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Abstract. We discuss a technical approach, based on the method of
regularized extremal shift (RES), intended to help solve problems of
stable control of uncertain dynamical systems. Our goal is to demon-
strate the essence and abilities of the RES technique; for this purpose
we construct feedback controller for approximate tracking a prescribed
trajectory of an inaccurately observed system described by a parabolic
equation. The controller is “resource-saving” in a sense that control re-
source spent for approximate tracking do not exceed those needed for
tracking in an “ideal” situation where the current values of the input
disturbance are fully observable.
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1 Introduction

In the present work, the problem of tracking a solution of a system with distrib-
uted parameters is discussed. The essence of this problem can be formulated in
the following way. A parabolic equation is considered on a given time interval
T = [t0, ϑ], ϑ < +∞. The solution of this equation w(·) = w(·; v(·)) depends
on a time-varying control v = v(·). This solution is inaccurately measured at
frequent enough time moments. It is required to organize a control process for
the equation by the feedback principle in such a way that it is possible to pre-
serve given properties of the solution. The quality of the solution constructed is
estimated by the distance from a given (prescribed, standard) solution x(·). The
latter is a solution of the parabolic equation generated by some input u = u(·).
The problem in question is treated as the problem of constructing a control
v = v(·) providing the retention of the trajectory w(·) = w(·; v(·)) nearby x(·).
This is the conceptual statement of the control problem under consideration.

⋆ This work was supported in part by the Russian Foundation for Basic Research
(No. 11-01-12112-ofi-m), by the Program on Basic Research of the Presidium of the
Russian Acad. Sci. (No. 12-P-1-1012) and by the Program for support of leading
scientific schools of Russia (No. 6512.2012.1).
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2 Problem Statement

Let H and V be real Hilbert spaces. The space V is a dense subspace of H and
V ⊂ H ⊂ V ∗ algebraically and topologically, (·, ·) stands for the inner product
in H, 〈·, ·〉 stands for the duality relation between V and V ∗. We consider a
system Σ which is described by the parabolic equation

ẇ(t) + Aw(t) = Bv(t) + f(t), for a. a. t ∈ T, w(t0) = w0. (1)

Here A : V → V ∗ is a linear continuous (A ∈ L(V ; V ∗)) and symmetrical
operator satisfying (for some c∗ > 0 and real ω) the coercitivity condition

〈Aw,w〉 + ω|w|2H ≥ c∗|w|2V ∀y ∈ V, (2)

U is a Hilbert space, f ∈ L2(T ; H) is a given function, | · |H , | · |U and | · |V stand
for the norms in H, U and V , respectively, B : U → H is a linear continuous
operator (B ∈ L(U ; H)). Let the following condition be fulfilled.

Condition 1. Operator B is invertible.
Let w(t0) = w0 ∈ D(AH), where D(AH) = {w ∈ V : AH ∈ H}. It is

known that under such conditions, for any v(·) ∈ L2(T ;U), there exists a unique
solution w(·) = w(·; t0, w0, v(·)) of equation (1) with the following properties [1]:
w(·) ∈ W (T ) = W 1,2(T ;H) ∩ L2(T ; V ). Here, W 1,2(T ; H) = {w(·) ∈ L2(T ; H) :
ẇ(·) ∈ L2(T ;H)}, the derivative ẇ(·) is understood in the sense of distributions.

Assume that along with equation (1) we have another equation of the same
form:

ẋ(t) + Ax(t) = Bu(t) + f(t) for a.a. t ∈ T (3)

with an initial state x(t0) = x0 ∈ D(AH). This equation (in what follows, we call
it reference) is subject to the action of some reference control u(·) ∈ L2(T ;U).
The reference control as well as the corresponding solution x(·) = x(·; t0, x0, u(·))
of equation (3) are a priori unknown. At discrete, frequent enough, time mo-
ments τi ∈ ∆ = {τi}

m
i=0 (τ0 = t0, τm = ϑ, τi+1 = τi + δ), the states w(τi) =

w(τi; t0, w0, v(·)) of equation (1) as well as the states x(τi) = x(τi; t0, x0, u(·)) of
reference equation (3) are measured. The states w(τi) are measured with an er-
ror. The results of measurements are elements ξh

i ∈ H satisfying the inequalities

|w(τi) − ξh
i |H ≤ h, i ∈ [1 : m − 1]. (4)

Here, the value h ∈ (0, 1) is the measurement accuracy. It is required to design
an algorithm for forming the control v = vh(·) in equation (1) allowing us to
track the solution x(·) of equation (3) by the solution w(·) of equation (1).
Thus, we consider the problem consisting in constructing an algorithm, which
(on the basis of current measurements of the values w(τi) and x(τi)) forms in
real time mode (by the feedback principle) the control v = vh(·) in the right-
hand part of inequality (1) such that the deviation of w(·) = w(·; t0, w0, v

h(·))
from x(·) = x(·; t0, x0, u(·)) in metric of the space C(T ;H) ∩ L2(T ;V ) is small
if the measurement accuracy h is small enough. We also want the constructed
algorithm to be resource-saving. This means that the resources of the synthetic
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control v = vh(·) (i.e., the value
ϑ
∫

t0

|vh(τ)|2U dτ) should exceed the resources of the

reference control by a small value depending on the measurement accuracy h.
This value tends to zero as h tends to zero. Thus, we require the validity of the
inequality

ϑ
∫

t0

|vh(τ)|2U dτ ≤

ϑ
∫

t0

|u(τ)|2U dτ + ϕ(h), (5)

where ϕ(h) → 0 as h → 0.
In the case when the reference control u as well as the control v in inequality

(1) are subject to instantaneous constraints (u ∈ P , v ∈ P , where P ⊂ U is a
given bounded and closed set), the problem above can be solved by means of the
method of extremal shift [2]. Namely, if the control v = vh(·) in the right-hand
part of (1) is calculated by the formula

vh(t) = v(τi, ξ
h
i , x(τi)) = arg min{(x(τi)− ξh

i , Bv) : v ∈ P} for t ∈ [τi, τi+1), (6)

then, as it follows from [3], for any ε > 0 one can find numbers h1 > 0 and
δ1 > 0 such that the inequality

sup
t∈T

|w(t; t0, w0, v
h(·)) − x(t; t0, x0, u(·))|H ≤ ε

is fulfilled if h ∈ (0, h1) and δ ∈ (0, δ1). The last inequality is valid for any
reference control, i.e., for any Lebesgue measurable function u(t) ∈ P for almost
all t ∈ T . Here and below, we assume that ω > 0 and w0 ∈ D ⊂ V , where D is
a bounded set,

|w0 − x0|H ≤ h. (7)

Thus, the method of extremal shift allows us to solve the problem of tracking
the solution of the reference equation under instantaneous constraints on the
controls (v, u ∈ P ). In the present paper, we assume that any function from
the space L2(T ; U) can be the admissible control (both reference, u(·), and real,
v(·)). No additional information on the functions v(·) and u(·) is required. We
construct a corresponding modification of the method of extremal shift, using,
according to [4–9], the idea of its local regularization. Along with measuring the
phase states at discrete time moments (see (4)), we also consider the case of
“continuous” measuring of the states x(t) and w(t). Namely, it is assumed that,
at every time t ∈ T , the phase states of equations (1) and (3) are measured; as
a result, we have functions ξh(t) ∈ H with the properties

|ξh(t) − w(t)|H ≤ h, t ∈ T. (8)

The functions ξh(t), t ∈ T , are Lebesgue measurable.
In control theory for distributed systems, a linear quadratic control problem

(LQP) is widely known. Its solution methods have been studied rather well
(see, for example, [11, 12]). This problem consists in the minimization of some
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quadratic functional depending on a phase trajectory and control (for example,
in the minimization of the deviations in L2-norm from a reference control and
state trajectory). The problem in question, which is in essence close to LQP, has,
at the same time, several distinctive features. Among them, at the first turn, it
is worth while noticing the following two features. Firstly, an LQP solution,
as a rule, does not guarantee that we find a control generating a trajectory
that is close to the reference trajectory in uniform metric. In addition, some
apriori information on the reference control is rather often required. The second
distinction is in the essence of solving methods. Namely, the method suggested
in the present paper is based on constructions of the well-known in the theory
of guaranteed control principle of extremal shift.

3 Control algorithm. Case of continuous measuring of

solutions

First, we consider the case of “continuous” measuring of solutions of equations
(1) and (3). In this case, inequalities (8) are valid (for simplicity, we set ξh(t0) =
w0). The problem consists in designing a rule forming (by the feedback principle)
the control v = v(t, ξh(t), w(t)). Fix a function α = α(h) : (0, 1) → (0, 1). Let
the control vα,h(t) in equation (1) be defined by the formula

v = ṽα,h(t) = vα,h(t) + ṽh(t), (9)

where

ṽh(t) = cB−1(x(t) − ξh(t)), vα,h(t) = α−1B∗(x(t) − ξh(t)). (10)

Here, B∗ denotes the adjoint operator, c = const > 2ω. Thus, we obtain system
(1), (3); i.e., we have the pair of equations

ẋ(t) + Ax(t) = Bu(t) + f(t),

ẇα,h(t) + Awα,h(t) = α−1BB∗(x(t) − ξh(t)) + c(x(t) − ξh(t)) + f(t)

with the initial condition x(t0) = x0, wα,h(t0) = w0. Here, we denote by
wα,h(·) the solution of equation (1) corresponding to the function v = vα,h(·) of
form (9).

The second formula in (10) is an analog of relation (6). If the constraint in
the form of the set P is absent then the application of formula (6) for calculating
the control v is impossible, since in this case it is required to solve the problem
of minimization of the linear functional li(u) = (ξh

i − y(τi), Bu) over the whole
space U . It is natural to replace this problem by a new regularized problem with
a smoothing functional of the form α(h)|v|2U , i.e., to replace problem (6) by the
problem of finding the function vα,h(t) by the rule

vα,h(t) = arg min{α|v|2U − 2(B∗(x(t) − ξh(t)), v)U : v ∈ U}.
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Formula (10) provides the solution of the new problem. Thus, to calculate vα,h(t),
we realize the regularization of the method of extremal shift by means of the
method of smoothing functional, which is known in the theory of ill-posed prob-
lems.

Theorem 1. Let α = α(h) → 0. Then the following inequalities

|x(t) − wα,h(t)|2H + 2c

t
∫

t0

|x(τ) − wα,h(τ)|2V dτ ≤ d0(h + α(h)), t ∈ T, (11)

ϑ
∫

t0

|ṽα,h(τ)|2U dτ ≤

ϑ
∫

t0

|u(τ)|2U dτ + d∗(hα−2(h) + h1/2 + α1/2(h)) (12)

are fulfilled. Here, d0, d∗ = const > 0 are constants, which do not depend on
h ∈ (0, 1).

Proof. Due to (10), it holds that |vα,h(t)|2U ≤ 2b2α−2(h2 + |µα,h(t)|2H), t ∈ T ,
where µα,h(t) = x(t)−wα,h(t), b = |B∗|L(H;U) is the norm of the linear operator
B∗ ∈ L(H; U). In this case, we have

t
∫

t0

|vα,h(τ)|2Udτ ≤ 2b2α−2̺h(t) + c1h
2α−2, ̺h(t) =

t
∫

t0

|µα,h(τ)|2Hdτ. (13)

Due to coercivity condition (2), we obtain,

ε̇h(t) ≤ −2(vα,h(t), B∗(x(t)−ξh(t)))U +α|vα,h(t)|2U +2(u(t), B∗(x(t)−ξh(t)))U−

− α|u(t)|2U + 2bh{|u(t)|U + |vα,h(t)|U} + (2ω − c)|µα,h(t)|2H + 2ch2, (14)

where εh(t) = |µα,h(t)|2H + 2c∗
t
∫

t0

|µα,h(τ)|2V dτ + α
t
∫

t0

{|vα,h(τ)|2U − |u(τ)|2U} dτ .

From (14) and (10), it follows that

εh(t) ≤ εh(t0) + c2 +

t
∫

t0

2bh{|u(τ)|U + |vα,h(τ)|U}dτ + (2ω − c)̺h(t). (15)

From (13), (15), and the inequality 2ω − c < 0, we derive

εh(t) ≤ c3(h + h3α−2) + c4(hα−2 + h)̺h(t). (16)

Therefore, from (16) we get the bound

|µα,h(t)|2H ≤ c5(h + α + h3α−2) + c4(hα−2 + h)̺h(t). (17)

By the Gronwall inequality and (17), we obtain

|µα,h(t)|2H ≤ c5(h + α + h3α−2) exp{c4(t − t0)(hα−2 + h)}. (18)
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Note that hα−2 ≤ const. Then

|µα,h(t)|2H ≤ c6(h + α). (19)

From (16) and (19) we derive

εh(t) ≤ c3(h + h3α−2) + c7(hα−2 + 1)(h + α) ≤ c9(h + α). (20)

Relation (11) follows from (10). Let us verify (12). By virtue of inequality (19),
from (16) we obtain

εh(t) ≤ c8{h + h3α−2 + (hα−2 + h)(h + α)} ≤ c9{h + h2α−2 + hα−1}. (21)

Using (21), we get for t ∈ T

t
∫

t0

|vα,h(τ)|2U dτ ≤

t
∫

t0

|u(τ)|2U dτ + c10hα−2, (22)

|ṽh(t)|U ≤ c11(h + α)1/2. (23)

Relation (12) follows from (22) and (23). The theorem is proved.

4 Control algorithm. Case of discrete measuring of

solutions

Let us describe the algorithm for solving the problem in the case of discrete
measuring of phase states. In this case, we assume that relations (4) are fulfilled.
Let l(·) : W 1,2(T ; H) ∩ L2(T ; V ) → R

+, l(y(·)) = |y(·)|C(T ;H) + |ẏ(·)|L2(T ;H) +
|y(·)|L2(T ;V ). In a standard way, we establish the validity of the following lemma.

Lemma 1. There exists a number K = K(ω,D, c∗, |B|L(U ;H)) such that the
inequality l(x(·; t0, x, u(·))) ≤ K(1 + |u(·)|L2(T ;U)) is fulfilled uniformly for any
x ∈ D and u(·) ∈ L2(T ; U).

Let a family of partitions ∆h = {τh,i}
mh

i=0, τh,0 = t0, τh,mh
= ϑ, τh,i+1 =

τh,i + δ(h) and a function α(h) : (0, 1) → (0, 1) be fixed. First, before the
moment t0, the value h and the partition ∆h of the interval T are chosen and
fixed. The work of the algorithm is decomposed into m − 1 (m = mh) identical
steps. At the ith step, which is carried out on the time interval δi = [τi, τi+1),
τi = τh,i, the following sequence of actions is fulfilled. First, at the moment τi,
the element

vh
i = α−1B∗(x(τi) − ξh

i ) (24)

is calculated. Then, the control defined by the formula

v = ṽh(t) = vh
i + cB−1(x(τi) − ξh

i ), t ∈ δi, (25)
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is fed onto the input of equation (1), where c = const > 2ω. Under the action of
this control, instead of the state wh(τi) = wh(τi; τi−1, w

h(τi−1), v
h
i−1), the state

wh(τi+1) = wh(τi+1; τi, w
h(τi), v

h
i ) is realized. The work of the algorithm stops

at the time moment ϑ.
Let the family of partitions ∆h of the time interval T and the function α(h)

have the following properties:

hδ−1(h) ≤ C1, δ(h)α−2(h) → 0, hα−1(h) → 0, (26)

α(h) → 0, δ(h) → 0 as h → 0+.

Here C1 = const > 0 is a constant, which does not depend on h.

Theorem 2. Uniformly with respect to h ∈ (0, 1), the inequalities

λh(t) ≡ |x(t)−wh(t)|2H +2c

t
∫

t0

|x(τ)−wh(τ)|2V dτ ≤ d1(h+α+δ) ∀t ∈ T, (27)

ϑ
∫

t0

|ṽh(τ)|2U dτ ≤

ϑ
∫

t0

|u(τ)|2U dτ + d2(hα−1 + δα−2) + d3(h + α + δ)1/2 (28)

are true. Here, d1, d3 (d1 − d3 = const > 0) are constants, which do not depend
on h, α = α(h), and δ = δ(h).

Proof. First, we verify inequality (27). Using the invertibility of the operator B
as well as coercitivity condition (2), we obtain for a.a. t ∈ δi the inequality

0.5
d|µh(t)|2H

dt
+c∗|µ

h(t)|2V −ω|µh(t)|2H ≤ (B(u(t)−vh(t))−c(x(τi)−ξh
i ), µh(t))U ,

where µh(t) = x(t) − wh(t) for t ∈ T , vh(t) = vh
i for t ∈ δi. From the inequality

c(ξh
i −x(τi), µ

h(t)) ≤ −0.5c|µh(t)|2H +4ch2+8c(t−τi)

t
∫

τi

{|ẋ(τ)|2H + |ẇh(τ)|2H} dτ,

we have for a.a. t ∈ δi

(B(u(t) − vh(t)) − c(x(τi) − ξh
i ), µh(t))U ≤

(B(u(t) − vh(t)), x(τi) − ξh
i )U + ̺i(t, h) + χi(t, h) − 0.5c|µh(t)|2H .

Here,

χi(t, h) = 4ch2 + 8c(t − τi)

t
∫

τi

{|ẋ(τ)|2H + |ẇh(τ)|2H} dτ,
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̺i(t, h) = b(|u(t)|U + |vh(t)|U )(h +

t
∫

τi

{|ẇh(τ)|H + |ẋ(τ)|H} dτ).

For a.a. t ∈ δi, we deduce that

ε̇h(t) ≤ −2(vh(t), B∗(x(τi) − ξh
i ))U + α|vh(t)|2U +

+ 2(u(t), B∗(x(τi) − ξh
i ))U − α|u(t)|2U + 2̺i(t, h) + 2χi(t, h) + (2ω − c)|µh(t)|2H ,

where εh(t) = |µh(t)|2H + 2c∗
t
∫

t0

|µh(τ)|2V dτ + α
t
∫

t0

{|vh(τ)|2U − |u(τ)|2U} dτ . There-

fore, by virtue of the rule of forming the control ṽh(·) (see (24) and (25)), we
conclude that, for a.a. t ∈ δi,

εh(t) ≤ εh(τi) + c1h
2 + c2δ

t
∫

τi

{|u(τ)|2U + |vh(τ)|2U} dτ + (29)

+ c3δ

t
∫

τi

{|ẇh(τ)|2H + |ẋ(τ)|2H}dτ + (2ω − c)

t
∫

τi

|µh(τ)|2H dτ.

Summing the right-hand and left-hand parts of (29) over i and taking into ac-
count Lemma 1, we obtain for t ∈ T

εh(t) ≤ εh(t0) + c4h
2δ−1 + c6δ + c7γh,δ(t). (30)

Here, γh,δ(t) = δ2
∑i(t)

j=0 |v
h
j |

2
U . Using (4) and the rule of forming vh

i (see (24)),
we get

|vh
i |

2
U ≤ 2b2(̺h

i + h2)α−2 ≤ c8(̺
h
i + h2)α−2, (31)

where ̺h
i = |x(τi) − wh(τi)|

2
H . Due to (7), we have εh(t0) ≤ h2. Therefore, we

derive from (30) the estimate

λh(t) ≤ c9(δ + h2δ−1 + α + γh,δ(t)). (32)

Note that ̺h
i ≤ λh

i , where λh
j = λh(τj). Therefore, for t ∈ [τi, τi+1], due to (31),

the inequality

γh,δ(t) ≤ c8δ
2

i(t)
∑

j=0

(λh
j + h2)α−2 (33)

is valid. Consequently, (32) implies the inequality

λh
i ≤ c10(δ + h2δ−1 + α) + c11δh

2α−2 + c12δ
2α−2

i
∑

j=0

λh
j . (34)

By the discrete Gronwall inequality [10], (34), and the inequalities hδ−1(h) ≤ C1,
δα−2(h) ≤ C2 as h → 0 (see (26)), we have

λh
i ≤ c14(h + δ + α), i ∈ [0 : m].
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This and (33) imply γh,δ(t) ≤ c15(h + δ + α) t ∈ T . Moreover, from the last
inequality and (32), we have λh(t) ≤ c16(δ+h2δ−1+α+γh,δ(t)) ≤ c17(h+δ+α).
Relation (27) follows from the last inequality. The proof of (28) is similar to the
proof of (12). The theorem is proved.

It follows from Theorems 1 and 2 that the algorithms presented above are
resource-saving.

5 Example

The second algorithm was tested. The parabolic equation

wt(t, η) − ∂2w(t, η)/∂η2 = v(t, η), η ∈ [0, 1] (35)

with the boundary w(t, 0) = w(t, 1), t ∈ T = [0, 2] and initial w(0, η) = 0,
η ∈ [0, 1] conditions was considered. The reference equation (see (3)) was of the
form

xt(t, η) − ∂2x(t, η)/∂η2 = u(t, η), η ∈ [0, 1] (36)

x(t, 0) = x(t, 1) = 0, t ∈ T, x(0, η) = 0, η ∈ [0, 1].

Equations (35) and (36) were solved by the grid method [10]. The grid {ηj}
n
j=0,

η0 = 0, ηn = 1 with the step γN = 1/n was taken on the interval [0, 1]. The
control v = vh(t, η) in the right-hand part of (35) was calculated by formula (25)
taking the form

vh(t, ηj) = (α−1 + c)(x(τi, ηj) − ξh
i (ηj)), t ∈ [τi, τi+1), j ∈ [0 : n].

During the experiment, we assumed that ξh
i (ηj) = w(τi, ηj) + h. In figs. 1–4,

the cross-sections of the trajectories x (dashed line) and w (solid line) by the
hyperplane η = 0, 4 are presented, as well as the variations of the values p(t) =
t
∫

0

|vh(τ)|2L2([0,1]) dτ (solid line) and q(t) =
t
∫

0

|uh(τ)|2L2([0,1]) dτ (dashed line).

Figs. 1 and 3 correspond to the case δ = 2/mh, mh = 800, n = 10, h = 0.05;

w, x

t
0

0.3

1 2

w, x

t
0

0.3

1 2

Fig. 1. Fig. 2.
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p, q

t
0

3

1 2

p, q

t
0

3

1 2

Fig. 3. Fig. 4.

figs. 2 and 4, to the case δ = 2/mh, mh = 800, n = 10, h = 0.01. As the
numerical experiment showed,

max
i∈[0:mh]
j∈[0:n]

|x(τi, ηj) − wh(τi, ηj)| =

{

0, 01926, in the first case

0, 00972, in the second case.
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