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Abstract. Cancer research and diagnostics is an important frontier to apply the 
power of computers. Researchers use image processing techniques for a few 
years now, but diagnostics only start to explore its possibilities. Pathologists 
specialized in this area usually diagnose by visual inspection, typically through 
a microscope, or more recently on a computer screen. They examine at tissue 
specimen or a sample consisting of a population cells extracted from it. The 
latter area is the area of cytometry that researchers started to support by creating 
image processing algorithms. The validation of an image processing approach 
like that is an expensive task both financially and time-wise. This paper aims to 
show a semi-automatized method to simplify this task, by reducing the amount 
of human interaction necessary. 

Keywords: validation tool, automated validation, medical image processing 

1   Introduction 

The project [1] we are currently participating in aims to reproduce a medical research 
and diagnostic method called ploidy analysis (PA) through image processing means. 
PA is a method to measure DNA content in cell nuclei as a basic cancer marker, and 
is considered as a segment of pathology, more closely image cytometry (ICM). In 
diagnostics PA is usually done by a machine called Flow Cytometer (and the family 
of assessments related to it flow cytometry (FCM)), an appliance that operates with a 
light beam directed at a transparent capillary, where objects are traveling in sheath 
fluid, facilitating laminar flow. The objects are measured through their optical 
properties like light scattering, but the result is more one-dimensional measurement 
functions of time. Image cytometry takes a different approach. Digital pathology is in 
the process of introduction into medical diagnostics. This new approach is based on 
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the idea of taking traditional glass slide specimen to the computer screen through 
digitalization. This enables experts to use the monitor to evaluate the samples, and 
also use software tools to achieve the task. Expectations are that this approach 
enhances objectivity reproducibility and traceability of forming diagnoses. Image 
cytometry is the sub-field where the software tools are used to process the digitized 
sample, enabling its users to analyze vastly more objects than the traditional visual-
manual method using microscopes for inspection and clickers for counting. The 
project we are working on aims to reproduce a flow cytometry analysis by image 
processing means [2][3]. Is the ICM approach viable as a diagnostic approach? This is 
a twofold question in itself: is it possible, and is it capable of sufficient throughput 
(equivalent of FCM)? The hypothesis of course is that it is possible, but 
measurements have to be taken to confirm. 

A crucial part in applying (image processing) algorithms in forming medical 
diagnoses, is validation. There are two possible routes: validation by comparison to a 
validated approach (in this case FCM result), or the method used for validating FCM 
in the first place: clinical a study. The clinical study approach was chosen to eliminate 
the inherent error accumulation, and the simpler procedure regarding laboratory 
access and overall expenses in human work. This approach is semi-automatic in the 
sense of needing manual input for the quantitative validation in the form of the planar 
coordinates of the reference objects. The novelty in our approach is to decrease the 
human interaction as much as possible. To achieve this validation process was 
separated into two steps, only the first needing direct expert interaction: marking the 
objects to detect on the sample. Something similar was done traditionally: using a 
clicker counter, while examining the sample with a microscope. This we named the 
quantitative part. It is possible to add a qualitative part that relies on the result of a 
quantitatively sound detection as reference, for measuring object detection quality. 

This paper aims to present an algorithmic tool for first approach validation of the 
image cytometry algorithm described, and possibly other image segmentation 
projects. The tool is constructed to be also useful in image processing algorithm 
development, by enabling continuous comparison to results of pervious variants. 
 

 
 

Fig. 1. Sample area with segmentation mask. On the top-left a merged pair of nuclei is visible. 
On the bottom left area a few (very) low-intensity objects are located. 



Semi-Automated Quantitative Validation Tool for Medical Image Processing    233 

2   Benefits from Cloud-based Engineering Systems 

The image processing of medical images regarding small objects usually entail tiled 
image processing. This, in itself is a problem that scales well in parallel processing. 
Comparing or validating the results of an above mentioned algorithm can also be 
organized for highly parallel processing. More importantly considering the amount of 
samples to analyze in a pathology lab (that are usually highly centralized facilities), 
that should be done more quickly, than manual/visual inspection of the sample, to 
have relevance in diagnostics. A glass slide has the useful area of roughly 15x25mm. 
The optics in the hardware our project used for sample digitization enables 
~0.2µm/pixel resolution. This means a bit more than 9GB of image data for each 
image channel. (Naturally for storage it can be compressed, but processing usually 
uses the uncompressed, full magnification data.) Though our project uses single 
channel images, but a medium sized diagnostic lab works with a few hundreds of 
these samples a day [4]. 

Recent papers discuss the role of cloud in medical image processing like [5]. 
Considering the amount of data accumulated in digitized glass slides the storage 
advantages of clouds seems also an option to explore. Creating the required storage 
capacity, the security issues and the problem of maintaining these may be easily 
solved through cloud. Taking a step back another dimension of clouds can also be 
valuable for this area and that is the consultation over medical cases, the possibility to 
easily share and inspect samples, or even cases (sets of samples corresponding to a 
patient) are already feasible, but with pre-cloud techniques his can be solved only in a 
less than ideal manner. 

3   Related Literature 

There is extensive literature on the evaluation of image segmentation quality and 
validation. We started with an earlier work in mind; that work was a case study of a 
clinical validation [6]. The categorizing approach of [7] was of great help to widen 
our field of view in this area. And other works like [8], which used the same 
supervised approach as we planned, were of great help to select the depth and scope 
of this paper. 

4   Discussion 

Image processing projects usually encounter at least two types of demand considering 
validation/comparison. One is the actual validation of the segmentation algorithm or 
the software solution, where segmentation result usually has to be compared to human 
“segmentation” results (as in a clinical study – supervised approach). The other case 
is during the development of the algorithm that compares the algorithm to its previous 
version or to a completely different approach to confirm or measure the change or 
difference, to be able to rank them, and improve the best one further. Accordingly the 
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proposed software application is constructed to compare two measurements. This 
enables us to consider it as an ordering relation of some sort between image 
processing algorithms and also as a validation tool, when comparing human 
validation as reference input. The analysis tries to find corresponding object pairs (or 
n-tuples) from both measurements (reference and the currently tested), compare them, 
and register their relation using result/error classes. 

4.1   Data 

A measurement to compare can be considered an array of records containing all 
measured morphometrical and colorimetrical properties of each detected object (cell 
nucleus in the case of the actual study). This paper focuses on reproducing the process 
of a manual validation project, only the morphology and location information is 
analyzed, though a simple check is conducted on other properties of the measured 
objects for enabling automatic discovery of unanticipated changes. Samples of human 
blood (lymphocyte nuclei) were used in this case. A 1 mm2 area was analyzed on each 
of the 17 digital slides. The images processed were 0.1625µm/per pixel resolution 
compressed (jpeg 80). This means roughly 6150*6150 pixels on each sample. 

4.2   Analysis 

The simplest case is when object shapes (as polygons) match, and also all their 
measured (non-geometrical) parameters match. (For optimization purposes all shape 
comparison is preceded by the comparison of their bounding boxes, to ensure quicker 
analysis.) This group is labelled Perfect match. If the criterion for parameters fails the 
cluster is labelled Parameter mismatch. These two groups are most significant in 
synthetic tests, where objects with known geometry are segmented and analyzed. It 
can also be helpful during algorithm development to detect unwanted changes in 
segmentation or parameter measurement, as a step of automated testing protocol. This 
is why these two cases are handled separately, if at the end of this step all objects are 
accounted for, the analysis is over, if not, the remaining are passed to the next stage of 
the test. 

 
 

Fig. 2. Illustration of the relation matrix. Rows represent the items of the gold standard, 
columns contain the elements of the compared measurement. X-es designate objects where 
overlap is possible. 



Semi-Automated Quantitative Validation Tool for Medical Image Processing    235 

This next stage leverages the idea of neighborhood matrices and object overlap. 
Both measurements are assigned to a dimension of the matrix, and relations are 
recorded to the cell addressed by the two interacting detected objects. If their 
bounding boxes intersect, and also the actual shapes intersect the interaction is 
marked in the corresponding matrix cell as a binary flag (as visible in Fig. 2). Shape 
overlap is detected by simply rendering the two objects to the same image 
additionally, and counting overlapping pixels. Intersecting ratio is defined as the 
intersection area over the area of the object with greater area. When this matrix is 
populated a simple analysis is conducted. For simplicity name the horizontal 
dimension reference and the vertical the measurement. Also generate column and row 
sums for the matrix. 
 
1:0 and 0:1 Object Relation  
These cases can be found by collecting entries, where either the column sum or the 
row sum equals to zero. When there is a reference object that has no corresponding 
measurement object it is marked as false negative. The complementary case is 
labelled false positive (measurement for no reference). These objects are registered, 
and removed from the matrix. 
 

1:1 Object Relation  

Where the column and the row sum is also equals to one means that to the reference 
object only one measurement object is assigned,  and also to that measurement object 
corresponds only (this) one reference object. These objects are further grouped into 
two classes. Where the centroid of the objects is on the same location the object pair 
is labelled as match, where the centroid locations differ, the label assigned is shifted. 
(In our case instead of centroid simply the center of the bounding box was used.) A 
shifted (or not perfect) match can be observed on Fig. 3. 

 

This classification may later be used for a few purposes: 
When a measurement is run only on a smaller sub-area of the reference area, there is 
difference in coordinate systems of the two samples, but otherwise comparing two 
identical measurements. Similarly if the tissue sample is digitized twice, similar 
difference may be observed. A new digitization process may assign a new coordinate 
system for the digital sample, or the tilling can change the coordinate system locally, 
because of mechanical or parametric differences of the two attempts. 
Naturally these analyzed pairs of objects are also removed from the matrix. 
 

 
 

  
 

Fig. 3. Reference marker and detected object overlap test. Manually placed “reference” position 
marker on the left, segmented object mask on the right. 
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1:n and n:1 Object Relation  
In the remaining set of objects where the column sum equals one (and the row sum is 
greater than one, otherwise it would have been processed earlier) is the class of 
Merged, meaning more reference objects to a single measurement object. Conversely 
where only row sum equals one is labelled Split, assigned to the case where to one 
reference there are multiple measurement objects. 

 

   
 

 

Fig. 4. A segmentation object containing two markers. Image processing “merged” 
the two nuclei into one segmented object. 
 

All remaining cases are labelled as Residuum. (n:m relations are not desirable in 
this setting, found no purpose in further analyzing them.) 

For the validation of the above described method the results of the previously 
published manual assays were used. To be able to compare these results the result 
classes of the two methods have to be arbitrated. The resulting classification results 
are visible in Table 1. 

Table 1.  Results of the manual and the automatic assay. Reference column designates the 
count of nuclei the expert marked. FP (false positive), FN (false negative), Match and Other 
columns contain the count of objects in the named cluster. 
 

Human rating Algorithmic rating 

Reference FP FN Match Other FP FN Match Other 

1508 34 253 1223 24 30 264 1213 17 
1937 41 450 1411 66 43 453 1401 46 
1301 68 243 977 71 67 238 1001 26 
1766 38 348 1381 32 47 464 912 97 
1674 48 347 1257 61 44 345 1238 48 
2040 19 434 1535 59 20 437 1514 47 
977 51 115 850 12 51 123 829 19 

1586 29 305 1242 32 27 312 1235 22 
1259 32 170 1075 8 31 180 1065 8 
2175 28 479 1606 81 24 482 1584 55 
1677 20 383 1245 42 19 382 1224 36 
1524 23 423 983 111 22 425 973 64 
2175 40 551 1559 53 38 548 1535 47 
2110 16 528 1512 64 10 532 1503 40 
1776 32 413 1275 80 22 412 1246 64 
1957 11 547 1352 47 170 361 1016 11 
831 61 107 706 18 61 110 703 10 
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Definition of the Evaluation Classes 
Match: reference marker corresponds with exactly one measurement. In the proposed 

method the “Match” and “Shifted” classes, and also the half of the count of the 
“Split” class1 

False positive: there is a measurement, but no corresponding reference object. Same 
in the proposed method and the other half of the “Split” class1 

False negative: to a reference there is no measurement object. Same in the proposed 
method 

Other: all other cases, usually where one measurement corresponds to more reference 
objects. Merged, Residuum classes 

The result classes of the assays can be considered categorical variables, the 
manual results as expected and the algorithmic results as measured values. The Chi-
square goodness of fit test is used to confirm that the proportions the algorithm 
produced do not differ significantly from the ones the manual assay states.  

The test was conducted using the significance level of 95% (p = 0.05). The 
column h in Table 2 contains whether the above null hypothesis stands, column pt 
contains the p-value needed to reject the null hypothesis at the actual significance 
level. 
 Table 2. The result of the Chi-square goodness of fit test of concordance between the human 
and the algorithmic rating. Sample ID designates the glass slide containing the cell nuclei; the 
other columns contain the results of the statistical test. 
 

sample ID χ2 pt h sample ID χ2 pt h 

1M01 1.7038 0.7900 1 1M13 5.1632 0.2710 1 
1M02 3.5843 0.4652 1 1M14 0.5417 0.9693 1 
1M03 21.0897 3.0e-04 0 1M15 12.1855 0.0160 0 
1M04 731.7800 0 0 1M16 0.4652 0.9768 1 
1M05 1.6605 0.7979 1 1M17 6.8198 0.1457 1 
1M06 1.4359 0.8379 1 1M18 3.5227 0.4744 1 
1M10 2.1032 0.7168 1 1M19 227.0211 0 0 
1M11 1.9999 0.7358 1 1M20 2.3150 0.6780 1 
1M12 0.3481 0.9865 1     

 

5   Conclusion 

The results of the proposed comparator algorithm mostly concur with the results of 
the manual assay. In case of four samples the results seem to differ significantly. 
Further investigation is needed to uncover the cause in those cases. This may enable 
faster, more objective comparison of image segmentation. Being able to compare 
measurements in the magnitude of a few tens of thousands of objects automatically 
adds the possibility for some additional testing of similar image segmentation 
algorithms.  

A few weaknesses were discovered. Comparison processing time grows quickly 
with the number of measured objects. Analysis speed is inherently at least O(n2) 

                                                           
1 In the manual assay the rule of thumb given to the expert was to mark the best fitting 

segmentation result as a Match all others as false positives. 
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because of the interaction-matrix. If the processing algorithm in itself is tile 
processing based (as in the case of our project), comparing the result subsets tile-wise 
seems a viable solution. In other cases by using spatial ordering of both the reference 
and the measurement is possible (like the storage or indexing the measurement in a 
quad tree manner), thus being able to construct interaction matrices for objects that 
possibly overlap in a distributed (and also quicker than O(n2)) manner. 

Comparison of larger objects is not efficient or even not possible; rendering them 
on single images in memory may not be an option. Overlap calculation in their case 
should be implemented by an entirely different approach.  

The separate step of detecting complete matches and geometric matches for 
testing purposes makes this twice as slow, the two “modes” should probably be used 
separately, mode chosen explicitly. To add a module with the possibility of supplying 
image masks and/or text files with a strictly set format as comparison input is also our 
future goal. This is necessary to be able to use the tool more generally or in other 
projects. Extending the comparison capabilities to the level of detail of the segmented 
objects’ level is also a possibility. 
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