
HAL Id: hal-01345093
https://inria.hal.science/hal-01345093

Submitted on 13 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Flexible and Robust Privacy-Preserving Implicit
Authentication

Josep Domingo-Ferrer, Qianhong Wu, Alberto Blanco-Justicia

To cite this version:
Josep Domingo-Ferrer, Qianhong Wu, Alberto Blanco-Justicia. Flexible and Robust Privacy-
Preserving Implicit Authentication. 30th IFIP International Information Security Conference (SEC),
May 2015, Hamburg, Germany. pp.18-34, �10.1007/978-3-319-18467-8_2�. �hal-01345093�

https://inria.hal.science/hal-01345093
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Flexible and Robust Privacy-Preserving Implicit
Authentication

Josep Domingo-Ferrer1, Qianhong Wu2, and Alberto Blanco-Justicia1

1 Universitat Rovira i Virgili
Dept. of Computer Engineering and Mathematics

UNESCO Chair in Data Privacy
Av. Päısos Catalans 26, E-43007 Tarragona, Catalonia

{josep.domingo,alberto.blanco}@urv.cat
2 School of Electronics and Information Engineering

Beihang University
XueYuan Road No. 37, Haidian District, Beijing, China

qianhong.wu@buaa.edu.cn

Abstract. Implicit authentication consists of a server authenticating a
user based on the user’s usage profile, instead of/in addition to relying
on something the user explicitly knows (passwords, private keys, etc.).
While implicit authentication makes identity theft by third parties more
difficult, it requires the server to learn and store the user’s usage profile.
Recently, the first privacy-preserving implicit authentication system was
presented, in which the server does not learn the user’s profile. It uses
an ad hoc two-party computation protocol to compare the user’s fresh
sampled features against an encrypted stored user’s profile. The proto-
col requires storing the usage profile and comparing against it using two
different cryptosystems, one of them order-preserving; furthermore, fea-
tures must be numerical. We present here a simpler protocol based on
set intersection that has the advantages of: i) requiring only one cryp-
tosystem; ii) not leaking the relative order of fresh feature samples; iii)
being able to deal with any type of features (numerical or non-numerical).

Keywords: Privacy-preserving implicit authentication, privacy-preserving
set intersection, implicit authentication, active authentication, transpar-
ent authentication, risk mitigation, data brokers.

1 Introduction

The recent report [10] by the U.S. Federal Trade Commission calls for trans-
parency and accountability of data brokers. On the one hand, the report de-
scribes the pervasive data collection carried out by data brokers as clearly
privacy-invasive. On the other hand, it presents risk mitigation services offered
by data brokers as the good side of data collection, to the extent that such ser-
vices protect consumers against identity theft. Indeed, storing information on
how a consumer usually interacts with a service (time of the day, usual places,
usual sequence of keystrokes, etc.) allows using this information to implicitly

authenticate a user: implicit authentication [12] (a.k.a. transparent authentica-
tion [5] or active authentication [1]) is the process of comparing the user’s current
usage profile with the stored profile. If both profiles disagree, maybe someone is
impersonating the user, e.g. after some identity theft (password theft, etc.).

The above risk mitigation argument is part a long-standing simplistic ten-
dency in digital services (and elsewhere) to justify privacy invasion in the name
of legitimate interests, as if the latter were incompatible with privacy (another
old example is intellectual property protection, which was portrayed as being
incompatible with the anonymity of digital content consumers until anonymous
fingerprinting was proposed [16, 8, 14]). In fact, implicit authentication turns out
to be a weak excuse to justify the storage and/or access by servers to the us-
age profiles of users. In [17] it was shown how to make implicit authentication
compatible with the privacy of users. The idea is that the server only needs an
encrypted version of the user’s usage profile.

1.1 Contribution and plan of this paper

The protocol in [17] needs the server to store the users’ accumulated usage pro-
files encrypted under two different cryptosystems, one that is homomorphic and
one that is order-preserving. We present here a protocol for privacy-preserving
implicit authentication based on set intersection, which has the advantage that
the server only needs to store the users’ accumulated usage profiles encrypted
under one (homomorphic) cryptosystem. This allows saving storage at the car-
rier and also computation during the protocol. Also, unlike [17], our protocol
does not leak the relative order of fresh feature samples collected by the user’s
device for comparison with the encrypted profile. Finally, our protocol can deal
with any type of features (numerical or non-numerical), while the protocol [17]
is restricted to numerical features.

The rest of this paper is organized as follows. Section 2 gives background
on implicit authentication and on the privacy-preserving implicit authentication
protocol of [17]. Section 3 discusses how to compute the dissimilarity between
two sets depending on the type of their elements. Section 4 presents a robust
privacy-preserving set intersection protocol that can effectively be used for im-
plicit authentication. The privacy, security and complexity of the new protocol
are analyzed in Section 5. Experimental results are reported in Section 6. Fi-
nally, conclusions and future research directions are summarized in Section 7.
The Appendix gives background on privacy-preserving set intersection, recalls
the Paillier cryptosystem and justifies the correctness of the least obvious steps
of our protocol.

2 Background

We first specify the usual setting of implicit authentication and we then move
to privacy-preserving implicit authentication.

2.1 Implicit authentication

The usual scenario of implicit authentication is one in which the user carries
a mobile networked device (called just user’s device in what follows) such as a
cell phone, tablet, notebook, etc. The user wishes to authenticate to a server
in order to use some application. The user may (or not) use a primary pass-
word authentication mechanism. To strengthen such a primary authentication
or even to replace it, the user resorts to implicit authentication [12]. In this type
of authentication, the history of a user’s actions on the user’s device is used to
construct a profile for the user that consists of a set of features. In [12] empirical
evidence was given that the features collected from the user’s device history are
effective to distinguish users and therefore can be used to implicitly authenti-
cate them (instead or in addition to explicit authentication based on the user’s
providing a password).

The types of features collected on the user’s actions fall into three categories:
(i) device data, like GPS location data, WiFi/Bluetooth connections and other
sensor data; (ii) carrier data, such as information on cell towers seen by the
device, or Internet access points; and (iii) cloud data, such as calendar entries.
It is not safe to store the accumulated profile of the user in the user’s device,
because an intruder might compromise the device and alter the stored profile in
order to impersonate the legitimate user. Hence, for security, the profile must be
stored by some external entity. However, the user’s profile includes potentially
sensitive information and storing it outside the user’s device violates privacy.

Implicit authentication systems try to mitigate the above privacy problem
by using a third party, the carrier (i.e. the network service provider) to store the
user’s profiles. Thus, the typical architecture consists of the user’s device, the
carrier and the application servers. The latter want to authenticate the user and
they collaborate with the carrier and the user’s device to do so. The user’s device
engages in a secure two-party computation protocol with the carrier in order to
compare the fresh usage features collected by the user’s device with the user’s
profile stored at the carrier. The computation yields a score that is compared (by
the carrier or by the application server) against a threshold, in order to decide
whether the user is accepted or rejected. In any case, the application server trusts
the score computed by the carrier.

2.2 Privacy-preserving implicit authentication

In the privacy-preserving implicit authentication system proposed in [17], the
user’s device encrypts the user’s usage profile at set-up time, and forwards it
to the carrier, who stores it for later comparison. There is no security problem
because during normal operation the user’s device does not store the user’s
profile (it just collects the fresh usage features). There is no privacy problem
either, because the carrier does not see the user’s profile in the clear.

The core of proposal [17] is the algorithm for computing the dissimilarity
score between two inputs: the fresh sample provided by the user’s device and
the profile stored at the carrier. All the computation takes place at the carrier

and both inputs are encrypted: indeed, the carrier stores the encrypted profile
and the user’s device sends the encrypted fresh sample to the carrier. Note that
the keys to both encryptions are only known to the user’s device (it is the device
who encrypted everything).

The carrier computes a dissimilarity score at the feature level, while provably
guaranteeing that: i) no information about the profile stored at the carrier is
revealed to the device other than the average absolute deviation of the stored
feature values; ii) no information about the fresh feature value provided by the
device is revealed to the carrier other than how it is ordered with respect to the
stored profile feature values.

The score computation protocol in [17] uses two different encryption schemes:
a homomorphic encryption scheme HE (for example, Paillier’s [15]) and an
order-preserving symmetric encryption scheme OPSE (for example, [4]). For
each feature in the accumulated user’s profile, two encrypted versions are created,
one under HE and the other under OPSE. Similarly, for each feature in the fresh
sample it collects, the user’s device computes two encrypted versions, under HE
and OPSE, respectively, and sends them to the carrier. The following process
is repeated for each feature:

1. Using theHE ciphertexts the carrier performs some computations (additions
and scalar multiplications) relating the encrypted fresh sampled feature value
and the set of encrypted feature values in the stored encrypted user’s profile.

2. The output of the previous computations is returned to the user’s device,
which decrypts it, re-encrypts it under OPSE and returns the re-encrypted
value to the carrier.

3. Using the order-preserving properties, the carrier can finally compute a dis-
similarity score evaluating how different is the fresh sampled feature from
those stored in the encrypted user’s profile. This score can be roughly de-
scribed as the number of feature values in the stored encrypted profile that
are less dissimilar from the median of the stored values than the fresh sam-
pled value.

The authors of [17] point out that, in case of a malicious user’s device (e.g.
as a result of it being compromised), one cannot trust the device to provide
the correct HE-encrypted version of the fresh sampled feature. Nor can it be
assumed that the device returns correct OPSE-encryptions in Step 2 above.
In [17], a variant of the privacy-preserving implicit authentication protocol is
presented in which the device proves the correctness of HE-encrypted fresh
sampled features and does not need to provide OPSE-encrypted values. This
version is secure against malicious devices, but its complexity is substantially
higher.

Other shortcomings of [17]:

– It is restricted to numerical features, due to the kind of computations that
need to be performed on them. However, among the example features listed
in Section 2.1, there are some features that are not numerical, like the list
of cell towers or Internet access points seen by the user’s device.

– It discloses the following information to the user’s device: i) how the fresh
sample is ordered with respect to the stored profile feature values; ii) the
average absolute deviation of the stored feature values.

We present a privacy-preserving implicit authentication protocol based on
set intersection that deals with the above shortcomings.

3 Dissimilarity between sets depending on the data type

Based on [2], we recall here how the dissimilarity between two data sets X and Y
can be evaluated using set intersection. If we let X be the user’s profile and Y be
the fresh sample collected by the user’s device, our privacy-preserving implicit
authentication setting presents the additional complication (not present in [2])
that X is only available in encrypted form (the carrier stores only the encrypted
user’s profile). Anyway, we describe here the case of two plaintext sets X and Y
and we will deal with encrypted sets in the following sections.

3.1 Case A: independent nominal feature values

Assume X and Y consist of qualitative values, which are independent and binary,
that is, the relationship between two values is equality or nothing. Take as an
example the names of the network or phone providers seen by the user’s device,
the operating system run by the device and/or the programs installed in the
device. In this case, the dissimilarity between X and Y can be evaluated as the
multiplicative inverse of the size of the intersection of X and Y , that is 1/|X∩Y |,
when the intersection is not empty. If it is empty, we say that the dissimilarity
is ∞.

Clearly, the more the coincidences between X and Y , the more similar is the
profile stored at the carrier to the fresh sample collected by the device.

3.2 Case B: correlated categorical feature values

As in the previous case, we assume the feature values are expressed as qualitative
features. However, these may not be independent. For example, if the feature
values are the IDs of cell towers or Internet access points seen by the device,
nearby cell towers/access points are more similar to each other than distant cell
towers/access points.

In this case, the dissimilarity between X and Y cannot be computed as the
size of their intersection.

Assume we have an integer correlation function l : E×E 7→ Z+ that measures
the similarity between the values in the sets of features held by the device and
the carrier, where E is the domain where the sets of features of both players take
values. For nominal features, semantic similarity measures can be used for this
purpose [18]; for numerical features that take values over bounded and discrete
domains, standard arithmetic functions can be used. Assume further that both
the device and the carrier know this function s from the very beginning.

Here the dissimilarity between the set X and the set Y can be computed as

1/(
∑
x∈X

∑
y∈Y l(x, y))

when the denominator is nonzero. If it is zero, we say that the distance is ∞.

3.3 Case C: numerical feature values

In this case, we want to compute the dissimilarity between two sets of numerical
values based on set intersection. Numerical features in implicit authentication
may include GPS location data, other sensor data, etc. Assume U = {u1, · · · , ut}
and V = {v1, · · · , vt}. A way to measure the dissimilarity between X and Y is
to compute

∑t
i=1 |ui − vi|.

4 Robust privacy-preserving set intersection for implicit
authentication

It will be shown further below that computing dissimilarities in the above three
cases A, B and C can be reduced to computing the cardinality of set intersections.
Furthermore, this can be done without the carrier revealing X and without the
user’s device revealing Y , as required in the implicit authentication setting. The
idea is that, if the dissimilarity stays below a certain threshold, the user is
authenticated; otherwise, authentication is refused.

In Appendix A, we give some background on privacy-preserving set intersec-
tion protocols in the literature. Unfortunately, all of them assume an honest-but-
curious situation, but we need a privacy-preserving set intersection protocol that
works even if the adversary is a malicious one: notice that the user’s device may
be corrupted, that is, in control of some adversary. Hence we proceed to specify-
ing a set intersection protocol that remains robust in the malicious scenario and
we apply it to achieving privacy-preserving implicit authentication in Case A.
We then extend it to Cases B and C. We make use of Paillier’s cryptosystem [15],
which is recalled in Appendix B.

4.1 Implicit authentication in Case A

Set-up Let the plaintext user’s profile be (a1, · · · , as). In this phase, the user’s
device transfers the encrypted user’s profile to the carrier. To do so, the user’s
device does:

1. Generate the Paillier cryptosystem with public key pk = (n, g) and secret
key sk.

2. Compute the polynomial p(x) =
∏s
i=1(x−ai) = p0 +p1x+p2x

2 + · · ·+psx
s.

3. Compute Enc(p0), · · ·Enc(ps) where Enc(pi) = gpirni mod n2.

4. Randomly choose R′ ∈ Zn2 . Find r′0, · · · , r′s ∈ Zn2 such that

R′ = r′0 · r′1
aj · r′2

a2j · · · r′s
asj mod n2, j = 1, · · · , s (1)

Note that the system (1) has a trivial solution r′0 = R′ and r′1 = · · · = r′s = 1,
but, since it is underdetermined (s + 1 unknowns and s equations), it has
many non-trivial solutions too (see correctness analysis in Appendix C).

5. Compute Ri = r′i/ri mod n2. Randomly choose integer d ∈ Zn. Send

pk,Enc(p0), · · ·Enc(ps);R0
d, · · · , Rsd mod n2

to the carrier. Locally delete all data computed during the set-up protocol,
but keep (d,R′) secretly.

Implicit authentication protocol As discussed in Section 3.1, in case of
independent nominal feature values (Case A), dissimilarity is computed as 1/|X∩
Y |. Hence, to perform implicit authentication the carrier just needs to compute
the cardinality of the intersection between the fresh sample collected by the
user’s device and the user’s profile stored at the carrier. The challenge is that
the carrier only holds the encrypted user’s profile and the user’s device does no
longer hold the plaintext user’s profile either in plaintext or ciphertext.

Let Y = {b1, · · · , bt} ⊆ E be the fresh sample collected by the user’s device.
Then the device and the carrier engage in the following protocol:

Step 1 The carrier randomly chooses θ, and sends pk, Enc(p0)θ, · · · Enc(ps)θ;
R0

d, · · · , Rsd to the user’s device.
Step 2 The user’s device picks a random integer r(j) ∈ Zn2 for every 1 ≤ j ≤ t.

The device computes for 1 ≤ j ≤ t

Enc(r(j) · d · θ · p(bj)) = Enc(p(bj))
d·θ·r(j)

= (Enc(p0) · · ·Enc(ps)b
s
j)d·θ·r(j)

= gr(j)·d·θp(bj)γn·d·θj mod n2

where γj = (r0 · r1bj · r2b
2
j · · · rsb

s
j)r(j) mod n2. The user’s device then com-

putes Υj = (R0 ·R1
bj ·R2

b2j · · ·Rsb
s
j)dr(j) mod n2. For all j, the device ran-

domly orders and sends

{(Enc(r(j) · d · θ · p(bj)), Υj , R′
r(j)d

)} (2)

to the carrier.
Step 3 For 1 ≤ j ≤ t, the carrier does:

– Compute Enc(r(j) · d · θ · p(bj)) · Υnθj ;
– From Expression (1), if bj = ai for some i ∈ {1, · · · , s}, then p(bj) = 0

and hence Enc(r(j)d · θ · p(bj)) · Υnθj = R′
r(j)dnθ

; note that the carrier

can recognize R′
r(j)dnθ

by raising R′
r(j)d

received in Expression (2) to
nθ. Otherwise (if bj 6= ai for all i ∈ {1, · · · , s}) Enc(r(j) · d · θ · p(bj))
looks random. See correctness analysis in Appendix C.

If both parties are honest, then the carrier learns |X ∩ Y | but obtains no
information about the elements in X or Y .

4.2 Implicit authentication in Case B

Here, the carrier inputs X and the user’s device inputs Y , two sets of features,
and they want to know how close X and Y are without revealing their own set.
In the protocol below, only the carrier learns how close X and Y are.

We assume that the domain of X and Y is the same, and we call it E. The
closeness or similarity between elements is computed by means of a function s.
In particular, we consider functions l : E × E → Z+. Observe that Case A is a
particular instance of this Case B in which l(x, x) = 1 and l(x, y) = 0 for x 6= y.

Let Y be the input of the user’s device. For every z ∈ E, the device computes
`z =

∑
y∈Y l(z, y). Observe that `z measures the overall similarity of z and Y .

Let Y ′ = {z ∈ E : `z > 0}. It is common to consider functions satisfying
l(z, z) > 0 for every z ∈ E, and so in general Y ⊆ Y ′.

An implicit authentication protocol for such a computation can be obtained
from the protocol in Case A (Section 4.1), by replacing Steps 2 and 3 there with
the following ones:

Step 2’ For every z ∈ Y ′, the user’s device picks `z random integers r(1), · · · ,
r(`z)∈Zn2 and for 1 ≤ j ≤ `z does
– Compute

Enc(r(j) · d · θ · p(z)) = Enc(p(z))d·θ·r(j)

= (Enc(p0) · · ·Enc(ps)z
s

)d·θ·r(j)

= gr(j)·d·θp(z)γn·d·θj mod n2

where γj = (r0 · r1z · r2z
2 · · · rsz

s

)r(j) mod n2.

– Compute Υj = (R0 ·R1
z ·R2

z2 · · ·Rsz
s

)dr(j) mod n2.

– Let Ej = {(Enc(r(j) · d · θ · p(z)), Υj , R′r(j)d)}.
Finally, the user’s device randomly re-orders the sequence of all computed
Ej for all z ∈ Y ′ (a total of

∑
z∈Y ′ `z elements) and sends the randomly

re-ordered sequence of Ej ’s to the carrier.
Step 3’ For every received Ej , the carrier does

– Compute Enc(r(j)dθ · p(z)) · Υnθj ;
– From Expression (1), if z ∈ X, then p(z) = 0 and hence Enc(r(j)d · θ ·
p(z))·Υnθj = R′

r(j)dnθ
(see correctness analysis in Appendix C); otherwise

(if z 6∈ X) Enc(r(j)dθ · p(z)) looks random.

Hence, at the end of the protocol, the total number of Ej which yield R′
r(j)dnθ

is ∑
x∈X

`x =
∑
x∈X

∑
y∈Y

l(x, y),

that is, the sum of similarities between the elements of X and Y . This clearly
measures how similar X and Y are. At the end of the protocol, the carrier knows
|Y ′| and the device knows |X|. Besides that, neither the carrier nor the device can
gain any additional knowledge on the elements of each other’s set of preferences.

4.3 Implicit authentication in Case C

Let the plaintext user’s profile be a set U of t numerical features, which we
denote by U = {u1, · · · , ut}. The device’s fresh sample corresponding to those
features is V = {v1, · · · , vt}. The carrier wants to learn how close X and Y are,
that is,

∑t
i=1 |ui − vi|.

Define X = {(i, j) : ui > 0 and 1 ≤ j ≤ ui} and Y = {(i, j) : vi > 0 and 1 ≤
j ≤ vi}. Now, take the set-up protocol defined in Section 4.1 for Case A and run
it by using X as plaintext user profile. Then take the implicit authentication
protocol for Case A and run it by using Y as the fresh sample input by the
device. In this way, the carrier can compute |X ∩ Y |. Observe that

|X ∩ Y | = |{(i, j) : ui, vi > 0 and 1 ≤ j ≤ min{ui, vi}}| =
∑

1≤i≤t

min{ui, vi}.

In the set-up protocol for Case A, the carrier learns |X| and during the implicit
authentication protocol for Case A, the carrier learns |Y |. Hence, the carrier can
compute

|X|+ |Y | − 2|X ∩ Y | =
t∑
i=1

(max{ui, vi}+ min{ui, vi})− 2

t∑
i=1

min{ui, vi}

=

t∑
i=1

(max{ui, vi} −min{ui, vi}) =

t∑
i=1

|ui − vi|

5 Privacy, security and complexity

Unless otherwise stated, the assessment in this section will focus on the protocols
of Case A (Section 4.1), the protocols of Cases B and C being extensions of Case
A.

5.1 Privacy and security

We define privacy in the following two senses:

– After the set-up is concluded, the user’s device does not keep any information
about the user’s profile sent to the carrier. Hence, compromise of the user’s
device does not result in compromise of the user’s profile.

– The carrier learns nothing about the plaintext user’s profile, except its size.
This allows the user to preserve the privacy of her profile towards the carrier.

Lemma 1. After set-up, the user’s device does not keep any information on the
user’s profile sent to the carrier.

Proof. The user’s device only keeps (d,R′) at the end of the set-up protocol.
Both d and R′ are random and hence unrelated to the user’s profile. �.

Lemma 2. The carrier or any eavesdropper learn nothing about the plaintext
user’s profile, except its size.

Proof. After set-up, the carrier receives pk,Enc(p0), · · ·Enc(ps);R0
d, · · · ,

Rs
d mod n2. Since d is random and unknown to the carrier, R0

d, · · · , Rsd
mod n2 look random to the carrier and will give him no more information about
the plaintext user’s profile than the Paillier ciphertexts Enc(p0), · · ·Enc(ps).
That is, the carrier learns nothing about the user’s plaintext profile X = {a1,
· · · , as} except its size s. The same holds true for an eavesdropper listening to
the communication between the user’s device and the carrier during set-up.

At Step 2 of implicit authentication, the carrier only gets the fresh sample
Y encrypted under Paillier and randomly re-ordered. Hence, the carrier learns
no information on Y , except its size t. At Step 3, the carrier learns |X ∩ Y |, but
not knowing Y , the size |X ∩ Y | of the intersection leaks to him no information
on X. �

If we define security of implicit authentication as the inability of a dishonest
user’s device to disrupt the authentication outcome, we can state the following
result.

Lemma 3. A dishonest user’s device has no better strategy to alter the outcome
of implicit authentication than trying to randomly guess the user’s profile.

Proof. At the end of the set-up protocol, the (still uncompromised) user’s
keeps no information about the user’s profile (Lemma 1). Hence, if the user’s
device is later compromised and/or behaves dishonestly, it still has no clue on
the real user’s profile against which its fresh sample is going to be authenticated.
Hence, either the user’s device provides an honest fresh sample and implicit au-
thentication will be correctly performed, or the user’s device provides a random
fresh sample with the hope that it matches the user’s profile. �

5.2 Complexity

Case A During the set-up protocol, the user’s device needs to compute:

– s+ 1 Paillier encryptions for the polynomial coefficients;
– values r′0, · · · , r′s; as explained in Appendix C, this can be done by randomly

choosing r′0, then solving an s× s generalized Vandermonde system (doable
in O(s2) time using [7]) and finally computing s modular powers to find the
r′1, · · · , r′s;

– s+ 1 modular powers (raising the Ri values to d).

During the implicit authentication protocol, the user’s device needs to com-
pute (Step 2):

– t Paillier encryptions;
– ts modular powers (to compute the Υj values);
– t modular powers (to raise R′ to r(j)d).

Also during the implicit authentication protocol, the carrier needs to com-
pute:

– At Step 1, s + 1 modular powers (to raise the encrypted polynomial coeffi-
cients to θ);

– At Step 3, t Paillier encryptions;
– At Step 3, t modular powers (to raise the Υj values to nθ).

Case B The set-up protocol does not change w.r.t. Case A. In the implicit
authentication protocol, the highest complexity occurs when Y ′ = E and the
similarity function l always takes the maximum value in its range, say L. In this
case, ∑

z∈Y ′

`z =
∑
z∈Y ′

∑
y∈Y

l(z, y) = |E|sL.

Hence, in the worst case the user’s device needs to compute (Step 2’):

– |E|sL Paillier encryptions;
– |E|sL modular powers (to compute the Υj values);
– |E|sL modular powers (to raise R′ to r(j)d).

Also during the implicit authentication protocol, the carrier needs to com-
pute:

– At Step 1, s + 1 modular powers (to raise the encrypted polynomial coeffi-
cients to θ);

– At Step 3’, |E|sL Paillier encryptions;
– At Step 3’, |E|sL modular powers (to raise the Υj values to nθ).

Note that the above complexity can be reduced by reducing the range of the
similarity function l(·, ·).

Case C Case C is analogous to Case A but the sets X and Y whose inter-
section is computed no longer have s and t elements, respectively. According to
Section 4.3, the maximum value for |X| occurs when all ui take the maximum
value of their range, say, M , in which case X contains tM pairs (i, j). By a
similar argument, Y also contains at most tM pairs.

Hence, the worst-case complexity for Case C is obtained by performing the
corresponding changes in the assessment of Case A. Specifically, during the set-
up protocol, the user’s device needs to compute:

– tM + 1 Paillier encryptions for the polynomial coefficients;
– Solve a Vandermonde system tM × tM (doable in O((tM)2) time) and then

compute tM modular powers to find the r′i values;
– Compute tM + 1 modular powers (raising the Ri values to d).

During the implicit authentication protocol, the user’s device needs to com-
pute (Step 2):

– tM Paillier encryptions;
– t2M2 modular powers (to compute the Υj values);
– tM modular powers (to raise R′ to r(j)d).

Also during the implicit authentication protocol, the carrier needs to com-
pute:

– At Step 1, tM + 1 modular powers (to raise the encrypted polynomial coef-
ficients to θ);

– At Step 3, tM Paillier encryptions;
– At Step 3, tM modular powers (to raise the Υj values to nθ).

Note that the above complexities can be reduced by reducing the range of
the numerical values in sets U and V .

6 Experimental results

As stated in the previous section, the complexity of our implicit authentication
protocol ultimately depends on the sizes of the input sets. In Case A, the sizes
of the sets are directly given by the user inputs; in Case B, these sizes are the
product of the size of the input sets times the range of the similarity function
`; and in Case C, the sizes are given by the size of the original sets times the
range of their values. We ran an experiment to test the execution times of our
protocol, based on Case A, to which the other two cases can be reduced.

The experiment was implemented in Sage-6.4.1 and run on a Debian7.7 ma-
chine with a 64-bit architecture, an Intel i7 processor and 8GB of physical mem-
ory. We instantiated a Paillier cryptosystem with a 1024-bit long n, and the
features of preference sets were taken from the integers in the range [1 . . . 2128].
The input sets ranged from size 1 to 50, and we took feature sets of the same
size to execute the set-up and the authentication protocols.

Step 4 of the set-up protocol (Section 4.1), in which a system of equations is
solved for r′i for 1 ≤ i ≤ s, is the most expensive part of the set-up protocol. As
a worst-case setting, we used straightforward Gaussian elimination which takes
time O(s3), although, as mentioned above, specific methods like [7] exist for
generalized Vandermonde matrices that can run in O(s2) (such specific methods
could be leveraged in case of smartphones with low computational power). On
the other hand, Step 2 of the authentication protocol (Section 4.1), computed
by the user’s device, is easily parallelizable for each feature in the sample set.
Since parallelization can be exploited by most of the current smartphones in the
market, we also exploited it in our experiment. The results are shown in Table 1
(times are in seconds).

Note that the set-up protocol is run only once (actually, maybe once in
a while), so it is not time-critical. However, the authentication protocol is to
be run at every authentication attempt by the user. For example, if a user
implicitly authenticates herself using the pattern of her 20 most visited websites,
authentication with our proposal would take 3.37 seconds, which is perfectly
acceptable in practice.

Table 1. Execution times (in seconds) for different input set sizes

1 5 10 15 20 25 30 35 40 45 50

Set-up 0.89 0.79 1.1 1.83 4.67 11.45 24.65 47.6 84.99 144.81 228.6

Authentication 0.08 0.47 1.05 2.0 3.37 5.4 8.27 12.13 17.3 23.39 31.2

7 Conclusions and future research

To the best of our knowledge, we have presented the second privacy-preserving
implicit authentication system in the literature (the first one was [17]). The
advantages of our proposal with respect to [17] are:

– The carrier only needs to store the user’s profile encrypted under one cryp-
tosystem, namely Paillier’s.

– Dishonest behavior or compromise at the user’s device after the initial set-
up stage neither compromises the privacy of the user’s profile nor affects the
security of authentication.

– Our proposal is not restricted to numerical features, but can deal also with
all sorts of categorical features.

– In case of numerical or categorical ordinal features, our proposal does not
disclose how the fresh sample is ordered with respect to the feature values
in the stored user’s profile.

For binary or independent nominal features, the complexity of our proposal
is quite low (quadratic in the number of values in the user’s profile). For corre-
lated categorical feature values, the complexity is higher, but it can be reduced
by decreasing the range of the similarity function used. Finally, in the case of
numerical values, the complexity is also higher than in the binary/independent
nominal case, but it can be reduced by decreasing the range of the numerical
feature values.

Future research will include devising ways to further decrease the computa-
tional complexity in all cases.

Acknowledgments

The following funding sources are gratefully acknowledged: Government of Cat-
alonia (ICREA Acadèmia Prize to the first author and grant 2014 SGR 537),
Spanish Government (project TIN2011-27076-C03-01 “CO-PRIVACY”), Euro-
pean Commission (projects FP7 “DwB”, FP7 “Inter-Trust” and H2020 “CLARUS”),
Templeton World Charity Foundation (grant TWCF0095/AB60 “CO-UTILITY”),
Google (Faculty Research Award to the first author) and Government of China
(Natural Science Foundation of China under projects 61370190 and 61173154).
The first author is with the UNESCO Chair in Data Privacy. The views in this
paper are the authors’ own and do not necessarily reflect the views of UNESCO,
the Templeton World Charity Foundation or Google.

References

1. Y. Aksari, “Active authentication by mouse movements”, in 24th Intl. Symposium
on Computer and Information Sciences-ISCIS 2009, IEEE, pp. 571–574, 2009.

2. A. Blanco-Justicia, J. Domingo-Ferrer, O. Farràs and D. Sánchez, “Distance com-
putation between two private preference functions”, in IFIP SEC 2014-Intl. Infor-
mation Security and Privacy Conference, IFIP AICT 428, pp. 460–470, 2014.

3. M. Blanton and E. Aguiar, “Private and oblivious set and multiset operations”, in
ASIACCS 2012, Springer, pp. 40-41, 2012.

4. A. Boldyreva, N. Chenette and A. O’Neill, “Order-preserving symmetric encryp-
tion”, in EUROCRYPT 2009, Springer, pp. 224-241, 2009.

5. N. Clarke, S. Karatzouni and S. Furnell, “Flexible and transparent user authentica-
tion for mobile devices”, in IFIP SEC 2009-Intl. Information Security Conference,
IFIP AICT 297, pp. 1–12, 2009.

6. E. De Cristofaro, P. Gasti and G. Tsudik, “Fast and private computation of cardi-
nality of set intersection and union”, in CANS 2012, Springer, pp. 218-231, 2012.

7. J. Demmel and P. Koev, “The accurate and efficient solution of a totally positive
generalized Vandermonde linear system”, SIAM Journal on Matrix Analysis and
Applications, 27(1):142-152, 2005.

8. J. Domingo-Ferrer, “Anonymous fingerprinting of electronic information with auto-
matic identification of redistributors”, Electronics Letters, 34(13):1303-1304, 1998.

9. J. Freedman, K. Nissim and B. Pinkas, “Efficient private matching and set inter-
section”, in EUROCRYPT 2004, Springer, pp. 1-19, 2004.

10. Federal Trade Commission, Data Brokers: A Call for Transparency and Account-
ability, May 2014.

11. S. Hohenberger and S. Weis, “Honest-verifier private disjointness testing without
random oracles”, in PET 2006, Springer, pp. 277–294, 2006.

12. M. Jakobsson, E. Shi, P. Golle and R. Chow, “Implicit authentication for mobile
devices”, in Proc. of the 4th USENIX Conf. on Hot Topics in Security, 2009.

13. L. Kissner and D. X. Song, “Privacy-preserving set operations”, in CRYPTO 2005,
Springer, pp. 241–257, 2005.

14. D. Meǵıas and J. Domingo-Ferrer, “Privacy-aware peer-to-peer content distribution
using automatically recombined fingerprints”, Multimedia Systems, 20(2):105-125,
2014.

15. P. Paillier, “Public-key cryptosystems based on composite degree residuosity
classes”, in EUROCRYPT 1999, Springer, pp. 223-238, 1999.

16. B. Pfitzmann and M. Waidner, “Anonymous fingerprinting”, in EUROCRYPT
1997, Springer, pp. 88-102, 1997.

17. N. A. Safa, R. Safavi-Naini and S. F. Shahandashti, “Privacy-preserving implicit
authentication”, in IFIP SEC 2014-Intl. Information Security and Privacy Confer-
ence, IFIP AICT 428, pp. 471–484, 2014.

18. D. Sánchez, M. Batet, D. Isern and A. Valls, “Ontology-based semantic similarity:
A new feature-based approach”, Expert Systems with Applications, 39(9):7718-7728,
2012.

19. J. Vaidya and C. Clifton, “Secure set intersection cardinality with application to
association rule mining”, Journal of Computer Security, 13(4):593-622, 2005.

20. A.C.-C. Yao, “How to generate and exchange secrets”, in FOCS 1986, pp. 162-167,
1986.

A Background on privacy-preserving set intersection

Secure multiparty computation (MPC) allows a set of parties to compute func-
tions of their inputs in a secure way without requiring a trusted third party.
During the execution of the protocol, the parties do not learn anything about
each other’s input except what is implied by the output itself. There are two
main adversarial models: honest-but-curious adversaries and malicious adver-
saries. In the former model, the parties follow the protocol instructions but they
try to obtain information about the inputs of other parties from the messages
they receive. In the latter model, the adversary may deviate from the protocol
in an arbitrary way.

We will restrict here to a two-party setting in which the input of each party
is a set, and the desired output is the cardinality of the intersection of both
sets. The intersection of two sets can be obtained by using generic constructions
based on Yao’s garbled circuit [20]. This technique allows computing any arith-
metic function, but for most of the functions it is inefficient. Many of the recent
works on two-party computation are focused on improving the efficiency of these
protocols for particular families of functions.

Freedman, Nissim, and Pinkas [9] presented a more efficient method to com-
pute the set intersection, a private matching scheme, that is secure in the honest-
but-curious model. A private matching scheme is a protocol between a client C
and a server S in which C’s input is a set X of size iC , S’s input is a set Y of size
iS , and at the end of the protocol C learns X ∩ Y . The scheme uses polynomial-
based techniques and homomorphic encryption schemes. Several variations of the
private matching scheme were also presented in [9]: an extension to the malicious
adversary model, an extension of the multi-party case, and schemes to compute
the cardinality of the set intersection and other functions. Constructing efficient
schemes for set operations is an important topic in MPC and has been studied
in many other contributions. Several works such as [3, 6, 11, 13, 19] present new
protocols to compute the set intersection cardinality.

B Paillier’s cryptosystem

In this cryptosystem, the public key consists of an integer n (product of two
RSA primes), and an integer g of order n modulo n2, for example, g = 1 + n.
The secret key is φ(n), where φ(·) is Euler’s totient function.

Encryption of a plaintext integer m, with m < n involves selecting a random
integer r < n and computing the ciphertext c as

c = Enc(m) = gm · rn mod n2 = (1 +mn)rn mod n2.

Decryption consists of first computing c1 = cφ(n) mod n2 = 1 +mφ(n)n mod n2

and then m = (c1 − 1)φ(n)−1 mod n2.

The homomorphic properties of Paillier’s cryptosystem are as follows:

– Homomorphic addition of plaintexts. The product of two ciphertexts de-
crypts as the sum of their corresponding plaintexts:

D(E(m1, r1) · E(m2, r2) mod n2) = m1 +m2 mod n.

Also, the product of a ciphertext times g raised to a plaintext decrypts as
the sum of the corresponding plaintexts:

D(E(m1, r1) · gm2 mod n2) = m1 +m2 mod n.

– Homomorphic multiplication of plaintexts. An encrypted plaintext raised to
the power of another plaintext will decrypt to the product of the two plain-
texts:

D(E(m1, r1)m2 mod n2) = D(E(m1, r1)m2 mod n2) = m1m2 mod n.

More generally, given a constant k, D(E(m1, r1)k mod n2) = km1 mod n.

C Correctness

In general, the correctness of our protocol follows from direct algebraic verifi-
cation using the properties of Paillier’s cryptosystem. We go next through the
least obvious steps.

C.1 Set-up protocol

In the set-up protocol, r′0, · · · , r′s are found as a solution of the following systemR
′

...
R′

 =


r′0 · r′

a1
1 · r′

a21
2 · · · r′

as1
s mod n2

...

r′0 · r′
as
1 · r′

a2s
2 · · · r′

ass
s mod n2

 .
The above system has s+ 1 unknowns and s equations. Therefore it has one

degree of freedom. To avoid the trivial solution r′0 = R′ and r′1 = · · · = r′s = 1,
we choose a random r′0. Then we divide the system by r′0 and we take logarithms
to get 

log(R′/r′0)
log(R′/r′0)

...
log(R′/r′0)

 mod n =

a1 a
2
1 · · · as1

...
...

...
as a

2
s · · · ass

 ·


log r′1
log r′2

...
log r′s

 mod n.

The matrix on the right-hand side of the above system is an s × s generalized
Vandermonde matrix (not quite a Vandermonde matrix). Hence, using the tech-
niques in [7] it can be solved in O(s2) time for log r′1, · · · , log r′s. Then s powers
modulo n2 need to be computed to turn log r′i into r′i for i = 0, · · · , s.

C.2 Implicit authentication protocol

We specify in more detail the following derivation in Step 2 of the implicit
authentication protocol of Section 4.1:

Enc(r(j) · d · θ · p(bj)) = Enc(p(bj))
d·θ·r(j) mod n2

= (Enc(p0) · · ·Enc(ps)b
s
j)d·θ·r(j) mod n2

= (gp0rn0 · · · (gpsrns)b
s
j)d·θ·r(j) mod n2

= (gp(bj))d·θ·r(j)(r0 · r
bj
1 · · · r

bsj
s)r(j)·n·d·θ mod n2

= gr(j)·d·θp(bj)γn·d·θj mod n2.

Regarding Step 3 of the implicit authentication protocol, we detail the case
bj = ai for some i ∈ {1, · · · , s}. In this case, p(bj) = 0 and hence

Enc(r(j)dθ · p(bj)) · Υnθj mod n2 = Enc(0)r(j)dθ · Υnθj mod n2

= (r0 · r
bj
1 · · · r

bsj
s)nr(j)dθ · Υnθj mod n2

= (r0 · r
bj
1 · · · r

bsj
s)nr(j)dθ · (R0 ·R

bj
1 · · ·R

bsj
s)dr(j)nθ mod n2

= (r′0 · r′
ai
1 · · · r′

asi
s)r(j)dnθ mod n2 = R′

r(j)dnθ
mod n2. (3)

If in Step 3, if we have bj 6= ai for all i ∈ {1, · · · , s}, then Derivation (3)
does not hold and a random number is obtained instead. On the one side, the
powers of g does not disappear from Enc(r(j)dθ · p(bj)). On the other side, the
exponents bj , · · · , bsj cannot be changed by ai, · · · , asi as done in the last step of

Derivation (3). Hence, a random number different from R′r(j)dnθ is obtained.

