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Abstract. In previous work, we proposed a promising method, named HWBST, 

for Change-Point (CP) detection from time series. However, the performance of 

HWBST is affected partly by the search criteria in terms of Binary Search Tree 

(BST). In this paper, we propose an improved method for fast CP detection 

from large-scale ECG time series, based on multi-level Haar Wavelet and Ter-

nary Search Tree (HWTST, for short). In this method, we construct a ternary 

search tree termed TSTcD from a diagnosed time series by using multi-level 

HW. Then, we implement fast detection abrupt change from root to leaf nodes 

in TSTcD, by introducing two search criteria in terms of the data fluctuation in 

the left, right, and virtual middle branches of TSTcD. Based on the assembled 

and abnormal ECG samples, we evaluate the proposed HWTST by comparing 

with HWBST, KS, and T methods. The results show that the proposed HWTST 

is a faster and more efficient than HWBST, KS and T in terms of the computa-

tion time, error, accuracy, and distance of e.c.d.f.  

Keywords:  CP detection, ECG Time series, Large-Scale, Haar Wavelet (HW), 

Ternary Search Tree (TST). 

1 Introduction 

Currently, Change-Point (CP) detection has attracted considerable attention in the 

fields of data mining and statistics. CP detection has been widely studied in many 

real-world problems, such as atmospheric and financial analysis [1], intrusion detec-

tion in computer network [2], signal segmentation in data stream [3], as well as fault 

detection in engineering system [2, 4]. In the past decade, Wavelet Transform (WT), 

and its revised approaches have emerged as an important mathematical tool for ana-

lyzing time series [5-10]. WT is a promising approach for CP detection. It has found 

applications in anomaly detection, time series prediction, image processing, and noise 

reduction [6, 10-12]. WT can represent general functions at different scales and posi-
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tions in a versatile and sophisticated manner, so the data distribution features can be 

easily extracted from different time or space scales [12, 13]. As a simple WT, Haar 

Wavelet (HW), owns some attracting features including fast for implementation and 

able to analyze the local feature. HW is very useful to find discontinuity and high 

frequency change in time series, so it is a potential candidate in modern electrical and 

computer engineering applications, such as signal and image compression, as well as 

abnormality detection from time series [14, 15].  

Previously, we proposed a HWBST method for fast CP detection [16]. HWBST is 

a promising method for detecting abrupt change from large-scale time series. Howev-

er, the performance of HWBST is affected partly by binary search criteria, especially 

when abrupt change occurs near the middle boundary of BST. To resolve this prob-

lem, in this paper, we propose an improved method for fast CP detection from large-

scale time series, named HWTST, based on multi-level HW and ternary search tree. 

In the proposed method, a ternary search tree (TST), named TSTcD is built based on a 

binary search tree, TcD derived from a diagnosed time series, by adding a virtual 

middle sub-tree; and then abrupt change is detected from TSTcD in terms of two 

search criteria. To evaluate the proposed method, we apply the HWTST, HWBST, 

KS, and T to detect abrupt change from both the assembled and the abnormal ECG 

samples. The detailed HWTST method is implemented as follows. 

2 Method 

2.1 Definition and assumption [16] 

Suppose },...,{
1 N

zzZ   is a diagnosed time series, we observe  
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Hypotheses: 

   (1)
0

Η :  if )(cD
mn

, no abrupt change occurs in Z.  

   (2)
1

Η :  if )(cD
mn

, abrupt change occurs in Z.  

where R is a threshold of data fluctuation in a time series Z within an identical 

distribution. We wish to test 
0

Η  against 
1

Η  from observations. Thereafter, we as-



sume that the number, the location, and the size of the function f are unknown. How-

ever, the upper bound of data fluctuation  is supposed to be known.   

2.2 Multi-level HW 

Generally, as shown in Fig.1, by using multi-level HW, a discrete time-series signal 

Z={z1, z2,…, zN}, can be decomposed into the k
th

-level trend cA
k
 , and k level fluctua-

tions, i.e., cD
1
, cD

2
,..., cD

k
, k=1, 2, .., N2log . The k-level HW is the mapping Hk 

defined by [8], 

      )cDcD...cDcDcA(Z 121 kkkHk ,                                             (3) 

 

Fig. 1. The diagram of multi-level HW for a time-series signal Z, it is composed of k-level cA and cD 

vectors, i.e., the average and difference coefficients vectors. 

Suppose a diagnosed sample Z={z1, z2,…, zN} is decomposed by means of multi-

level HW, we can represent the approximation and detail coefficient vectors by the 

following matrices, namely McA and McD: 
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l0  , and kNj 2/1  .  

2.3 Overview of HWTST method 

The scheme of integrated HWTST method (Fig.2) is composed of three parts. First, a 

ternary search tree, TSTcD, is constructed from a diagnosed time-series Z by multi-

level HW method. Second, abrupt CP is detected from root to leaf nodes in TSTcD, in 
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terms of two search criteria. Last, the proposed method is evaluated by comparing 

with HWBST, KS, and T methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The scheme of the integrated HWTST framework, it includes three parts: TSTcD construction, CP 
detection from TSTcD in terms of two ternary search criteria, and evaluation for HWTST method. 

2.4 Construction of TSTcD  

First, we build a binary tree TcD, in terms of McD. As shown in Fig.3, we deal the 

element cDk,j in McD as the root, the other elements as non-leaf left and right child 

nodes, and the original Z= {z1, z2,…, zN} as N leaf nodes, respectively. Then, a virtual 

middle-child node termed cDk,j;M  is added into non-leaf parent node cDk,j in TSTcA.   

2.5 CP Detection from TSTcD 

Definition 2: Suppose the current non-leaf node 
jk,

cD  is selected in TSTcD, with its 

left, virtual middle, and right child non-leaf node, namely
L:jk,

cD ,
M:jk,

cD , and 
R:jk,

cD , 

respectively. To measure the data fluctuation in different segments of Z, three statistic 

variables, 
Ljk

D
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Fig. 3.  The scheme of TSTcD construction, the virtual non-leaf middle-child node is added. 
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Nk
2

log2  . Thereafter, we can intro-

duce the first search criterion in terms of the data fluctuation defined above. 

Criterion 1: Suppose the current non-leaf node 
jk,

cD  is selected in TSTcD, 

Nk
2

log2  , 

(a) If )),,(max(
;,;,;,;, LjkMjkRjkLjk

DDDD   holds true, then the left-child node
L:jk,

cD  in 

TSTcD, is selected to be involved into the current search path;  

(b) If )),,(max(
;,;,;,;, RjkMjkRjkLjk

DDDD   holds true, then the right-child node
R:jk,

cD  in 

TSTcD, is selected to be involved into the current search path; 

(c) If )),,(max(
;,;,;,;, MjkMjkRjkLjk

DDDD   holds true, then the virtual middle-child node

M:jk,
cD  in TSTcD, is selected to be involved into the current search path. 

In addition, we introduce another criterion to deal with the last leaf node in TSTcD, 

and then decide whether the selected leaf node is the potential CP or not. We define 

the second search criterion in terms of the data fluctuation in the last leaf node level 

as follows. 

Criterion 2: Suppose the current selected non-leaf node is 
 jk,

cD , 1k , with left, 

and right-child leaf node, 
1-0,2j

cD , and 
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cD , namely, 
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(a) If )2cD(
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 2j
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is se-

lected, and dealt as the estimated CP in Z;  

(b) If )2cD(
jk,

  is satisfied, then there is no abrupt change detected from Z. 
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Based on two search criteria above, a fast CP detection is implemented, and then an 

estimated CP can be detected from root to leaf-nodes in TSTcD.  

3 Results 

To verify the performance of the proposed method further, we apply HWKS, and KS, 

HW, and T methods, to detect abrupt change from ECG time series provided by Phys-

ioBank. In ECG experiments, we design the diagnosed ECG samples from different 

ECG datasets, including the MIT-BIH Normal Sinus Rhythm Database (NSRDB) 

[17],  MIT-BIH Noise Stress Test Database (NSTDB) [18], and  MIT-BIH Malignant 

Ventricular Arrhythmia Database (MVADB) [19] . 

3.1 CP detection from assembled ECG samples  

First, we select a normal ECG dataset, 16265m from NSRDB, and an abnormal ECG 

dataset, 118e00m from NSTDB. Specifically, we take the normal ECG segment of 

size m as Xm, and the abnormal segment of size n as Yn, respectively, and then assem-

ble the diagnosed ECG sample Z={Xm , Yn}={x1,…, xm, y1,…, yn}. Then, a single 

CP test position is arranged at the middle part in each diagnosed ECG sample. The 

selected results are shown in Fig 2, and the results of the computation time, error and 

accuracy for all ECG samples of size from 2^7 to 2^ 14 are summarized in Table 1. 
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Fig. 1. The results of CP detection from the assembled ECG time series Z1-Z4. (A1)-(A4) the assembled 

Z1-Z4; (B1)-(B4),(C1)-(C4) ,(D1)-(D4), and (E1)-(E4) the e-CP detected from Z1-Z4, by HWTST, 

HWBST, KS, and T, respectively; (F1)-(F4) the diagram analysis for the computation time, (G1)-(G4) the 

error of e-CP, and (H1)-(H4) the accuracy for HWTST, HWBST, KS, and T, respectively. In histograms 

(F)-(H), ‘1’, ‘2’, ‘3’, and ‘4’ stands for HWTST, HWBST, KS, and T, respectively. 
 

Table 1. The results of CP detection from the assembled ECG samples. 

Z 

M 

Size, N 

CP, k 

2^7 

2^6 

2^8 

2^7 

2^9 

2^8 

2^10 

2^9 

2^11 

2^10 

2^12 

2^11 

2^13 

2^12 

2^14 

2^13 

 

Mean 

 

Time 

HWTST .0050 .0060 .0060 .0060 .0060 .0060 .0070 .0090 .0063 

HWBST .0060 .0060 .0070 .0080 .0080 .0100 .0140 .0240 .0103 

KS .0100 .0130 .0200 .0440 .0119 .3910 1.420 5.431 .9176 

T .0300 .0450 .0740 .1390 .2870 .6750 1.653 4.461 .9205 

 

Error 

HWTST 9 8 8 8 31 8 8 8 11 

T 63 63 15 1 1 1 1 1 18 

KS 15 15 15 15 15 90 52 70 36 

HWBST 62 4 70 198 988 1194 388 8074 1372 

 

Accuracy 

HWTST .9297 .9688 .9844 .9922 .9849 .9980 .9990 .9995 .9821 

KS .8828 .9414 .9707 .9854 .9927 .9780 .9937 .9957 .9675 

T .5078 .7539 .9707 .9990 .9995 .9998 .9999 .9999 .9038 

HWBST .5156 .9844 .8633 .8066 .5176 .7085 .9526 .5072 .7320 

 

In this assembled ECG experiments, the results of CP detection illustrated in Fig.2, 

and Table 1 show that, the proposed HWTST can estimate CP position efficiently, 

and then distinguish the normal and abnormal segments from the assembled ECG 

samples with faster, smaller error and higher accuracy than HWBST, KS, and T. For 

HWBST, although faster than KS, and T, it has the biggest error and the lowest accu-

racy in all four methods. For KS, although slightly bigger error than T, it is faster than 

T, and has smaller error and higher accuracy than HWBST. For T, it has smaller error 

and higher accuracy than HWBST, whereas, it needs the longest computation time in 

all methods. These results indicate the proposed HWTST is more sensitive and effi-

cient than HWBST, for CP detection at the middle boundary. Especially, it has the 

shortest computation time, the smallest error, and the highest accuracy in all four 

methods. 

3.2 CP Detection from abnormal ECG time series 

To verify the performance of the proposed method further, we apply HWTST, 

HWBST, KS, and T to analyze the abnormal ECG time series directly. In this part, we 

select the abnormal ECG segment from 615m in the MVADB, i.e., Z={Yn}={y1,…, 

yn}, as a diagnosed ECG sample. To some extent, the distance of e.c.d.f can partly 

reflect the statistic fluctuation. Therefore, we take this variable as an indicator of the 

data fluctuation between two adjacent ECG segments divided by the estimated CP (e-

CP) position. The selected results of CP detection are plotted in Fig.2, and the results 

for all abnormal ECG samples, including the e-CP position, computation time, and the 

variance of e.c.d.f are summarized in Table 2. 

For abnormal ECG samples Z1-Z6 of size N from 2^10 to 2^15, the results show 

that the proposed HWTST can detect the abrupt change position, and then divide the 

original ECG sample into two adjacent parts, with the shortest computation time in 

four methods; and it has bigger distance of e.c.d.f than HWBST, and T methods. For 



HWBST, although faster than KS, and T, it has the smallest variance of e.c.d.f in all 

four methods. For KS, it can detect CP with the maximal distance of e.c.d.f, whereas, 

it needs longer computation time than HWTST, HWBST, especially when ECG sam-

ple size is bigger. For T, it needs the longest averaged computation time in all four 

methods, although it has bigger variance of e.c.d.f than HWBST. These results show 

that HWTST can capture abrupt change position from the diagnosed ECG samples 

more quickly and efficiently than HWBST, KS, and T. On the other hand, the detect-

ed CP is very useful to find a critical time from the diagnosed ECG time series, where 

a patient might encounter an important conversion between two different states of 

health. Therefore, HWTST is very meaningful for inspecting and diagnosing different 

states of health from diagnosed ECG time series more quickly and efficiently.  
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Fig. 2. The results of CP detection from abnormal ECG time series of size for 2^10 to 2^15. (A1)-(A6) the 

abnormal ECG sample Z1-Z6; (B1)-(B6), (C1)-(C6), (D1)-(D6), (E1)-(E6) the e.c.d.f derived from two 

adjacent ECG segments in Z1-Z6, by HWTST, HWBST, KS, and T, respectively; (F1)-(F6) the diagram 

analysis of the distance of e.c.d.f, and (G1)-(G6) the computation time of HWKS, KS, HW, and T in Z1-Z6, 

respectively. In histograms (F)-(H), ‘1’, ‘2’, ‘3’, and ‘4’ stands for HWTST, HWBST, KS, and T, respec-

tively. 
 

Table 2. The results of CP detection from the abnormal ECG samples. 

Z 

M 

Size, N 2^10 2^11 2^12 2^13 2^14 2^15 Mean 

 

e-CP 

HWTST 630 1478 3448 1520 9503 22640 NA 

HWBST 614 1437 3804 1863 16167 27054 NA 

KS 813 1153 3237 2164 8610 22361 NA 

T 66 65 4036 8190 1 1 NA 

 

Time 

HWTST .0060 .0060 .0070 .0060 .0090 .0140 .0080 

HWBST .0080 .0090 .0100 .0140 .0200 .0350 .0160 

KS .0430 .1320 .4100 1.409 5.294 20.46 4.625 

T .1450 .3170 .7440 1.855 4.685 13.02 3.461 

 

Variance 

of e.c.d.f 

KS .6260 .4919 .4991 .3456 .1909 .1632 .3861 

HWTST .1944 .3750 .2916 .1941 .2475 .1297 .2387 

T .6770 .5811 .0079 0 0 0 .2110 

HWBST .0983 .3249 .1786 .1616 .0496 .0162 .1382 

4 Conclusion 

In this paper, based on multi-level HW and ternary search tree, an improved method, 

named HWTST, is proposed for fast CP detection from large-scale ECG time series. 

In the proposed HWTST method, a ternary search tree, TSTcD, is built by adding a 

virtual middle-child sub-tree into TcD, which is derived from a diagnosed time series 

Z; and two search criteria are defined in terms of the data fluctuation in TSTcD. Then, 

an abrupt change is detected from root to leaf nodes of TSTcD in terms of two search 

criteria. Comparing with previous HWBST, KS, and T methods, the results show that 

the proposed HWTST is more efficient for fast detection CP from large-scale ECG 

time series, due to the shortest computation time, the smallest error, the highest accu-

racy in all four methods, and bigger variance of e.c.d.f than HWBST and T. In addi-

tion, HWTST has better performance than HWBST, especially when abrupt change 

occurs near the middle boundary.   
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