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Abstract. This paper examines the objective of optimally harvesting a
single species in a stochastic environment. This problem has previously
been analyzed in [1] using dynamic programming techniques and, due
to the natural payoff structure of the price rate function (the price de-
creases as the population increases), no optimal harvesting policy exists.
This paper establishes a relaxed formulation of the harvesting model in
such a manner that existence of an optimal relaxed harvesting policy
can not only be proven but also identified. The analysis imbeds the har-
vesting problem in an infinite-dimensional linear program over a space of
occupation measures in which the initial position enters as a parameter
and then analyzes an auxiliary problem having fewer constraints. In this
manner upper bounds are determined for the optimal value (with the
given initial position); these bounds depend on the relation of the initial
population size to a specific target size. The more interesting case occurs
when the initial population exceeds this target size; a new argument is
required to obtain a sharp upper bound. Though the initial population
size only enters as a parameter, the value is determined in a closed-form
functional expression of this parameter.

Key Words. Singular stochastic control, linear programming, relaxed
control.

AMS subject classification. 93E20, 60J60.

1 Introduction

This paper examines the problem of optimally harvesting a single species that
lives in a random environment. Let X be the process denoting the size of the
population and Z denote the cumulative amount of the species harvested. We
assume X(0−) = x0 > 0, Z(0−) = 0, and X and Z satisfy

dX(t) = b(X(t))dt+ σ(X(t))dW (t)− dZ(t), (1)

in which W (·) is a 1-dimensional standard Brownian motion that provides the
random fluctuations in the population’s size, and b and σ are real-valued continu-
ous functions. We assume that b and σ are such that in the absence of harvesting
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the population process X takes values in R+ and that ∞ is a natural boundary
so that the population will not explode to ∞ in finite time. The boundary 0 may
be an exit or a natural boundary point but may not be an entrance point; this
indicates that the species will not spontaneously reappear following extinction.
Note that X(0) may not equal X(0−) due to an instantaneous harvest Z(0) at
time 0 and the process Z is restricted so that ∆Z(t) := Z(t)− Z(t−) ≤ X(t−)
for all t ≥ 0. This latter condition indicates that one cannot harvest more of
the species than exists. Let r > 0 denote the discount rate and f denote the
marginal yield for harvesting. The objective is to select a harvesting strategy Z
so as to maximize the expected discounted revenue

J(x0, Z) := Ex0

[
∫ τ

0

e−rsf(X(s−))dZ(s)

]

, (2)

where τ = inf {t ≥ 0 : X(t) = 0} denotes the extinction time of the species.

As a result of developments in stochastic analysis and stochastic control tech-
niques, there has been a resurgent interest in determining the optimal harvesting
strategies in the presence of stochastic fluctuations (see, e.g., [1, 6]). In partic-
ular, [1] examines the current problem using dynamic programming techniques
and determines the value function. The paper indicates the lack of an optimal
policy in the admissible class of (strict) harvesting policies by commenting that
a “chattering” policy will be optimal. The problem of optimal harvesting of a
single species in a random environment is also studied in [8] in which the model
is extended to regime-switching diffusions so as to capture different dynamics
such as for drought and non-drought conditions. The paper also adopts a dy-
namic programming solution approach to determine the value function while
at the same time exhibiting ǫ-optimal harvesting policies since, as in the static
environment of [1], no optimal harvesting policy exists. In light of the complexi-
ties of the regime-switching model, it further identifies a condition under which
the value function is shown to be continuous and a viscosity solution to the
variational inequality.

The focus of this paper is on developing a relaxed formulation for the harvest-
ing problem under which an optimal harvesting control exists and on establishing
optimality using a linear programming formulation instead of dynamic program-
ming. In addition, it is sufficient to have a weak solution to (1) rather than plac-
ing Lipschitz and polynomial growth conditions on the coefficients b and σ that
guarantee existence of a strong solution. Intuitively, relaxation completes the
space of admissible harvesting rules by allowing measure-valued policies. A ben-
efit of the linear programming solution methodology is the analysis concentrates
on the optimal value for a single, fixed initial condition, rather than seeking the
value function and thus no smoothness properties need to be established about
the value as a function of the initial position.
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To set the stage for the relaxed singular control formulation of the model, let
D = C2

c (R+) and for a function g ∈ D, define the operators A and B by

Ag(x) =
1

2
σ2(x)g′′(x) + b(x)g′(x), and (3)

Bg(x, z) =

{

g(x−z)−g(x)
z

, if z > 0,

−g′(x), if z = 0,
(4)

where x, z ∈ R+. Itô’s formula then implies

g(X(t)) = g(x0) +

∫ t

0

Ag(X(s)) ds+

∫ t

0

Bg(X(s), ∆Z(s)) dZ(s)

+

∫ t

0

σ(X(s))g′(X(s)) dW (s), ∀g ∈ D.

It therefore follows that for any g ∈ D

g(X(t))− g(x0)−

∫ t

0

Ag(X(s)) ds−

∫ t

0

Bg(X(s), ∆Z(s)) dZ(s) (5)

is a mean 0 martingale. In fact, requiring (5) to be a martingale for a sufficiently
large collection of functions g is a way to characterize the processes (X,Z) which
satisfy (1). We turn now to a precise formulation of the model in which the pro-
cesses are relaxed solutions of a controlled martingale problem for the operators
(A,B).

1.1 Formulation of the Relaxed Model

For a complete and separable metric space S, we define M(S) to be the space of
Borel measurable functions on S, B(S) to be the space of bounded, measurable
functions on S, C(S) to be the space of continuous functions on S, C(S) to be
the space of bounded, continuous functions on S, M(S) to be the space of finite
Borel measures on S, and P(S) to be the space of probability measures on S.
M(S) and P(S) are topologized by weak convergence.

Recall, the amount of harvesting is limited by the size of the population.
Define R = {(x, z) : 0 ≤ z ≤ x, x ≥ 0}; R denotes the space on which the paired
process (X,Z) evolves when considering solutions of (1).

The formulation of the population model in the presence of “relaxed” har-
vesting policies adapts the relaxed formulation for singular controls given in [5]
to the particulars of the harvesting problem. This adaptation sets the state space
E to be R+ and the control space U = R+, with U = R ⊂ R+ × R+.

Let X be an R+-valued process and Γ be an L(R)-valued random variable.
Let Γt denote the restriction of Γ to R× [0, t]. Then (X,Γ ) is a relaxed solution

of the harvesting model if there exists a filtration {Ft} such that (X,Γt) is
{Ft}-progressively measurable, X(0−) = x0, and for every g ∈ D,

g(X(t))− g(x0)−

∫ t

0

Ag(X(s)) ds−

∫

R×[0,t]

Bg(x, z)Γ (dx× dz × ds) (6)
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is an {Ft}-martingale, in which the operators A and B are given by (3) and (4),
respectively. Throughout the paper we assume that a relaxed solution (X,Γ )
exists and is strong Markov. Let A denote the set of measures Γ for which there
is some X such that (X,Γ ) is a relaxed solution of the harvesting model.

We turn now to the extension of the reward criterion (2) to the relaxed
framework. Specifically, f : R+ 7→ R+ represents the instantaneous marginal
yield accrued from harvesting. Assume f is continuous and non-increasing with
respect to x. Thus f(x) ≥ f(y) whenever x ≤ y; this assumption indicates that
the price when the species is plentiful is smaller than when it is rare. Moreover,
we assume 0 < f(0) <∞. Let (X,Γ ) be a solution to the harvesting model (6).
Let S = (0,∞) denote the survival set of the species. Then the expected total
discounted value from harvesting is

J(x0, Γ ) := E

[

∫

R×[0,τ ]

e−rsf(x)Γ (dx× dz × ds)

]

. (7)

The goal is to maximize the expected total discounted value from harvesting
over relaxed solutions (X,Γ ) of the harvesting model and to find an optimal
harvesting strategy Γ ∗. Thus, we seek

V (x0) = J(x0, Γ
∗) := sup

Γ∈A
J(x0, Γ ). (8)

We emphasize that the initial position x0 is merely a parameter in the problem
and that V is not to be viewed as a function with any particular properties but
merely is the value of the harvesting problem when the initial population size is
x0. We do, however, obtain the value in functional form for x0 in two regions.

2 Linear Programming Formulation and Main Result

Throughout this paper, we assume the equation (A − r)u(x) = 0 has two fun-
damental solutions ψ and φ, where ψ is strictly increasing and φ is strictly
decreasing; without loss of generality we may assume ψ(0) = 0 (see [1]).

The main result of this paper is summarized in the following theorem.

Theorem 1 Assume that there exists some b̃ ≥ 0 such that

(i) f(x)
ψ′(x) ≤

f(b̃)

ψ′(b̃)
, ∀x ≥ 0,

(ii) the function f/ψ′ is nonincreasing on [b̃,∞), and
(iii) the function f is continuously differentiable on (b̃,∞).

Put b∗ = inf{b̃ ≥ 0 : b̃ satisfies (i)–(iii)}. Then the value is given by

V (x0) =
f(b∗)

ψ′(b∗)
ψ(x0 ∧ b

∗) +

∫ x0∨b
∗

b∗
f(y)dy (9)
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and an optimal relaxed harvesting policy is given by

Γ ∗(dx× dz × dt) = I(b∗,∞)(x0)λ[b∗, x0](dx)δ{0}(dz)δ{0}(dt) + Γb∗(dx× dz × dt),
(10)

where λ[b∗, x0](·) denotes Lebesgue measure on [b∗, x0] and Γb∗ is defined in Propo-

sition 6.

We begin the task of reformulating the harvesting problem with the following
observation. Let τ̃ be any {Ft}-stopping time. The optional sampling theorem
along with the requirement that (6) be a mean 0 martingale for each g ∈ D
implies

e−r(t∧τ̃)g(X(t ∧ τ̃))− g(x0) −

∫ t∧τ̃

0

e−rs[A− r]g(X(s)) ds

−

∫

R×[0,t∧τ̃ ]

e−rsBg(x, z)Γ (dx× dz × ds)

is also a martingale. Recall g ∈ D means g has compact support and hence is
bounded. So taking expectations and letting t→ ∞ yields

g(x0) = E
[

e−rτ̃I{τ̃<∞}g(X(τ̃))
]

− E

[

∫ τ̃

0

e−rs[A− r]g(X(s)) ds

]

(11)

− E

[

∫

R×[0,τ̃ ]

e−rsBg(x, z)Γ (dx× dz × ds)

]

.

The initial analysis takes τ̃ = τ ; later we will need (11) for a different stopping
time.

The measures involved in the infinite-dimensional linear program are ex-
pected discounted occupation measures corresponding to relaxed solutions (X,Γ )
of the harvesting model. Indeed, for any Borel measurable G1 ⊂ S and G ⊂ R,
we define

µτ (G1) = E
[

e−rτIG1
(X(τ))I{τ<∞}

]

, µ0(G1) = E

[
∫ τ

0

e−rsIG1
(X(s))ds

]

,

µ1(G) = E

[

∫

R×[0,τ ]

e−rsIG(x, z)Γ (dx× dz × ds)

]

. (12)

Using these measures, the singular control problem of maximizing (7) over re-
laxed solutions of the harvesting problem (6) can be written in the form



















Maximize

∫

fdµ1,

subject to

∫

gdµτ −

∫

(A− r)gdµ0 −

∫

Bgdµ1 = g(x0), ∀g ∈ D,

µτ , µ0, µ1 ∈ M(S), µτ (S) ≤ 1, µ0(S) ≤
1
r
.

(13)

Since each relaxed solution (X,Γ ) defines measures µτ , µ0 and µ1 by (12),
the harvesting problem is embedded in (13). There might be feasible measures
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which do not arise in this manner. Consequently, letting Vlp(x0) denote the
value of the LP problem (13) with initial condition X(0−) = x0 > 0, we have
V (x0) ≤ Vlp(x0).

3 The Proof of Theorem 1

This section is devoted to the proof of Theorem 1 and involves two steps.

3.1 Step 1: Universal Upper Bound

The proof follows along the lines of the arguments used in [4]. The general
argument involves finding an upper bound for Vlp(x0) by reducing the number
of constraints in the linear program (13). We state the results and leave the
proofs to the reader.

Proposition 2 Let b∗ be defined as in Theorem 1. Then for every x0 ≥ 0,

V (x0) ≤
f(b∗)

ψ′(b∗)
ψ(x0). (14)

Notice the bound in (14) holds for all initial positions x0. The following result
shows that this bound is sharp for x0 ≤ b∗.

Proposition 3 For x0 ≤ b∗, let Lb∗ denote the local time process of X at b∗.
Define the random measure Γb∗ for Borel measurable G ⊂ R and t ≥ 0 by

Γb∗(G× [0, t]) =

∫ t

0

IG(X(s−), ∆Lb∗(s)) dLb∗(s). (15)

Then J(x0, Lb∗) = J(x0, Γb∗) =
f(b∗)
ψ′(b∗)ψ(x0).

Since ∆Lb∗(s) = 0 for every s ≥ 0, an optimal strategy is to harvest just
enough of the population (using the local time ofX∗ at b∗) so that the population
size “reflects” at b∗.

The value function has been determined for intial population sizes x0 that are
smaller than b∗. It therefore remains to prove the validity of (9) when x0 > b∗.

3.2 Step 2: Return of Stochasticity for a Refined Upper Bound

This step is the more interesting of the two and requires a new argument and
also a different type of harvesting policy than appears in the literature.

When dealing with singular control problems, one usually takes the so-called
reflection strategy, namely, Z(t) = (x0 − b∗)+ + Lb∗(t), where one follows an
immediate jump from x0 to b∗ by using the local time process Lb∗ at b∗. Such a
reflection strategy is used in [2], [7] and others. The corresponding income is

J(x0, Z) = f(x0)(x0 − b∗) +
f(b∗)

ψ′(b∗)
ψ(b∗).
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When f is strictly decreasing, the reflection strategy is not optimal. Our purpose
is to find an optimal relaxed harvesting strategy.

To develop a sharp upper bound, it is beneficial to revisit the definitions of
the occupation measures in (12) so that the connection between the measures,
the initial position and the harvesting strategy is more clearly displayed. Let
x0 ∈ R+ and (X,Γ ) be a relaxed solution of the harvesting model. Modify the
notations of the measures to indicate their dependence on x0 and Γ by writing
µτ (G;x0, Γ ), µ0(G;x0, Γ ) and µ1(G;x0, Γ ).

Proposition 4 For x0 > b∗,

V (x0) ≤

∫ x0

b∗
f(y) dy +

f(b∗)

ψ′(b∗)
· ψ(b∗). (16)

Proof. The proof of (16) is broken into two parts, with a technical lemma be-
tween the parts.
Part 1: Define the stopping time τb∗ = inf{t ≥ 0 : X(t) ≤ b∗} to be the first time
the process X takes value at most b∗ and note that τb∗ ≤ τ . For the harvesting
measure Γ , define Γτb∗ by

Γτb∗ (G× [0, t]) = I{τb∗<τ}Γ (G× [τb∗ , τb∗ + t]), G ∈ B(R), t ≥ 0.

Notice that Γτb∗ captures all harvesting using the measure Γ from time τb∗

onwards. Also define the measures µ0,τb∗ and µ1,τb∗ by

µ0,τb∗ (G;x0, Γ ) = Ex0

[
∫ τb∗

0

e−rsIG(X(s)) ds

]

,

µ1,τb∗ (G;x0, Γ ) = Ex0

[

∫

R×[0,τb∗ )

e−rsIG(x, z)Γ (dx× dz × ds)

]

.

Note carefully that any harvesting at the time τb∗ is excluded from the measure
µ1,τb∗ . Also observe that the total mass of µ0,τb∗ equals r−1 (1−Ex0

[e−rτb∗ ]).
Using the strong Markov property of (X,Γ ), for each G ∈ B(R) it follows

that

Ex0

[

∫

R×[0,τ ]

e−rsIG(x, z)Γ (dx× dz × ds)

]

= Ex0

[

∫

R×[0,τb∗ )

e−rsIG(x, z)Γ (dx× dz × ds)

]

+Ex0

[

Ex0

[

I{τb∗<τ}

∫

R×[τb∗ ,τ ]

e−rsIG(x, z)Γ (dx× dz × ds)

]∣

∣

∣

∣

∣

Fτb∗

]

= Ex0

[

∫

R×[0,τb∗ )

e−rsIG(x, z)Γ (dx× dz × ds)

]

+Ex0

[

e−rτb∗ I{τb∗<τ}EX(τb∗ )

[

∫

R×[0,τ ]

e−rsIG(x, z)Γτb∗ (dx× dz × ds)

]]

.
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As a result, for each G ∈ B(R), this identity can be written in terms of the
measures as

µ1(G;x0, Γ ) = µ1,τb∗ (G;x0, Γ ) +Ex0

[

e−rτb∗ I{τb∗<τ}µ1(G;X(τb∗), Γτb∗ )
]

.

Notice, in particular, that the expectation term involves the measure µ1 evalu-
ated at the random initial position X(τb∗). Hence

∫

f(y)µ1(dy;x0, Γ )

=

∫

f(y)µ1,τb∗ (dy;x0, Γ ) +Ex0

[

e−rτb∗ I{τb∗<τ}

∫

f(y)µ1(dy;X(τb∗), Γτb∗ )

]

≤

∫

f(y)µ1,τb∗ (dy;x0, Γ ) +Ex0

[

e−rτb∗ I{τb∗<τ}
] f(b∗)

ψ′(b∗)
· ψ(b∗), (17)

in which the inequality follows from Step 1.
This concludes Part 1 of the proof. Part 2 concentrates on estimating the

first term of the right-hand side of (17); a technical lemma is required.

Lemma 5 Assume the conditions in Theorem 1. Define the function h by h(x) :=
∫ x

b∗
f(y)dy for x ≥ 0. Then the following estimates hold:

(A− r)h(x) ≤ r
f(b∗)

ψ′(b∗)
ψ(b∗), for x ≥ b∗ and (18)

−Bh(x, z) ≥ f(x), for all (x, z) ∈ R. (19)

Proof. Since by assumption the function f/ψ′ is nonincreasing and differentiable
on (b∗,∞), we have

0 ≥
d

dx

(

f(x)

ψ′(x)

)

=
f ′(x)ψ′(x)− f(x)ψ′′(x)

(ψ′(x))2
, x > b∗.

But ψ is strictly increasing and so ψ′(x) > 0. Hence it follows that f ′(x)ψ′(x)−

f(x)ψ′′(x) ≤ 0, or equivalently f ′(x) ≤ f(x)
ψ′(x)ψ

′′(x), for x > b∗. It then follows

that for each x > b∗

(A− r)h(x) ≤
1

2
σ2(x)

f(x)

ψ′(x)
ψ′′(x) + b(x)f(x)− r

f(x)

ψ′(x)
(ψ(x)− ψ(b∗))

=
f(x)

ψ′(x)

[

1

2
σ2(x)ψ′′(x) + b(x)ψ′(x)− rψ(x)

]

+ r
f(x)

ψ′(x)
ψ(b∗)

= r
f(x)

ψ′(x)
ψ(b∗) ≤ r

f(b∗)

ψ′(b∗)
ψ(b∗).

Turning to a consideration of (19), since f is nonincreasing, for any 0 ≤ x1 <
x2, we have

f(x2)[x2 − x1] ≤

∫ x2

x1

f(y)dy = h(x2)− h(x1).
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Hence it follows that for (x, z) ∈ R, we have

−Bh(x, z) =

{

h′(x) = f(x), if z = 0
h(x)−h(x−z)

z
≥ f(x), if z > 0.

The relation (19) is therefore established.

Part 2: The goal is of this part of the proof is to estimate
∫

f(y)µ1,τb∗ (dy× dz)
of (17). Using Itô’s formula, one obtains for each t > 0,

− E

[

∫

R×[0,t∧τb∗ )

e−rsBh(x, z)Γ (dx× dz × ds)

]

= h(x0)−E
[

e−r(t∧τb∗ )h(X((t ∧ τb∗)−))
]

+E

[
∫ t∧τb∗

0

e−rs[A− r]h(X(s)) ds

]

,

in which the deliberate choice of the half-open interval [0, t∧ τb∗) in the integral
with respect to Γ leads to the use of X((t∧τb∗)−) for the location of the process
just before any harvest occurs at time τb∗ . This is extremely important since
h(X((t∧τb∗)−)) ≥ 0 and hence the right-hand side is not decreased by dropping
the first expectation. Letting t→ ∞ yields

−E

[

∫

R×[0,τb∗ )

e−rsBh(x, z)Γ (dx× dz × ds)

]

≤ h(x0) + E

[
∫ τb∗

0

e−rs[A− r]h(X(s)) ds

]

.

Using the estimates (18) and (19) and the definition of the measures µ1,τb∗ and
µ0,τb∗ , we obtain

∫

R

f(y)µ1,τb∗ (dy × dz;x0, Γ ) ≤ −

∫

R

Bh(y, z) µ1,τb∗ (dy × dz;x0, Γ )

≤ h(x0) +

∫

r ·
f(b∗)ψ(b∗)

ψ′(b∗)
µ0,τb∗ (dx;x0, Γ )

= h(x0) +
(

1−Ex0

[

e−rτb∗
]) f(b∗)

ψ′(b∗)
· ψ(b∗), (20)

in which the last equality follows from the mass of µ0,τb∗ . Combining (17) and
(20) produces the desired relation

∫

f(y)µ1(dy × dz;x0, Γ ) ≤

∫ x0

b∗
f(y) dy +

f(b∗)

ψ′(b∗)
· ψ(b∗).

We have derived an upper bound for the value V (x0) in Proposition 4. The
following proposition exhibits an optimal relaxed harvesting policy. The proof is
left to the reader.
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Proposition 6 Let λ[b∗,x0](·) denote Lebesgue measure on [b∗, x0]. Also let Lb∗

denote the local time process of Proposition 3 with x0 taken to be b∗ and denote

by Γb∗ the random measure defined in (15). Finally, define the relaxed harvesting

strategy by

Γ ∗(dx× dz × dt) = λ[b∗,x0](dx)δ{0}(dz)δ{0}(dt) + Γb∗(dx× dz × dt).

Then

V (x0) = J(x0, Γ
∗) =

∫ x0

b∗
f(y)dy +

f(b∗)

ψ′(b∗)
ψ(b∗). (21)

We observe that the manner in which this optimal harvesting policy differs
from the typical “reflection” strategy occurs at the initial time. Whereas the
reflection strategy has the process X instantaneously jump from x0 to b∗, the
optimal relaxed harvesting policy obtains this relocation in an instantaneous but
continuous manner.

Finally we note that the combination of Propositions 2 and 6 establishes
Theorem 1. Moreover, the optimal relaxed harvesting policy in (10) unifies the
two cases.
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