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Abstract. We study the shape differentiability of a cost function for
the steady flow of an incompressible viscous fluid of power-law type. The
fluid is confined to a bounded planar domain surrounding an obstacle.
For smooth perturbations of the shape of the obstacle we express the
shape gradient of the cost function which can be subsequently used to
improve the initial design.
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1 Introduction

Shape optimization for nonlinear partial differential equations is a growing field
in the contemporary optimum design of structures. In this field systems of the
solid and fluid mechanics as well as e.g., the coupled models of fluid-structure
interaction are included for real life problems. The main difficulty associated with
the mathematical analysis of nonlinear state equations is the lack of existence
of global strong solutions for mathematical models in three spatial dimensions.

In numerical methods of shape optimization the common approach is the
discretization of continuous shape gradient. Therefore, the proper derivation
and analysis of the regularity properties of the shape gradient is crucial for
numerical solution of the shape optimization problem. The shape sensitivity
analysis requires, in particular, the proof of the Lipschitz continuity of solutions
the the state equations with respect to the boundary variations. This property of
solutions can be obtained e.g. by analysis of the state equation transported to the
fixed reference domain which is explained in the case of linear elliptic boundary
value problems in monograph [11]. For the nonlinear problems the Lipschitz
continuity is not obvious and it requires the additional regularity of solutions
to the state equation. In addition, for the applications of levelset method of
shape optimization it is required that the obtained shape gradient of the cost
functional is given by a function while the general theory gives only the existence
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of a distribution. In conlusion, it seems that the shape sensitivity analysis in the
case of a nonlinear state equation is the main step towards the numerical solution
of the shape optimization problems.

In gas dynamics described by the compressible Navier-Stokes there is the ex-
istence of weak global solutions. However, the shape sensitivity analysis can be
performed only for specific local solutions. The state of art in shape optimization
for compressible Navier-Stokes equations is presented in the forthcoming mono-
graph [8], see also [7]. For incompressible Navier-Stokes equations, the sensitivity
analysis of shape functionals is performed e.g. in [2] and [6]. In this paper we
are concerned with the non-Newtonian model where the stress is a (nonlinear)
function of the velocity gradient. Optimal control problem for this model was
studied in [9, 13]. Numerical shape optimization was done in [1], see also [3]. We
present new results on the existence of the shape gradient.

We consider the steady flow of an incompressible fluid in a bounded domain
Ω := B \ S in R

2, where B is a container and S is an obstacle. Motion of the
fluid is described by the system of equations

div (v ⊗ v) − div S(Dv) + ∇p + Cv = f in Ω,

divv = 0 in Ω, (P (Ω))

v = g on ∂Ω.

Here v, p, C, f stands for the velocity, the pressure, the constant skew-symmetric
Coriolis tensor and the body force, respectively. The traceless part S of the
Cauchy stress can depend on the symmetric part Dv of the velocity gradient in
the following way:

S(Dv) = ν(|Dv|2)Dv, (1)

where ν, |Dv|2 is the viscosity and the shear rate, respectively. In particular, we
assume that ν has a polynomial growth (see Section 2.1 below), which includes
e.g. the Carreau and the power-law model.

In the model the term of Coriolis type is present. This term appears e.g.
when the change of variables is performed in order to take into account the
flight scenario of the obstacle in the fluid.

The aim of this paper is to investigate differentiability of a shape functional
depending on the solution to (P (Ω)) with respect to the variations of the shape
of the obstacle. We consider a model problem with the drag functional

J(Ω) :=

∫

∂S

(S(Dv) − pI)n · d, (2)

with a given constant unit vector d. Instead of J one could take other type of
functional, since our method does not rely on its specific form.

Our main interest is the rigorous analysis of the shape differentiability for
(P (Ω)) and (2). We follow the general framework developed in [11] using the
speed method and the notion of the material derivative. Let us point out that due
to (1) the state problem is nonlinear in its nature. We refer the reader to [12]
for an introduction to optimization problems for nonlinear partial differential
equations.
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1.1 Shape derivatives

We start by the description of the framework for the shape sensitivity analysis.
For this reason, we introduce a vector field T ∈ C2(R2,R2) vanishing in the
vicinity of ∂B and define the mapping

y(x) = x + εT(x).

For small ε > 0 the mapping x 7→ y(x) takes diffeomorphically the region Ω
onto Ωε = B \ Sε where Sε = y(S). We consider the counterpart of problem
(P (Ω)) in Ωε, with the data f|Ωε

and g|Ωε
. The new problem will be denoted by

(P (Ωε)) and its solution by (v̄ε, p̄ε).
For the nonlinear system (P (Ω)) we introduce the shape derivatives of solu-

tions. To this end we need the linearized system of the form:
Find the couple (u, π) such that

div [u⊗ v + v ⊗ u− S
′(Dv)Du] + ∇π + Cu = F in Ω,

divu = 0 in Ω, (Plin(Ω))

u = h on ∂Ω,

where F and h are given elements.
The shape derivative v′ and the material derivative v̇ of solutions are formally

introduced by

v′ := lim
ε→0

v̄ε − v

ε
, v̇ := lim

ε→0

v̄ε ◦ y − v

ε
,

where v̄ε ◦ y(x) := v̄ε(y(x)), and are related to each other as follows:

v̇ = v′ + (∇v)T.

The standard calculus for differentiating with respect to shape yields that v′ is
the solution of (Plin(Ω)) with the data F = 0 and h = −∂v/∂n(T · n). Using
(7) as the definition of J we obtain the expression for the shape gradient:

dJ(Ω;T) := lim
ε→0

J(Ωε) − J(Ω)

ε

=

∫

Ω

[(Cv′) · ξ + (S′(Dv)Dv′ − v′ ⊗ v − v ⊗ v′) : ∇ξ] −

∫

∂S

(f · d)T · n. (3)

In the above formula, the part containing v′ depends implicitly on the direc-
tion T. This is not convenient for practical use, hence we introduce the adjoint
problem for further simplification of (3):

Find the couple (w, s) such that

−2(Dw)v − div
[

S
′(Dv)⊤Dw

]

+ ∇s− Cw = 0 in Ω,

divw = 0 in Ω,

w = d on ∂Ω. (Padj(Ω))
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Consequently, the expression for dJ reduces to

dJ(Ω;T) = −

∫

∂S

[

(

S
′(Dv)⊤Dw − sI

)

:
∂v

∂n
⊗ n + f · d

]

T · n. (4)

In order to prove the result given by (3) and (4) we need the material deriva-
tives. In particular, it is sufficient to show that the linear mapping

T 7→ dJ(Ω;T)

is continuous in an appropriate topology, see the structure Theorem in the book
[11] for details.

2 Preliminaries

We impose the structural assumptions on the data, state the known results
on well-posedness of (P (Ω)) and introduce the elementary notation for shape
sensitivity analysis.

2.1 Structural assumptions

We require that S has a potential Φ : [0,∞) → [0,∞), i.e. Sij(D) = ∂Φ(|D|2)/∂Dij .
Further we assume that Φ is a C3 function with Φ(0) = 0 and that there exist
constants C1, C2, C3 > 0 and r ≥ 2 such that

C1(1 + |A|r−2)|B|2 ≤ S
′(A) :: (B⊗ B) ≤ C2(1 + |A|r−2)|B|2, (5a)

|S′′(A)| ≤ C3(1 + |A|r−3) (5b)

for any 0 6= A,B ∈ R
2×2
sym. Here the symbol :: stands for the usual scalar product

in R
24 . The above inequalities imply the monotone structure of S, see e.g. [5].

2.2 Weak formulation

For the definition of the weak solution we will use the space

W1,r
0,div (Ω) := {φ ∈ W1,r

0 (Ω); divφ = 0}.

Let f ∈ (W1,2
0,div (Ω))∗ and g ∈ W1,r(Ω) with div g = 0. Then a function v ∈

g + W1,r
0,div (Ω) is said to be a weak solution to the problem (P (Ω)) if

∫

Ω

[

S(Dv) : Dφ− v ⊗ v : ∇φ + Cv · φ
]

=

∫

Ω

f · φ (6)

for every φ ∈ W1,r
0,div (Ω). Note that the pressure is eliminated since test functions

are divergence free.
The following result was shown in [4].
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Theorem 1 (Kaplický et al. [4]). Let Ω ∈ C2, f ∈ L2+ǫ0(Ω), ǫ0 > 0 and
(5a)–(5b) hold with r > 3

2 . Then there exists a constant δ > 0 such that for
every g satisfying

‖g‖3,q ≤ δ, (q > 2),

problem (P (Ω)) has a weak solution satisfying v ∈ W2,2+ǫ(Ω), p ∈ W 1,2+ǫ(Ω),
ǫ > 0.

Note that the above result applies only to the unperturbed domain, i.e. ε = 0.
Assuming smallness of ‖f‖2,B and ‖g‖3,q,B , one can prove that (P (Ω)), (P (Ωε)
has a unique weak solution satisfying

‖v‖ ≤ CE(‖f‖2,B , ‖g‖3,q,B) and ‖v̄ε‖ ≤ CE(‖f‖2,B , ‖g‖3,q,B),

respectively, where CE is independent of ε. At this point we summarize the main
hypotheses.

Assumption 1 In what follows, Ω ∈ C2 is a bounded planar domain of the
form Ω = B \ S, f ∈ L2+ǫ0(B), ǫ0 > 0, g ∈ W3,q(B) (q > 2) is supported in
the vicinity of ∂B, (5a)–(5b) hold with r ∈ [2, 4) and ‖f‖2,B, ‖g‖3,q,B are small
enough.

Let us point out that equation (2) which defines J is not suitable for weak
solutions in general, since the energy inequality does not provide enough in-
formation about the trace of p and Dv. We therefore introduce an alternative
definition that requires less regularity. Let us fix an arbitrary divergence free
function ξ ∈ C∞

c (B,R2) such that ξ = d in a vicinity of S. Then, integrating (2)
by parts and using (P (Ω)) yields:

J(Ω) =

∫

Ω

[(Cv − f) · ξ + (S(Dv) − v ⊗ v) : ∇ξ] . (7)

Note that this identity is finite for any v ∈ W1,2(Ω).

2.3 Deformation of the shape

Let us introduce the following notation: We will denote by DT the Jacobian
matrix whose components are (DT)ij = (∇T)ji = ∂iTj . Further,

N(x) := g(x)M−1(x), M(x) := I + εDT(x), g(x) := detM(x).

One can easily check that the matrix N and the determinant g admit the expan-
sions:

g = 1 + εdivT + O(ε2), N = I + εN′ + O(ε2), N
′ = (divT)I− DT, (8)

where the symbol O(ε2) denotes a function whose norm in C1(Ω) is bounded by
Cε2, see [11].
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The value of the shape functional for Ωε is given by

J(Ωε) :=

∫

Ωε

[(Cv̄ε − f) · ξε + (S(Dv̄ε) − v̄ε ⊗ v̄ε) : ∇ξε] ,

where ξε := (N−⊤ξ) ◦ y−1. Using the properties of the Piola transform one can
check that div ξε = 0. If v̄ε and p̄ε were sufficiently smooth, it would hold that

J(Ωε) =

∫

∂Sε

(S(Dv̄ε) − p̄εI)nε · d. (9)

Nevertheless, as opposed to (P (Ω)), we do not require any additional regularity
of the solution to the perturbed problem (P (Ωε)) and hence the expression in
(9) need not be well defined.

We introduce the auxiliary function ṽ:

ṽ := lim
ε→0

N
⊤v̄ε ◦ y − v

ε
,

which is related to the material derivative v̇ by the identity

ṽ = N
′⊤v + v̇.

For the justification of the results of the paper we will use ṽ since, unlike the
material derivative, it preserves the divergence free condition.

3 Main results

The first result is the existence of ṽ and hence also of the material derivative.

Theorem 2. Let Assumption 1 be satisfied. Then the function ṽ exists and is
the unique weak solution of (Plin(Ω)) with the data

F = A′
0 := div (v ⊗ N

′⊤v) + N
′div (v ⊗ v)

+ div
[

S
′(Dv)

(

((N′ − I trN′)∇v)sym − D(N′⊤v)
)

+ N
′⊤
S(Dv)

]

− N
′div S(Dv) +

(

(N′ − I trN′)C + CN
′⊤
)

v + (I trN′ − N
′)f + (∇f)T, (10a)

h = 0. (10b)

The following estimate holds:

‖ṽ‖1,2,Ω ≤ C‖A′
0‖W1,2

0,div
(Ω)∗ ≤ C‖T‖C2(Ω). (11)

Next we establish the existence of the shape gradient of J .
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Theorem 3. Let Assumption 1 be satisfied and f ∈ W1,2(Ω). Then the shape
gradient of J reads

dJ(Ω,T) = Jv(ṽ) + Je(T),

where the dynamical part Jv and the geometrical part Je is given by

Jv(ṽ) =

∫

Ω

[(Cṽ) · ξ + (S′(Dv)Dṽ − ṽ ⊗ v − v ⊗ ṽ) : ∇ξ] ,

Je(T) =

∫

Ω

{

[

(I trN′ − N
′)Cv − CN

′⊤v − (I trN′ − N
′) f − (∇f)T

]

· ξ

+
[

v ⊗ N
′⊤v + S

′(Dv)
(

(N′∇v −∇(N′⊤v))sym − (trN′)Dv
)

+ N
′⊤
S(Dv)

]

: ∇ξ

+
[

v ⊗ v − S(Dv)
]

: ∇(N′⊤ξ)
}

,

respectively. In particular, as ṽ depends continuously on T, the mapping

T 7→ dJ(Ω,T)

is a bounded linear functional on C2(R2,R2).

Based on the previous result we can deduce that the shape gradient has the
form of a distribution supported on the boundary of the obstacle. Since this
representation is unique, the formal results derived in Section 1.1 are justified
provided that the shape derivatives and adjoints exist and are sufficiently regular.

Corollary 1. Let Assumption 1 be satisfied. Then

(i) the shape derivative v′ exists and is the unique weak solution to (Plin(Ω))

with F = 0, h = −
∂v

∂n
(T · n);

(ii) the adjoint problem (Padj(Ω)) has a unique weak solution that satisfies: w ∈
W2,2(Ω) and s ∈ W 1,2(Ω).

If in addition f ∈ W1,2(Ω), then

(iii) the shape gradient of J satisfies (3);

(iv) the representation (4) is satisfied in the following sense:

dJ(Ω;T) = −

∫

∂S

[

(

S
′(Dv)⊤Dw − sI

)

:
∂v

∂n
⊗ n + f · d

]

T · n. (12)

In the remaining part we show the main steps of the proof of Theorem 3.
Details can be found in [10], where the time-dependent problem is treated.
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4 Formulation in the fixed domain

In this section we transform the problem (P (Ωε)) to the fixed domain Ω. Let us
introduce the following notation:

vε(x) := N
⊤(x)v̄ε(y(x)), x ∈ Ω.

Note that the definition of vε implies that div vε = 0. The new function vε ∈
g + W1,r

0,div (Ω) satisfies the equality

∫

Ω

[

gS(Dεvε) : Dεφ− vε ⊗ vε : ∇φ + Cvε · φ
]

=

∫

Ω

f · φ + 〈A1
ε,φ〉W1,2

0,div
(Ω) for all φ ∈ W1,r

0,div (Ω), (13)

where the term A1
ε on the right hand side is defined for φ ∈ W1,2

0,div (Ω) by

〈A1
ε,φ〉W1,2

0,div
(Ω) =

∫

Ω

[

vε ⊗ N
−⊤vε : ∇(N−⊤φ) − vε ⊗ vε : ∇φ

+ (C− gN
−1

CN
−⊤)vε · φ + (gN−1f ◦ y − f) · φ

]

. (14)

Here Dεvε := g
−1(N∇(N−⊤vε))sym.

Applying change of coordinates we further get:

J(Ωε) =

∫

Ω

[

g
(

N
−1

CN
−⊤vε − N

−1f ◦ y
)

· ξ

+
(

N
⊤
S(Dεvε) − vε ⊗ (N−⊤vε)

)

: ∇(N−⊤ξ)
]

. (15)

Now after all quantities and equations have been transformed to the fixed
domain Ω, we can analyze the limit ε → 0.

Lemma 1. The sequence {vε}ε>0 is bounded in W1,r
0,div (Ω) and satisfies:

vε ⇀ v weakly in W1,r
0,div (Ω),

N
⊤
S(Dεvε) ⇀ S(Dv) weakly in Lr′(Ω,R2×2),

A1
ε ⇀ 0 weakly in W1,r

0,div (Ω)∗.

In particular, v is the unique weak solution to (P (Ω)).

5 Existence of material derivative

Our next task is to identify ṽ as the limit of the sequence {uε}, where

uε :=
vε − v

ε
.
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First we write down the system for the differences uε. Subtracting (13) and (6)
we find that uε ∈ W1,r

0,div (Ω) satisfies the equality

∫

Ω

[1

ε
g(S(Dεvε) − S(Dεv)) : Dεφ + Cuε · φ− (vε ⊗ uε + uε ⊗ v) : ∇φ

]

=
1

ε
〈Aε,φ〉W1,2

0,div
(Ω) (16)

for all φ ∈ W1,r
0,div (Ω). The term Aε ∈ W1,2

0,div (Ω)∗ on the right hand side is
defined as follows:

Aε := A1
ε + A2

ε,

A1
ε is given by (14),

〈A2
ε,φ〉W1,2

0,div
(Ω) :=

∫

Ω

[

N
⊤
S(Dεv) : ∇(N−⊤φ) − S(Dv) : Dφ

]

.

Next we state the properties of the sequence {uε}ε>0.

Lemma 2. The sequence {uε}ε>0 is bounded in W1,2
0,div (Ω). Further it holds:

Aε

ε
⇀ A′

0 weakly in W1,2
0,div (Ω)∗,

uε ⇀ ṽ weakly in W1,2
0,div (Ω),

1

ε
(g(S(Dεvε) − S(Dεv)),Dεφ) → (S′(Dv)Dṽ,Dφ) for all φ ∈ W1, 2r

4−r (Ω),

where A′
0 is defined in (10a) and ṽ is the solution of (Plin(Ω)) with F := A′

0

and h = 0.

This completes the proof of Theorem 2.

6 Shape gradient of J

To prove Theorem 3, we decompose the fraction

J(Ωε) − J(Ω)

ε
= Jε

1 + Jε
2

in a suitable way. Using Lemma 1 and Lemma 2 and the properties of g and N
′,

it is then possible to show that

Jε
1 → Jv(ṽ) and Jε

2 → Je(T).

The continuity of the map T 7→ dJ(Ω;T) follows from the estimate (11).
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[13] D. Wachsmuth and T. Roub́ıček. Optimal control of planar flow of incom-
pressible non-Newtonian fluids. Z. Anal. Anwend., 29(3):351–376, 2010.


