOVDQA -
DR MOV - - - -

Scalar registers, MM registers and YMM registers can be used as secure storage for
sensitive computations. The data in different kinds of registers may be exchanged fre-
quently. Table 1 summarizes the instructions used to move data between different kinds
of registers. Note that, scalar registers and XMM registers can exchange data with most
other registers, so they could be the hub of data exchange or keep the most commonly
used data. Specifically, instructions PINR and VPINR insert a 64-bit data item from
a scalar register to the particular location in a XMM register. The difference between
PINR and VPINR is that, PINR is a legacy instruction that keeps the high 128-bit of the
destination YMM register unchanged, but with performance penalty. VPINR is an new
AVX instruction which will clear the high 128-bit of destination YMM register with no
performance penalty.

3 System Design

In this section, we present the design goals of RegRSA. Then, we propose the concept
of register buffer and describe the architecture of RegRSA on top of register buffer.
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3.1 Design Goals

The target of this work is to design a secure and efficient 2048-bit RSA implementation
as follows.
Security Goal. All the sensitive data including cryptographic keys (AES keys and RSA
private keys) and intermediate variables does not appear in the memory in the form of
plaintext, against cold-boot attacks [15] and other memory disclosure attacks.
Performance Goal. The speed of RegRSA should be close to regular implementations,
e.g., OpenSSL. Multiple optimization techniques are expected to be exploited in RegR-
SA, such as Montgomery multiplication [22], the windowing method [19] for modular
exponentiation, and the CRT speed-up [19].
Assumptions. First, the OS kernel is trustworthy, which means an attacker can not
tamper the OS kernel to launch attacks such as TRESOR-HUNT [3]. Second, the system
initialization before any user-space process is safe for users to input a password to derive
an AES key in privileged debug registers [24]. Finally, the register features are available
in hardware and software platform, that is, CPUs and the OS are 64-bit, and necessary
instruction extensions including AVX, AES-NI and MULX are ready.

3.2 Register Buffer

Existing register-based schemes [10, 24, 29] have investigated the usage of registers for
storing sensitive data, but only focused on some registers (not all available registers).
The high-speed implementations of cryptographic algorithms have explored the coop-
eration of different kinds of instructions and registers to accelerate cryptograph com-
puting, but such implementations do not systematically consider the security of keys.

Main
Memory

Cache

Plaintext Zone

Register Buffer

Computation
Reg

Storage
Reg

Ciphertext Zone

Transform

Decrypt

Encrypt

Fig. 1. Register buffer

In this paper, we propose a concept named register buffer, which makes use of all
available registers as secure data buffer, no matter scalar registers or vector registers.
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As the registers are used to provide operands and accept results for certain instructions,
register buffer requires the comprehensive cooperation of different kinds of instruction-
s and registers for efficient computing and secure storage. As described in Figure 1,
register buffer is divided into two sets of registers: computation-reg and storage-reg.
Computation-reg is a set of registers which provides inputs and receives results for on-
going instructions. Storage-reg is a set of registers for maintaining data unused in the
current period. The registers are ready to be converted between computation-reg and
storage-reg depending on which kind of instructions are being executed. Data are plain-
text in register buffer. When data have to be stored in memory (RAM or caches), they
are encrypted with AES. In brief, register buffer deems that all available registers are
secure storage resources which should be fully utilized for efficiency and security.

3.3 RegRSA Architecture

From an implementation point of view, RegRSA is divided into three levels: (1) the
modular multiplication level, (2) the modular exponentiation level and (3) the RSA
level. The high level calls the lower level by sending parameters and receiving results.
The architecture and the data transfer between registers and main memory are depicted
in Figure 2.

1024-bit Montgomery 
Multiplication

1024-bit Montgomery  
Exponentiation

2048-bit RSA

Register Buffer Main Memory

Kernel Heap

Kernel Stack

Call

Call

Parameters
Intermediate Variables 

Intermediate Variables 

RSA Level

Modular Exponentiation 
Level

Modular Multiplication 
Level

Precomputed Table

Precomputed Values

Fig. 2. RegRSA architecture

In the modular multiplication level, we design and implement an all-register 1024-
bit Montgomery multiplication which computes Montgomery multiplication by using s-
calar instructions and registers, maintaining parameters in vector registers. In the modu-
lar exponentiation level, we apply the windowing method for 1024-bit Montgomery ex-
ponentiation. We compute, encrypt and save precomputed table in the kernel heap, and
then load the precomputed values depending on the exponents and decrypt the values.
Based on the CRT method, we implement 2048-bit RSA by performing two 1024-bit
Montgomery exponentiations. The encrypted Montgomery exponents are loaded from
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memory and the results of Montgomery exponentiations are encrypted and swapped
between registers and the kernel stack. In all levels, all the sensitive data in RAM are
encrypted with AES and the AES key is in debug registers. Note that, the major com-
putations, Montgomery multiplication, do not need to exchange data between register
and memory, so the performance degradation from data encryption/decryption and ex-
change is not significant.

4 Implementation

In this section, we describe the detailed implementation of RegRSA: in particular, the
assembly codes of RegRSA to gain the complete control of registers, and the integration
of RegRSA into Linux kernel because such implementation must run in kernel mode
otherwise task switching may dump registers into RAM.

4.1 Montgomery Multiplication Implementation

1024-bit Montgomery multiplication [22] performs the computation S = A × B × R−1

(mod M), R = 21024, 0 6 A, B < M < R. Coarsely Integrated Operand Scanning (CIOS)
[20] is an interleaved Montgomery multiplication method with three 1024-bit inputs A,
B, M and one 64-bit input µ (−M−1 mod 264). As depicted in Figure 3, we employ scalar
registers and scalar instructions to perform Montgomery multiplication, while keeping
three 1024-bit inputs in YMM registers, 64-bit input in a scalar register and saving
the 64-bit intermediate variables q j (q j = S j × µ mod 264) in MM registers. We make
full use of 704-byte register buffer to finish the first all-register 1024-bit Montgomery
multiplication implementation.

A[0] A[2] A[4] A[6] × B[j]

M[0] M[2] M[4] M[6] × qj

A[1] A[3] A[5] A[7] × B[j]

M[1] M[3] M[5] M[7] × qj

A[0] B[j]

qj

Sj

Sj+1

A M B

qj

GPR

YMM

MM

A[7] M[0] M[7]... ...

Fig. 3. First part of our 1024-bit Montgomery multiplication implementation
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According to 64-bit Linux call convention, registers RBX, RBP, RSP, R12, R13,
R14, R15 must be protected, we push these registers except RSP into stack. Since the
left fifteen 64-bit scalar registers are not enough for computing the whole 1024-bit
Montgomery multiplication in one time, we split Montgomery multiplication into four
parts. The first part performs A[0 ∼ 7] × B[0 ∼ 7] + M[0 ∼ 7] × (q0 ∼ q7), the
second part performs A[8 ∼ 15] × B[0 ∼ 7] + M[8 ∼ 15] × (q0 ∼ q7), the third
part performs A[0 ∼ 7] × B[8 ∼ 15] + M[0 ∼ 7] × (q8 ∼ q15) and the fourth part is
A[8 ∼ 15] × B[8 ∼ 15] + M[8 ∼ 15] × (q8 ∼ q15). The j-th round computation of
the first part is depicted in Figure 3. Instruction MULX [18] is used to perform 64-bit
scalar multiplication. The summation variable S occupies nine scalar registers and is
updated in every round, and q j in MM registers is moved back when needed. Eight MM
registers are enough for storing q0 ∼ q7 or q8 ∼ q15 for eight rounds. Besides, the final
subtraction in Montgomery multiplication is always performed, whether or not S is no
less than M, to eliminate the timing side-channel [7].

4.2 Montgomery Exponentiation Implementation

We use the fixed windowing method [19] to speed up Montgomery exponentiation.
The size of window is 6-bit (64 entries). For CRT-enabled RSA, two different mod-
uli are needed; i.e., for the private-key parameters p and q, two tables of Cp

k and
Cq

k (k = 0, · · · , 63) which share a memory space. At the beginning of Montgomery
exponentiation, we prepare precomputed table: compute and encrypt Cp

2 ∼ Cp
63 (or

Cq
2 ∼ Cq

63), save them into kernel memory. Cp
0, Cp

1 (or Cq
0, Cq

1) are also encrypted
and saved in the precomputed table for the const time of table lookup. Then we get the
precomputed value from the precomputed table to YMM registers depending on the ex-
ponent, and decrypt them using 128-bit AES. Since the maximum size of kernel stack is
8KB which still has to save struct thread_info at the stack bottom, 6-bit precomput-
ed table which needs 8KB memory cannot be saved in kernel stack. So we use system
function kmalloc to allocate 8KB memory on the kernel heap for precomputed table
before beginning RegRSA, and use function kfree to free memory after finishing Re-
gRSA. We load all entries of the precomputed table in sequence when we need certain
precomputed values.

AES-NI instruction extension [13] is used to implement AES encryption/decryption
and key expansion by hardware. In this study, we present several improvements on
using AES-NI. First, AES-128 and AES-256 only need one 128-bit temporary register
in the key expansion. Second, we derive the round keys from the last round to the first
round which is very useful for AES decryption. Third, we perform on-the-fly bulk AES
encryption/decryption which uses one round key to process multiple 128-bit data blocks
and then the next round key, which sharply reduces the cost of key expansions for each
data block.

4.3 RSA Implementation

We utilize the CRT method and our 1024-bit Montgomery exponentiation implemen-
tation to finish 2048-bit RSA private-key operations. The input parameters are copied
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from the user space memory to the kernel space memory, including the CRT parame-
ters p, Cp, dp, q, Cq, dq, q−1 mod p, and Montgomery parameters R2 mod p, R2 mod q,
−p−1 mod 2r, −q−1 mod 2r. The parameters dp, dq, q−1 mod p, R2 mod p, R2 mod q,
−p−1 mod 2r, −q−1 mod 2r are constant for each private key, while Cp = C mod p and
Cq = C mod q which need to be computed on the fly for each ciphertext C. All the above
parameters are encrypted with AES when they are stored in memory. As described in
Algorithm 1, the CRT speed-up requires two 1024-bit Montgomery exponentiations for
2048-bit RSA. As register buffer is not enough to hold the result of one Montgomery
exponentiation while performing another, we keep the intermediate variables encrypted
in memory.

Algorithm 1 Implementation of 2048-bit RSA Private-key Operation
Input: The CRT parameters p, Cp, dp, q, Cq, dq, q−1 mod p, and Montgomery parameters

R2 mod p, R2 mod q, −p−1 mod 2r, −q−1 mod 2r

Output: Plaintext M.
1: Load parameters p, Cp, dp, R2 mod p, −p−1 mod 2r from RAM to registers and decrypt them

with AES
2: Mp ← Cp

dp mod p
3: Encrypt Mp with AES and save it in RAM
4: Load parameters q, Cq, dq, R2 mod q, −q−1 mod 2r from RAM to registers and decrypt them

with AES
5: Mq ← Cq

dq mod q
6: Encrypt Mq with AES and save it in RAM
7: Load Mp, Mq, q, q−1 mod p, R2 mod p, −p−1 mod 2r from RAM to registers and decrypt

them with AES
8: M ← Mq + [(Mp − Mq) × (q−1 mod p) mod p] × q
9: return M

4.4 Integration in Linux Kernel

We integrate RegRSA into Linux kernel to ensure no data in registers would leak into
main memory.
Char module. We integrate RegRSA into a char module and compile this module into
Linux kernel. The module provides an interface for user space with the system call ioctl.
The user processes can use the interface to send the inputs to RegRSA and receive the
results. In kernel space, RegRSA can access privileged debug registers for AES keys
(and all other registers).
Atomicity. Before the execution of RegRSA, kernel preemption is suspended by calling
preempt_disable and interrupts are disabled by calling local_irq_save. So data in
registers will not be written into main memory by context switch during the RegRSA
computations. Finally, kernel preemption is restored by calling preempt_enable and
interrupts are enabled by calling local_irq_restore. As non-maskable interrupts
(NMIs) cannot be disabled by software settings, we adopt the solution in Copker [11].
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We modify NMI handlers to clear registers with sensitive data, including scalar regis-
ters, MM registers and YMM registers.

4.5 AES Key

AES key is securely produced and maintains safety after OS initialization.
AES key derivation. By utilizing an existing technique in TRESOR [24], we have
patched the linux kernel to let user input a password before any userland process s-
tartup. We assume the password is strong enough to defeat against brute-force attacks.
Moreover, the user can update AES keys by changing the password after a while.
AES key protection. Also like in TRESOR [24], AES key is stored in debug registers
which cannot be accessed from user space. System functions ptrace_set_debugreg
and trace_get_debugreg are patched to ensure the user process cannot set four debug
registers dr0 to dr3 or get their values.

5 Evaluation

In this section, we conduct security analysis on RegRSA, evaluate its performance and
the impact of RegRSA. In the end, we discuss some further considerations. The system
is evaluated on this platform: Intel Haswell i7-4770R CPU, 8GB memory and OS is
Ubuntu 14.04 64-bit. We turn off Turbo Boost of Intel Haswell i7-4770R for stable
frequency 3.2GHz, in the performance experiments.

5.1 Security Analysis

Memory Disclosure Attacks. First, we explore the security for the situation of only
one RegRSA running instance on CPU. The input parameters are all sensitive data, in-
cluding CRT parameters and Montgomery parameters, which are encrypted with AES
before passing from user space to kernel space. AES key is in privileged debug regis-
ters, no user process could read or write these registers. Due to the atomic execution
of RegRSA, no data in registers will leak into main memory by task switch. In the
Montgomery multiplication level, all the intermediate variables are produced and kept
in registers. In the Montgomery exponentiation level, the precomputed table is encrypt-
ed before stored in RAM, and the precomputed values are decrypted in XMM registers.
In the RSA level, the results of Montgomery exponentiation are encrypted before stored
in memory and decrypted after reading into registers. All the data in registers are elimi-
nated before leaving the atomic region. In a word, all the sensitive data in main memory
are encrypted, and the plaintext sensitive data appear in registers only.

Also, we have done experimental evaluation on RegRSA. We used Kdump to dump
kernel memory while RegRSA was performing RSA private-key operations. We searched
AES keys and RSA private keys in the captured image and found no matching strings.

When there are multiple instances of RegRSA on several CPU cores, no matter how
many requests received from user space, only one RegRSA instance is running on a
single CPU core in a moment due to the atomic execution. As each RegRSA instance
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owns its own variables in kernel stack and heap, RegRSA can execute multiple instances
on different CPU cores which will not interfere with each other.

Cache-based Timing Side-Channels. RegRSA is resistant to cache-based timing
side channel attacks [2, 5, 7]. We employ the fixed windowing method in Montgomery
exponentiation and the final subtraction in Montgomery multiplication is always per-
formed, so there is no branch in the execution flow. Thus, there is no timing side chan-
nels in RegRSA based on instruction paths. When we perform the table-lookup in Mont-
gomery exponentiation, we load the precomputed table as a whole. This makes attack-
ers could not learn which entry RegRSA accesses and deduce the exponents. Therefore,
there is no timing side channels attacks based on data access.

5.2 Performance

Comparison with OpenSSL. We launch different numbers of threads in user space to
send RSA private-key operation requests to RegRSA. Because of simultaneous multi-
threading (SMT), eight threads make RegRSA occupy the CPU fully. RegRSA is com-
pared with OpenSSL version 1.0.1f, in different concurrent levels. The numbers of RSA
private-key operations per second and the ratios of the performances between RegRSA
and OpenSSL are given in Table 2.

Table 2. Comparison with OpenSSL

# of Concurrent Threads 1 4 8

RegRSA 637 2537 2638
OpenSSL 858 3308 3571

RegRSA / OpenSSL 0.74 0.77 0.74

As the number of threads increases, the performance becomes better, either for Re-
gRSA or OpenSSL. RegRSA achieves at least a factor of 0.74 compared to the speed of
OpenSSL. The efficiency degradation of 26% is acceptable, to defeat against memory
disclosure attacks.

Comparison with PRIME. We expect to compare RegRSA with PRIME [10] on
the same platform. Because we do not have the source code of PRIME, the comparison
with PRIME is conducted through OpenSSL – we assume the OpenSSL in [10] is iden-
tical with that in this paper (version 1.0.1f). Table 3 presents the speed ratio of PRIME
and RegRSA to OpenSSL, respectively. So we can see that the efficiency of RegRSA
is far beyond PRIME; moreover, RegRSA can execute 8 instances on quad-core CPUs
simultaneously.

5.3 Impact on Concurrent Tasks

As RegRSA disables kernel preemption and interrupts during its running, the stable of
the operating system and the performance of other applications may be effected. We
initiate eight user threads to continuously send RSA private-key operation requests.
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Table 3. Comparison with PRIME

Latency (ms) Speed Ratio

PRIME 21.0 -
OpenSSL [10] 1.8 -

PRIME / OpenSSL [10] - 0.086
RegRSA / OpenSSL 1.0.1f - 0.74

Through a period of observation, we see that the operating system works properly with-
out disruptions, and the response of OS is normal as well. Then we use the SysBench
benchmark to evaluate the performance impact on concurrent tasks. We run the CPU test
of SysBench and execute the test in four situations. The first is no computing-intensive
tasks performing during the test. The second is same as OS stable test with running
eight user threads to send requests to RegRSA. The third is to start eight threads to
perform a “mock” RegRSA in user space. This mock RegRSA does not disable kernel
preemption and interrupts, and use a fixed value as the AES key – other configurations
are the same as those of RegRSA. The fourth is to perform OpenSSL speed test for
2048-bit RSA private-key operations in eight threads. Test parameters of SysBench are
8 threads, 10,000 requests and prime numbers up to 20000. The test score is the average
time for each request.

Table 4. Impact on other applications

Idle RegRSA Mock RegRSA OpenSSL
kernel space user space

SysBench (ms) 2.83 5.94 5.87 5.98

The results are presented in Table 4. There is no significant difference between the
situations of RegRSA, mock RegRSA and OpenSSL. So disabling kernel preemption
and interrupts in RegRSA does not cause obvious negative effects.

5.4 Discussions

SMT. SMT on Intel CPUs also known as Hyper-Threading (HT), which is used to im-
prove the efficiency of processing units in CPUs. HT provides two hardware threads
on each core. Each thread has a separate set of registers that can be used for RegRSA.
So RegRSA can run at most eight instances on a quad-core HT CPU simultaneous-
ly. Two threads on one CPU core will facilitate instruction pipelining which improves
performance of RegRSA slightly; see Table 2 for details.

Full Memory Encryption. The aim of full memory encryption is to provide con-
fidentiality of the entire software stack outside the CPU [17]; therefore, memory dis-
closure attacks are defeated. However, existing memory encryption suffer significant
performance degradation [16].
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Other CPUs. If a CPU possesses multiple registers including scalar registers, MM
registers and YMM registers, and supports AES-NI instruction set and MULX instruc-
tion, it may be a suitable platform for RegRSA. So besides Intel CPUs, other CPUs like
AMD can also be considered. For example, AMD Carrizo CPUs also support AVX2,
MULX and AES-NI, it can be a potential candidate.

6 Conclusion

We propose a concept named register buffer that makes use of all available registers as
secure data buffer, and design and implement 2048-bit RSA named RegRSA. In RegR-
SA, all the sensitive data appeared in main memory are encrypted, and the plaintext data
are protected in registers to defeat against memory disclosure attacks. The evaluation
on Intel Haswell i7-4770R showed that, the performance of RegRSA achieves at least a
factor of 0.74 compared to the RSA implementation of OpenSSL. Moreover, RegRSA
supports multiple instances on multi-core CPUs simultaneously, which makes RegRSA
more practical for the real-world applications against memory disclosure attacks. We
will explore to use two sets of registers of Hyper-Threading for one RSA computation
instance in the future.
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