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Abstract. Most of the mechatronics equipments and gadgets that we all 

nowadays rely on incorporate some kind of multidimensional human-machine 

systems. There is an increasing concern for improving the usability, 

performance, ergonomics and safety of such devices, and ultimately this will 

lead to the mass-production of next-generation intelligent machines, which will 

be capable to assist the human operator and to reduce the global effort by 

estimating and measuring its skills. This ongoing work introduces a novel 

human-machine multi-dynamic modeling methodology which can be applied on 

the development of these Human Adaptive Mechatronic (HAM) machines, able 

to adapt to the skill/dexterity levels of its users, and to enhance Human's 

proficiency. As a new strategy for model development, a number of two-

dimensional independent pursuit manual tracking experiments are evaluated. A 

human-machine state-space linear model is obtained and successfully applied to 

design an improved closed-loop multivariable control structure. 

Keywords: Human-Machine Dynamics, Man-Machine Interfaces, Human-in-

the-Loop Multivariable Control, Manual Tracking Systems. 

1   Introduction 

Today, the design and development of intelligent human-machine devices and 

assisted-control schemes is becoming a growing field of research. This trend is due to 

the fact that the overall performance in any human-machine process, in terms of 

energy cost, productivity, quality and safety depends both on the machine technical 

condition and on the skills of human user. Recent studies [1] revealed that in 

productive processes involving manual operations (such as in forestry, construction, 

agriculture and mineral plants), the human operator impact factor in the overall 

performance can reach over 40%. Also, in many other research areas, as in medicine, 

biotechnology, space, transports, entertainment, nanotechnology and ocean, where the 

need for assisted machines is crucial, there is nowadays a strong demand to increase 

safety, accuracy and precision. To meet this goals new intelligent assisted-control 
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strategies [2], [3], [4] where introduced which intend to estimate the human operator 

behavior, and produce an assist-force according to the estimated skill level. 

Human-Machine dynamics depends on the human factor, the machine condition, 

and also on the type of manual tasks involved (often taking place in more than a 

single spatial dimension). Hence, whatever modeling and control strategy should be 

taken to improve performance, it is obvious that we are generally dealing with 

complex multiple-input and multiple-output (MIMO) system architectures. 

2   Contribution to Value Creation 

The aim of this work is to present a contribution on human-machine dynamic 

modeling for control purposes taking place on 2-D environments. The inclusion of 

these models in a closed-loop multivariable control scheme makes the human operator 

to take less time and effort to become skillful, and leads also to an improved 

performance on 2-D manually controlled tasks. The research results from this work 

serve as a basis for developing a human adaptive mechatronics multivariable control 

framework, which can be applied on many applications ranging from human operated 

manufacturing environments, tele-robotics, robot-assisted surgery, space and marine 

environments, automotive industry, aviation, etc. 

 
Fig. 1. Robot-assisted laparoscopic surgery (©2011 Intuitive Surgical, Inc.). 

The impact of human performance on world growth, on the environment 

protection, health care and comfort can be viewed as a direct consequence of previous 

investments made in technological innovation for value creation. In addition there is 

nowadays a strong interest in developing new evaluation metrics, data monitoring and 

experimental procedures required for quantifying the human-machine interaction 

skills, which are also proposed and described with detail in this paper. 

3   State-of-the-Art / Related Literature 

It is clear that if we want to design a human-oriented machine we need to model the 

human operator characteristics. Unfortunately, the human element is the most 

complex component to study in a human-machine device. The operator behavior may 



     Improving Operator Performance          97 

alter according to many intrinsic factors, such as concentration, physical condition, 

fatigue or training, and also with other external causes (disturbances, comfort, etc.), 

including the type of manual task being performed. The fact that human behavior 

always results from a set of feedback loops only stresses the difficulty on modeling 

the operator. 

The Human Adaptive Mechatronics (HAM) concept [2] was first launched 

between 2003 and 2008 at Japan, in Tokyo Denki University, as result of a scientific 

research project aimed to intelligently assist the human operator in improving its 

skills. A HAM assist control system [2] uses an intelligent control scheme which 

identifies operator individual characteristics based on its manual actions. An adaptive 

controller then provides an assist force for the operator, to improve task performance 

on the machine, according to previous measured/estimated skill. 

Investigation on HAM has spread to other countries and is nowadays a field of 

research supported by many Universities, I&D Centers and Companies. Recent 

advances on HAM research include the development of mobile working machines, 

adaptive assistance for mobile vehicles, teleoperation and coaching systems [5], [6]. 

Other promising research areas are assisted laparoscopic surgery [7], and human-

machine coordination using Hidden Markov Models for recognizing actions in haptic 

devices and virtual environments [8]. Cutting-edge research for obtaining the human 

operator dynamics covers neuro-fuzzy and fuzzy-ARX modeling techniques [9], the 

modified optimal control model (MOCM) method and particle swarm optimization 

[1]. Other areas of research also emphasis the problem of skill quantification [10] and 

the Fitts speed-accuracy trade off [11] during a manual task. 

4   Research Contribution and Innovation 

Operator task response generally does not follow a linear behavior due to the human's 

non-linear time-varying systemic complexity. However, it was been shown that linear 

models can still be used as a way to capture some of the relevant characteristics of 

human-machine systems, specially in simple servo/regulator manual control tasks 

[12]. Previous 1-D tracking experiments have also revealed that the human dynamics 

cannot be fully described with a single LTI model [13]. Moreover, in any manual task 

the operator closes the loop between sensing and acting, which makes harder to obtain 

the open-loop models involved. 

4.1   The Human-Machine Modeling Strategy 

State-space linear system representations can be obtained directly from physical 

(mathematical) modeling (which may be a complex and time-consuming task), or 

through various system identification methods. The scope of the present work is 

focused on this second option, which addresses the multivariable system identification 

problem. i.e. on how to obtain a human-machine MIMO model from the multi-

input/output closed-loop collected data. 
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As a first approach for modeling in 2-D environments, we simplify the problem by 

assuming that a human-machine interface may be estimated as a linear system which 

is confined on a two-independent orthogonal axes scheme (X,Y), where the influence 

on the output response in one axis is independent from the other axis. By adopting 

this approach, the human-machine MIMO system may be modeled from two 

independent linear transfer functions, leading to a diagonal state-space dynamic 

matrix pattern. Each axis input-output transfer function can then be experimentally 

obtained from several pursuit manual tracking experiments, using the frequency 

analysis methods already developed in previous work [13] ,[14], [15]. 

The frequency analysis method was used to obtain each of the axis input-output 

transfer functions, assuming a human-machine linear time-invariant (LTI) 

approximation. According to the procedure described in [13] for SISO modeling, a 

reference (target) signal x(t) is produced for the human operator to track, and y(t) is 

the equivalent linear human response. The target signal x(t) is built from a set of 

certain multiple frequencies, chosen in order to cover the manual operation frequency 

spectrum. This procedure ensures that only the present frequencies in the reference 

signal are taking into account for modeling purposes. The reference signal x(t) is 

generated in a certain way to avoid any "target learning" effect. The obtained model 

contains the closed-loop behavior of the human operator: 
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Which corresponds, for each independent axis, to the closed-loop human-machine 

frequency response and static gain
0

K  (for a previous input offset 0x ). 

By adopting this procedure, and from the experimental collected data which 

reflects the closed-loop human-machine behavior, two open-loop transfer functions 

( ( )xxM s  and ( )yyM s ) can be obtained for each independent axis, through inverse 

manipulation, and a correspondent human-machine transfer matrix representation, 

despising at this phase the cross-terms, can be written as: 
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(9) 

 

Where ( )x sP  and ( )y sP  are the output responses and ( )x sJ  and ( )
y

sJ  the input 

targets (respectively, for the X-axis and Y-axis). The open-loop transfer functions 

( )xxM s  and ( )yyM s were obtained from two independent sets of pursuit manual 

tracking experiences, each performed for each axis. The magnitude characteristic of 

the input signal used is presented in figure 3: 

 

 

Fig. 3. Input (target) signal magnitude for the X-axis and Y-axis manual tracking experiments, 

based on the N=30 frequencies sum, ranging from 0.0083 Hz to 10 Hz. 
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4.2   2-D Pursuit Manuel Tracking 

Fifty pursuit manual tracking time-trials, each with a 120 seconds duration (T), were 

alternatively performed for each axis, by a  same  participant with no history of 

neurological disease. A minimum 5 minute rest between trials ensured that human 

fatigue or memorization did not influenced results: 
 

 

Fig. 4. A pursuit manual tracking time-trial using Logitech's Extreme 3D Pro. 8-bit analog 

Joystick (left). Y-axis tracking sample (first 20 seconds) at 100 Hz sampling rate (right). The 

input offset signal 0x is 0.4 at 0 and at 120 seconds (t=0, T). 

From the collected data, two amplitude independent open-loop nominal models 

were obtained, one for each axis, through inverse manipulation: 

 

 

Fig. 5. Twenty-five open-loop magnitude Bode plots, for X-axis (left) and Y-axis (right). 

Magnitude behavior is assumed similar for both the axes, and an unique 3 stable 

pole simplified open-loop model, for ( )xxM s and ( )yyM s , is proposed: 

 

10 12 14 16 18

Time (s)
20

Input signal 

-2 0 2 4 6 8
-0.2

0

0.2

0.4

0.8

1

Normalized 

position  

Operator response 

Open-loop Bode plots for the X-axis: Open-loop Bode plots for the Y-axis: 

Frequency (Hz)

10 10 10 10 10 10

Frequency (Hz) 

10 10
-2 -1 0 1

-40

-30

-20

-10

0

20

30

40

50

-2 -1 0 1
-40

-30

-20

-10

0

20

30

40

50

 Mean (log. scale)  Mean (log. scale) 

Magnitude

(dB) 

Magnitude

(dB) 

1.2 



     Improving Operator Performance          101 

3 2

2060
( ) ( )

4.5 527 679
xx yyM s M s

s s s
≈ =

+ + +
 . (10),( 11) 

The experimental procedures already described were independently performed for 

each axis. Therefore it should be stressed that, at this stage, the correspondent state-

space simplified model will not reflect any axis cross-dependency effect. 

4.3   Multivariable Controller Design Strategy 

The human-machine interface setup was applied to an unstable MIMO process, which 

consisted of two equally independent double-integrators (one P(s) for each axis): 

 

 

Fig. 6. Block diagram of the system to be controlled (ex: propelling a mass through space). 

Two types of controllers were proposed to control the unstable system (in both X 

and Y-axis). The first type (C) is a classical lead-compensator, and the second type 
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Where 
1
( )F s  presents the same frequency behavior as (10), but includes an additional 

term1 to allow the implementation of ( )Hxx sC  (and ( )Hyy sC ). 

A closed-loop state-space system representation can then be written in the form: 
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(17) 

                                                           
1  Note that directly dividing ( )C s  by ( )yyM s  leads to an improper transfer function (with 

more zeros than poles), which is not physically realizable. Thus, the need for the additional 

term, made from 3 non-dominant poles at 12.7324 Hz (80 rad/s), and with unity static gain. 
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5   Results and Critical View 

A real-time manual tracking application was developed using LabVIEW, for 

evaluating the operator performance at 2-D environments: 

 

               
   

Fig. 7. LabVIEW developed application for manual tracking in an unstable process, using an 

analog Joystick (left). Ex: manually tracking an ellipsoid input (blue) target signal (right). 

5.1   Human Skill Evaluation 

Three performance metrics were proposed, for quantifying the operator's skill in the 

unstable process: the mean quadratic Cartesian error (MQE) between input reference 

and output response, for acuity; the mean quadratic Cartesian joystick deformation 

(MQD - related with the amount of force applied); and finally, the total absolute value 

of the Cartesian movement (TMD), divided by the experiment duration (related with 

overall hand movement). The experimental results, shown in figures 8 and 9, used an 

origin centered ellipsoid moving target (for 60 seconds), with an eccentricity of 0.866: 
 

 
Fig. 8. Manual effort and acuity for an ellipsoidal target reference, without any compensator. 
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Fig. 9. Manual effort and acuity for an ellipsoidal target reference, with the lead (C) 

compensators (up), and with the HC controllers (down). 
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interface experimental setup was built, to demonstrate the effectiveness of the 

proposed modeling and control methodologies. Obtained results confirmed the 

1

MQE= 0.1036   MQD= 0.9132   TMD=0.7928   6001 samples   100 Hz 

Time (s) 

 

20 30 50 60 600 10 40

Absolute Reference

Absolute Error

Absolute Position

Absolute Movement

-1

0

1

0

20

40

-1

-0.5

0

0.5

1

X axis

Time (s)

 

Input 

Response
Y axis

Normalized  

Position 

1

MQE= 0.0412   MQD= 0.0175   TMD=0.1541   6001 samples   100 Hz 

10 20 30 40 50 60

Time (s)

60

Response 

0

Normalized 
Position 

Absolute Reference 

Absolute Error

Absolute Position

Absolute Movement

0

-1 

-0.5

0

0.5

1

 

Time (s) 

 
Input 

-1 

0

1

20

40

X axis 

Y axis

0.5

1.5

1.5

0.5



104 R. Antunes, F.V. Coito and H. Duarte-Ramos 

importance of the developed HAM strategy in improving operator performance, 

which is becoming particular relevant in high precision mechatronic applications. 

A future work direction lies in obtaining better human-machine realistic models 

that also cover the physical cross-input-output axes dependencies, combined with new 

skill-based HAM adaptation mechanisms, obtained, for example, from an adaptive 

switching robust controller or through swarm intelligence algorithms. 
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