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Exploit Generation for Information Flow Leaks
in Object-Oriented Programs∗

Quoc Huy Do, Richard Bubel, and Reiner Hähnle

TU Darmstadt, Dept. of Computer Science, Darmstadt, Germany
{do,bubel,haehnle}@cs.tu-darmstadt.de

Abstract. We present a method to generate automatically exploits for
information flow leaks in object-oriented programs. Our approach com-
bines self-composition and symbolic execution to compose an insecurity
formula for a given information flow policy and a specification of the se-
curity level of the program locations. The insecurity formula gives then
rise to a model which is used to generate input data for the exploit.
A prototype tool called KEG implementing the described approach for
Java programs has been developed, which generates exploits as exe-
cutable JUnit tests.

Keywords: test generation, symbolic execution, information flow

1 Introduction

Analyzing programs to ensure that they do not leak secrets is necessary to im-
prove confidence in the ability of a system to not put the security and privacy
of its users at stake.

Information flow analysis is concerned with one aspect of this task, namely,
to ensure that an outside agent with well-defined properties cannot learn secrets
by observing (and initiating) several runs of a program. The nature of the secrets
to be protected is specified by an information flow policy. The strongest one is
noninterference, which does not allow the attacker to learn any kind of informa-
tion about the secret. This is often too strong, e.g., an authentication program
leaks the information whether an entered password is correct, hence, other poli-
cies like declassification (see [22] for a survey) exist that allow to specify what
kind of information may be released.

Several approaches to analyze programs for secure information flow relative to
a given information flow policy exist. Many of these are either type-based [26, 21,
15, 18, 4] or logic-based [11, 6, 23]. In this paper we use a logic-based approach
with self-composition (first introduced in [10]; the name self-composition was
coined in [6]), but our focus is not to verify that a program has secure information
flow; instead we approach the problem from a bug finding point of view. For
a given program we try to automatically generate exploits that demonstrate
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unintended information flows. Exploits are small programs that run the program
of interest multiple times and report whether they could observe a leak. The
generated exploits are well-structured and support the developer in identifying
the origin of the leak and in understanding its nature.

To generate exploits we build on work from test generation [12, 16] with
symbolic execution. Our implementation outputs the found exploits as JUnit
tests such that the test fails if the program is insecure. The exploits can thus
easily be added to a regression test suite.

The paper is structured as follows: Sect. 2 introduces basic notions and tech-
niques. Sect. 3 explains the logic formalization of insecurity for noninterference
and delimited information release. In Sect. 4 we discuss the analysis of programs
containing loops and method invocations. Sect. 5 presents our tool KEG and
demonstrates the viability with case studies. We compare our work with others
in Sect. 6 and conclude with Sect. 7.

2 Background

2.1 Information Flow Policies

To analyze that a program does not leak confidential information, we need to
define the security level of the program locations (program variables and fields)
as well as an information flow policy which defines whether and what kind of
information may flow between program locations of a different security level.

In this subsection we recapture the definitions of two well-known information
flow policies which are supported by our approach.

Noninterference. Noninterference [9, 26] is the strongest possible information
flow policy. It prohibits any information flow from program locations contain-
ing confidential information (high variables) to publicly observable program lo-
cations (low variables); the opposite direction is allowed. As we consider only
deterministic programs, noninterference can be easily formalized by comparing
two program runs:

A program has secure information flow with respect to noninterference, if
any two executions of the program starting in initial states with identical values
of the low variables, also end in final states which coincide on the values of the
low variables.

Let p denote a program and Var the set of all program variables of p.

Definition 1 (Program State). A program state σ maps each program vari-
able v ∈ Var of type T to a value of its concrete domain DT , i.e.,

σ : Var → D

with σ(v : T ) ∈ DT and D being the union of all concrete domains. The set of
all states for a given program p is denoted as Statesp.

We define coincidence of program states w.r.t. a set of program variables:
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Definition 2 (State Coincidence). Given a set of program variables V and
two states σ1, σ2 ∈ Statesp. We write σ1 'V σ2 iff. σ1 and σ2 coincide on V ,
i.e., σ1(v) = σ2(v) for all v ∈ V .

A concrete execution trace τ of a program p is a possibly infinite sequence of
program states τ = σ0σ1 . . . produced by starting p in state σ0. In this paper,
we are only concerned with terminating programs, and consequently, all of our
execution traces are finite. Thus, we represent a concrete execution X of a pro-
gram p as tuple 〈σX , σXout〉, where σX ∈ Statesp is the initial program state
and σXout ∈ Statesp is the final program state. The set of all possible concrete
executions of p is denoted as Excp.

We can now define the noninterference property as follows:

Definition 3 (Noninterference). Given a noninterference policy NI = (L,H)
where L ∪̇H = Var s.t. L contains the low variables and H the high variables.

A program p has secure information flow with respect to NI iff. for all con-
crete executions X,Y ∈ Excp it holds that if σX 'L σY then σXout 'L σYout.

Declassification. For many practical cases noninterference is too strict. E.g.,
a login program leaks usually the information whether an entered password is
correct; or a database may be queried for aggregated information like the average
salary of the employees, but not for the income of an individual employee.

Declassification is a class of information flow policies which allows to express
that some confidential information may be leaked under specific conditions. The
paper [22] provides an extensive survey of declassification approaches.

In this paper we focus on delimited information release as introduced in [21].
Delimited information release is a declassification policy which allows to specify
what kind of information may be released. To this end so called escape hatch
expressions are specified in addition to the security level of the program loca-

tions. For instance, the escape hatch
∑

e∈Employees salary(e)

|Employees| can be used to declassify

the average of the income of all employees. The formal definition of delimited
information release is similar to Def. 3:

Definition 4 (Delimited Information Release). Given a delimited infor-
mation release policy Decl = (L,H,E) with L,H as before and E denoting a set
of escape hatch expressions.

A program p has secure information flow with respect to Decl iff. for all
concrete executions X,Y ∈ Excp it holds that if σX 'L σY and for all e ∈
E : [[e]]σX = [[e]]σY then σXout 'L σYout. The expression [[e]]σ denotes the semantic
evaluation of e in state σ.

2.2 Logic-Based Information Flow Analysis

Symbolic Execution. Symbolic Execution [16] is a versatile technique used for
various static program analyses. Symbolic execution of a program means to run
it with symbolic input values instead of concrete ones. Such a run results in a
tree of symbolic execution traces, which covers all possible concrete executions.
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if (x >= 0)
{
y=y-1;

}
else {
y=y+1;

}
y=2*y;

(a) Program source code

(x0, y0)

(x0, y0) (x0, y0)

(x0, y0 − 1) (x0, y0 + 1)

(x0, 2 ∗ (y0 − 1)) (x0, 2 ∗ (y0 + 1))

x0 ≥ 0 x0 < 0

(b) Symbolic execution tree for symbolic in-
put values (x : x0,y : y0)

Fig. 1: Program and its symbolic execution tree

Each node in a symbolic execution tree is annotated by its symbolic state. In
the example shown in Fig. 1b, the root node is a branching node whose outgoing
edges are annotated by their branch conditions. Here the symbolic execution
splits into two branches: the left one for the case where the symbolic value x0

is non-negative and the right one for a negative x0. Both branches might be
possible as we do not have any further information about the value of x0. The
path condition pci of a path spi is the conjunction of all its branch conditions
and characterizes the symbolic execution path uniquely. As long as the program
does not contain loops or method invocations, a path condition is a quantifier-
free formula in first order logic.

From the above tree we can extract that in case of a non-negative input
value for x, the program terminates in a final state in which the final value of x
remains unchanged (i.e., x0) while the final value of y is 2(y0 − 1).

We fix the following notations as convention: Given a path i we refer to its
path condition by pci and to the final value of a program variable v ∈ Var by fvi .
If we want to make explicit that the final value of a program variable v depends
on the symbolic input value of a program variable u we pass it as an argument
to fvi . For instance, fy0 (x0, y0) := 2(y0 − 1) in case of the final value of y on the
left branch.

In case of unbounded loops or unbounded recursive method calls a symbolic
execution tree is no longer finite. We overcome this obstacle and achieve a finite
representation by making use of specifications as proposed in [14]. This approach
uses loop invariants and method contracts to describe the effect of loops and
method calls. The basic idea is that loop invariants and method contracts con-
tribute to path conditions and to the representation of the symbolic state. The
approach has been implemented as a symbolic execution engine based on the
verification system KeY [8], which we use as backend for the exploit generation
presented in this paper.

Self-composition. Our exploit generation approach is derived from a logic-based
formalization of noninterference using self-composition as introduced in [10, 11],
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based on a direct semantic encoding of noninterference in a program logic. The
Hoare triple {Pre} p {Post} is valid iff. the program p started in any initial state
that satisfies formula Pre terminates, then formula Post must hold in the reached
final state. The semantic definition of noninterference as given in Definition 3
requires the comparison of two program runs. The authors of [11] achieve this by
copying the analyzed program and replacing all variables with fresh ones, such
that the original and the copied program version do not share any memory. In
more detail, let p(l,h) be the original program with l ∈ L, h ∈ H being the
only program variables occurring in program p. Further, let p(l’,h’) represent
the copied program constructed from p by renaming variable l to l′ and h to h′.
Then

{l .
= l’}p(l,h); p(l’,h’){l .

= l’}
is a direct formalization of noninterference. A major drawback of the formal-
ization is that it requires program p to be analyzed twice. Several refinements
have been presented since then to avoid the repeated program execution [24,
5]. We make use of an approach based on symbolic execution. The fundamental
idea is to execute the program symbolically only once and then to use the path
conditions and symbolic states to construct a single first-order formula with the
same meaning as the Hoare Triple. To express the noninterference property, we
simply copy path conditions and symbolic values, replacing the symbolic input
values with fresh copies.

3 Exploit Generation for Insecure Programs

3.1 Logic Characterization of Insecurity

Our objective is to generate an exploit for a given program p which demonstrates
that p is insecure with respect to a specified information flow policy. The basic
idea is that the exploit runs p twice and throws an exception if an unintended
information flow is detected. The problem that needs to be solved is how to find
the initial states for both runs such that an information leak can be observed.

To this end we construct a first-order formula which is satisfiable, if the
program is insecure. The formula is constructed in such a way that any satisfying
model can be directly used to construct the required initial states.

For noninterference, as defined in Def. 3, that formula is constructed as fol-
lows: Let NI = (L,H) denote the noninterference policy with low variables L and
high variables H. Each path spi (i ∈ {0, . . . , n − 1}) in the symbolic execution
tree of p is uniquely characterized by its path condition pci(L,H).

To represent two independent program runs, we create a copy of all program
variables Var ′ = {v′ | v ∈ Var} and obtain the sets L′ and H ′ as copies of L and
H, i.e., L′ = {l′ | l ∈ L} (analogously H ′). Intuitively, the first run is performed
using Var , while the second one uses the copy Var ′. Both runs are independent
as they do not share any common memory. Then the NI-insecurity formula∨

0≤i≤j<n

(( ∧
l∈L,l′∈L′

l
.
= l′

)
∧ pci(L,H) ∧ pcj(L′, H ′) ∧

∨
l∈L

f li (L,H) 6 .= f lj(L
′, H ′)

)
(1)
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is satisfied iff. there is a model (i.e., state) σ assigning values to the program
variables L,L′, H,H ′ such that there exist two paths i, j (i = j possible) with
identical low level input, consistent path conditions (i.e., both paths can actually
be taken), but for which the final value of at least one low level variable differs.
In other words, the model σ assigns concrete values to L,L′, H and H ′ such
that p produces different low level output for two runs from initial states with
identical low level input. (Formula (1) can be made more succinct by replacing
L′ with L and omitting the first conjunct, which states L

.
= L′.)

Example 1. The insecurity formula (1) for the example program from Fig. 1 and
the NI policy L = {y}, H = {x} becomes

x0 ≥ 0 ∧ x′0 ≥ 0 ∧ 2(y0 − 1) 6 .= 2(y0 − 1)

∨ x0 ≥ 0 ∧ x′0 < 0 ∧ 2(y0 − 1) 6 .= 2(y0 + 1)

∨ x0 < 0 ∧ x′0 < 0 ∧ 2(y0 + 1) 6 .= 2(y0 + 1)

It is easy to see that the first and third disjunct are unsatisfiable, but the second
disjunct is satisfiable, e.g., for the model x0 7→ 0, x′0 7→ −1, y0 7→ 1.

The NI-insecurity formula (1) can be rewritten into the equivalent formula

∨
l∈L

∨
0≤i≤j<n

Leak(H,L,l,i,j)︷ ︸︸ ︷(( ∧
v∈L,v′∈L′

v
.
= v′

)
∧ pci(L,H) ∧ pcj(L′, H ′) ∧

f li (L,H) 6 .= f lj(L
′, H ′)

)
(2)

which helps us later to incorporate declassification. The formula Leak(H,L, l, i, j)
allows to ascribe leaks to a specific target, i.e., it is satisfiable, if some information
is leaked from the program variables in H to variable l.

3.2 Target Conditional Delimited Release

We extend the insecurity formula for noninterference (2) to delimited informa-
tion release (DIR) [21]. In addition to the standard version of DIR, our policy
describes not only what information might be released by using escape hatches,
but it also allows to express under which condition and to whom (target) the
information might be leaked.

Definition 5 (Target Conditional Delimited Release). Given a program p

with Var being the set of all variables occurring in p and a noninterference policy
NI = (L,H). A Target Conditional Delimited Release (TCD) policy (D,NI ) is
a set of TCD specification triples where each triple (e, C, T ) ∈ D consists of

– an escape hatch expression (i.e., first order term) e over Var,
– a declassification condition formula C over Var and
– T ⊆ L, a set of program variables to which the specified escape hatch is

allowed to be leaked.
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A program satisfies a given TCD policy (D,NI ) if there is no information flow
from H to L, except for the cases covered by a triple (e, C, T ) ∈ D which allows
the program to release the information captured by the escape hatch expression e
to a location in T , if condition C is satisfied in the initial state of a program run.

Given a TCD policy (D,NI ) and a program p. We give the insecurity formula
for the case that D = {(e, C, T )} consists of a single TCD specification triple:∨
l∈L

(
Leak(H,L, l, i, j)∧ ((l ∈ T ∧C(Var)∧C(Var ′))→ e(Var) = e(Var ′))

)
(3)

The formula coincides for locations l ∈ L that are not allowed release targets
(i.e., l 6∈ T ) with the noninterference insecurity formula. Otherwise, the new
second conjunct adds

C(Var) ∧ C(Var ′)→ e(Var) = e(Var ′)

as an additional restriction to the initial states for both runs, namely, that if
both initial states satisfy the declassification condition C then they must also
coincide on the value of the escape hatch expression. The rationale is that if there
are two runs s.t. their respective initial state coincides on the low level input and
on the escape hatches and if the final value for an allowed target differs, then
more information than just the escape hatch must have been released.

The generalization of the above formula to more than one triple is straight-
forward and omitted for space reasons.

4 Exploit Generation using Program Specifications

In this section we discuss how to use program specifications like loop invariants
and method contracts to analyze and generate exploits for programs involving
unbounded loops or recursive method calls. These specifications need to be user-
provided at the moment, but work on automatic generation of specifications is
ongoing. We focus on the noninterference analysis case, the extension to declas-
sification is straightforward.

4.1 Loop Specification

The path conditions pc for a program p are computed by symbolic execution of
p. The problem to solve is how to symbolically execute a loop. In case a fixed
bound is known a priori the loop can simply be unwound, but this is impractical
if the bound is large and not possible at all for unbounded loops.

In program verification, loops are handled by providing a loop specification.
A loop specification LS = (I,mod) consists of a loop invariant formula I and a
set of program variables mod which contains all program variables the loop is
allowed to modify. In [14] it is shown how to use such a specification for symbolic
execution and we can simply reuse that option in our setting.
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In the following we describe briefly how a loop specification is reflected in
the NI- insecurity formula. Let b be the loop guard and LS = (I,mod) the loop
specification. The basic idea in [14] is that the loop specification describes the
state after exiting the loop. This means, we can treat the loop as a black-box
and continue execution after the loop in a state for which the variables mod that
might have been modified by the loop are set to an unknown value. Unknown
values are represented by the set of fresh symbolic variables Vmod . The only
knowledge about the values of these variables is provided by the loop invariant
and by the fact the loop guard b must be false (as we exited the loop).

Our insecurity formulas are always expressed as a constraint over the initial
state. For instance, the final value f li of variable l is given in terms of the initial
symbolic values of the program variables. The same holds for the path conditions.
We make this implicit weakest precondition computation here explicit for the
loop guard and the invariant, i.e., Iwp is the weakest precondition of I computed
in the state directly after the loop (similar for the loop guard).

For the sake of simplicity, we only show how to adapt Leak(H,L, l, i, j) for
the case that both paths i, j contain the same loop:

Leak(H,L, l, i, j) ≡ (
∧
v∈L

v = v′) ∧ pci(VS) ∧ pcj(V ′S)

∧ (Iwp(VS) ∧ ¬bwp(VS)) ∧ (Iwp(V ′S) ∧ ¬bwp(V ′S)) ∧ f li (VS) 6= f lj(V
′
S) (4)

where bwp(VS) is the symbolic value of the guard after the loop, VS = Var ∪
Vmod . If one or both of paths i, j do not contain this loop, or have other loops,
corresponding conjuncts are omitted or added accordingly.

Example 2. We illustrate formula (4). Consider the loop below with low variable
l and high variable h. The loop specification is given as (I : l ≥ 0,mod : {l})

1 l = h * h;
2 while (l > 0) { l = l - 1; }
3 l = l + h;

Let lmod , l
′
mod be the fresh values representing the value of l directly after the

loop. Computing the weakest precondition of the invariant gives us lmod ≥ 0
and for the guard lmod > 0 for the first run (analog for the second run). The
resulting formula is:

l = l′∧ (lmod ≥ 0∧¬(lmod > 0))∧ (l′mod ≥ 0∧¬(l′mod > 0))∧ lmod +h 6= l′mod +h′

The formula is satisfiable for l = l′ = 10, lmod = l′mod = 0, h = 1 and h′ = 2.
And actually the program is insecure. Removing the last statement would make
it secure and the formula unsatisfiable as the comparison of the final values
would change to lmod 6= l′mod which would be unsatisfiable.

4.2 Method Contracts

Let m denote a method. A contract Cm for m is a triple (Prem,Postm,Modm)
with precondition Prem, postcondition Postm and modifies (or assignable) clause
Modm, which enumerates all program variables that m is allowed to change.
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A method satisfies its contract, if it ensures that when invoked in a state for
which the precondition is satisfied, then in the reached final state the postcondi-
tion holds and at most the program variables (locations) listed in the assignable
clause have been modified.

Analysing Noninterference w.r.t. to a Precondition. Given a method m with
contract Cm. We want to analyze whether m respects its noninterference policy
NI = (L,H) under the condition that m is only invoked in states satisfying its
precondition Prem. Changing the noninterference formula (2) is easy and only
requires adding a restriction to the initial states requiring them to satisfy the
method’s precondition:

Leak(H,L, l, i, j) ∧ Prem(L,H) ∧ Prem(L′, H ′) (5)

Analyzing Programs for Noninterference using Method Contracts. A similar
problem as for loops manifests itself when symbolically executing a program
which invokes one or more methods. One solution is to replace the method in-
vocation by the body of the invoked method. If the methods are small this is
a viable solution, but it is impractical if the invoked method is complex and is
even impossible for recursive methods without a fixed maximal recursion depth.

This problem is solved in [14] by using method contracts in a similar way
loop specifications have been used. Instead of a loop invariant, the pre- and
postconditions become parts of the path conditions. The modifies clause gives
again rise to fresh variables used to represent the symbolic value of the program
variables that might have been changed as side-effect of the method invocation.

Let m be the method that is analyzed for secure information flow and which
invokes a method n. The method contract of n is given as (Pren,Postn,Modn).
For the case that both two paths i, j contain one method call for n we get:

Leak(H,L, l, i, j) ≡ (
∧
v∈L

v = v′)∧pci(VS)∧pcj(V ′S)∧(Prewpn (VS)∧Postwpn (VS))

∧ (Prewpn (V ′S) ∧ Postwpn (V ′S)) ∧ f li (VS) 6= f lj(V
′
S) (6)

where VS is the set of program variables extended by the newly introduced
variables resulting from the modifies clause of method n and Prewpn ,Postwpn are
the weakest preconditions of Pren,Postn computed directly before (resp. after)
the method invocation. The general case is similar to loops.

4.3 General Observations and Remarks

Using loop specifications or method contracts has one major drawback, namely,
that not all models of a formula give rise to an actual information leak, or even
worse, the insecurity formula of a secure program might become satisfiable. This
case does not effect the soundness, but triggers false warnings. The reason is that
the specifications might be too weak and allow behaviours that are not possible in
the actual program. These false warnings can be filtered out by actually running
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Fig. 2: Exploit Generation by KEG

the generated exploit. If the exploit fails to demonstrate the information leak,
we know that our model was a spurious one. We can even start a feedback loop
with a conflict clause which rules out the previously found model.

On the other side if loop or method specifications are not just too weak,
but wrong in the sense that they exclude existing behaviour, leaks might not be
detected. This can be avoided by verifying the specifications using a program
verification tool. As we are concerned with bug detection and not verification,
this case is not too bad as we do not claim to find all bugs.

5 Implementation and Experiments

5.1 The KeY Exploit Generation Tool

We implemented our approach as a tool called KeY Exploit Generation (KEG)1

based on the verification system KeY for Java [8]. KEG uses KeY as symbolic
execution (SE) engine, which supports method and loop specifications to achieve
a finite SE tree. The SMT solver Z3 is used to find models for the insecurity
formulas. KEG is able to deal with object types and arrays (to some extent).

Fig. 2 outlines KEG’s work-flow. As starting point it serves a Java method
m which is analysed for secure information flow w.r.t. a given information flow
specification. First, method m is symbolically executed (using KeY) to obtain the
SE tree with the method’s path conditions and the final symbolic values of the
program locations modified by m. Using this information the insecurity formulas
are generated and given to a model finder (in our case the SMT solver Z3). If a
model for the insecurity formula has been found, the model is used to determine
the initial states of two runs which exhibit a forbidden information flow. The
generated exploit sets then up two runs (one for each initial state) and inspects
the reached final states to detect a leak. KEG outputs the exploited program as
a JUnit test to be included into a regression test suite.

5.2 Exploit Generation Using a Simple Example

We explain KEG using the simple example shown below:

1 public class Simple {
2 public int l; private int x, y;
3 /*! l | x y ; !*/
4

5 /*@ escapes (x*y) \to l \if x>-1; @*/
6 public void magic() { if(x>0) { l=x*y; } else { l=0; } }
7 }

1
www.se.tu-darmstadt.de/research/projects/albia/download/exploit-generation-tool
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Class Simple contains three integer typed fields l, x and y as well as a
method called magic() which assigns a value to l depending on the sign of field
x. The information flow policy is annotated as special comment types. Line 3 is
a class level specification and forbids any information flow from x and y to l.
Hence, here x and y are high variables and l is a low variable. However, this
strict noninterference policy is relaxed in line 5 for method magic() by providing
a target conditional release specification consisting of an escape hatch (x*y), the
target l and the condition x>-1.

Running KEG on the above example produces a symbolic execution tree
consisting of two paths; one for each branch of the conditional statement. KEG
generates for each pair of these paths the corresponding insecurity formulas and
passes them on to an SMT solver. Of the three generated insecurity formulas
only one is satisfiable and Z3 provides a model:

Insecurity Formula Model

(let ((a!1 (not (and (> self_x_1 (- 1)) (> self_x_2 (- 1))))))
(and (>= self_x_1 1) (<= self_x_2 0)

(or (not (= self_x_1 self_x_2)) (not (= self_y_1 self_y_2)))
(= self_l_1 self_l_2) (not (= (* self_y_1 self_x_1) 0))
(or a!1 (= (* self_x_1 self_y_1) (* self_x_2 self_y_2)))))

self_x_1 : 1
self_x_2 : -1
self_y_1 : -1
self_y_2 : 1
self_l_1 : 0
self_l_2 : 0

The formula comparing two runs which take different branches of the con-
ditional statement and thus leak the sign of field x. KEG generates exactly one
exploit, which is output as a well-structured and human readable JUnit test.

5.3 Experiments

We performed a number of small experiments2 for a first evaluation of our ap-
proach. Table 1 shows the aggregated results. All experiments were done on an
Intel Core i7-4702HQ processor with JVM setting -Xmx4096m.

Concerning the runtime performance: A significant amount is spent for pars-
ing the program, this can be reduced by parser optimizations, e.g., by using a
hand-coded version instead of a generated parser. Model finding time can be
optimized by performing simple techniques like symmetry reduction, learning
and caching, all of which have not yet been implemented. Another factor is the
programming language Java whose optimizations are performed at runtime and,
hence, code run only a few times will not be optimized at all.

A few observations concerning some of the concrete case studies: For the ex-
amples Mul and Comp, we analyzed also the effect of loop specifications resp.
method specifications in case of strong, weak and wrong specifications (file-
name Strong/Weak/Wrong LI/MC). As expected in case of sufficiently strong
specifications, all insecure paths could be identified and corresponding exploits
have been generated. Weak specifications over-approximated possible behaviour
leading to false warnings, while wrong specifications excluded actual behaviours
and missed existings leaks. The analysis of method search in class ArrSearch
identified the method correctly as secure with respect to the specified declassi-
fication policy and generated no exploits.

2
www.se.tu-darmstadt.de/fileadmin/user_upload/Group_SE/Tools/KEG/experiments.zip



12 Quoc Huy Do, Richard Bubel, and Reiner Hähnle

Table 1: Case studies statistics

File Analyzed #L/MI Policy S/I TL TSE TMF TTot #GE/FW
name Method (NI/D) (ms) (ms) (ms) (ms)

Mul product 0 / 0 D I 4187 847 1188 6266 1 / 0
Mul StrongLI product 1 / 0 D I 4275 1746 1211 7274 1 / 0
Mul WeakLI product 1 / 0 D I 4214 1909 1293 7463 2 / 1
Mul WrongLI product 1 / 0 D I 4397 1678 1169 7285 0 / 0
Comp StrongMC doWork 0 / 1 NI I 4181 1491 2278 7995 3 / 0
Comp WeakMC doWork 0 / 1 NI I 4217 1383 2417 8065 3 / 3
Comp WrongMC doWork 0 / 1 NI I 4182 1395 2275 7887 0 / 0
Company calculate 1 / 1 NI I 4283 2496 1990 8816 3 / 0
ExpList magic 0 / 0 NI I 4178 1911 2535 8668 1 / 0
ExpLinkedList magic 0 / 4 NI I 4229 4690 6564 15526 2 / 0
ExpArrayList magic 0 / 5 NI I 4230 8975 11505 24752 3 / 0
ArrMax findMax 1 / 0 NI I 4215 3584 963 8804 1 / 0
ArrSearch search 1 / 0 D S 4199 2934 2400 9568 0 / 0

#(L/MI/GE/FW): nr of Loops/Method Invocations/Generated Exploits/False Warnings
NI/D: Non-Interference/Declassification, S/I: Secure/Insecure
TX : Time for Loading/Symbolic Execution/Model Finding/Total

6 Related Work

Our approach to exploit generation is based on self-composition [10, 6, 11]. The
paper [11] addresses also declassification. Its authors observe that in their for-
malization it is possible to express and verify that a program is insecure. Our
formalization of insecurity uses this observation. Exploit generation (extraction
of models) in our paper owes to techniques developed for automatic test gener-
ation. In particular, we build upon work presented in [16, 12], where symbolic
execution is used as a means to generate test cases for functional properties.

Logic-based approaches such as [7, 23] are fully precise and at the same time
can flexibly express various information flow properties beyond the policies pre-
sented in this paper. The verification process is not fully automatic, however, and
non-trivial interactions with the theorem prover are required. In [19] higher order
logic is used to express information flow properties for object-oriented programs,
which is highly expressive, but poses also a high demand on user interaction.

Pairs of symbolic execution paths instead of standard self-composition have
been independently used in [20] to check programs for noninterference. However,
the author is only concerned with checking noninterference, but does not support
declassification. Unbounded loops and recursive methods are not addressed.

In [25], leaks are inferred automatically and expressed in a human-readable
security policy language helping programmers to decide whether the program
is secure or not, however it can not give concrete counterexamples that could
suggest further corrections. Counterexamples can be used not only to generate
executable exploits as in our approach, but also to refine declassification policies
quantifying the leakage [3, 1]. However, both above approaches do not provide a
solution for unbounded loops and recursions.
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ENCoVer [2] uses epistemic logic and makes use of symbolic execution (con-
colic testing) to check noninterference for Java programs. In [17], the authors
proposed a tool which checks that a C program is secure w.r.t. noninterference.
It transforms the original program and makes use of dynamic symbolic execution
to analyze the program’s information flow. Both tools check loops and recursive
method invocations only up to a fixed depth.

Type-based approaches to information flow like [26, 15, 18, 21] or those based
on dependency graphs [13] distinguish themselves by their high performance
and ability to check large systems. Common drawbacks are lack of precision and
resulting false warnings and/or restrictions on the syntactic form of a program.

None of the logic-based and type-based approaches to noninterference anal-
ysis mentioned above does generate exploits from a failed proof or analysis. Our
work does not intend to replace their approaches, but to be used complementary.

7 Conclusion

We presented a novel approach for automatically detecting information flow leaks
in object-oriented imperative programs. Exploits are generated based on satisfy-
ing models of insecurity formulas and output as tests so that they can easily be
integrated into regression test collections. We also showed how program specifi-
cations such as loop invariants and method contracts can be used to overcome
the obstacle of an infinite symbolic execution tree in case of unbounded program
structures. We have built a prototypical tool (KEG) based on our approach that
handles sequential Java programs and we applied it to a number of case studies.

We plan to integrate KEG with the abstraction framework presented in [27]
which allows us to automatically generate loop invariant and method contracts
to avoid the need for user-provided specifications.
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