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Abstract. In this paper we developed a combination of aggregation-
disaggregation technique with the concept of column generation to solve a large 
scale LP problem originating from land use management in the Australian agri-
cultural sector. The problem is to optimally allocate the most profitable land use 
activities including agriculture, carbon sequestration, environmental planting, 
bio-fuel, bio-energy, etc., and is constrained to satisfy some food demand con-
siderations and expansion policies for each year from 2013 to 2050. In this re-
search we produce a higher resolution solution by dividing Australia’s agricul-
tural areas into square kilometer cells, which leads to more than thirteen million 
cells to be assigned, totally or partially, to different activities. By accepting a 
scenario on agricultural products' return, carbon related activities, future energy 
prices, water availability, global climate change, etc. a linear programming 
problem is composed for each year. However, even by using a state of the art 
commercial LP solver it takes a long time to find an optimal solution for one 
year. Therefore, it is almost impossible to think about simultaneous scenarios to 
be incorporated, as the corresponding model will become even larger. Based on 
the properties of the problem, such as similar economical and geographical 
properties of nearby land parcels, the combination of clustering ideas with col-
umn generation to decompose the large problem into smaller sub-problems 
yields a computationally efficient algorithm for the large scale problem. 

Keywords: aggregation-disaggregation · column generation · clustering · land 
use allocation 

1 Introduction 

Predicting land use change in Australian agriculture in the context of increasing ener-
gy prices stimulating bio-fuels and bio-energy land uses, and a carbon policy with 
possibilities for increasing carbon price over time requires solving a large scale linear 
programming problem. The model covers the domain of southern and eastern Austral-
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ian land currently in intensive agricultural use on a one square kilometer grid cell 
resolution over 813,000 square kilometers resulting in more than thirteen million 
square cells, including active and inactive cells,  as shown in Fig. 1. Starting with the 
agricultural land present in 2013, the model finds the optimal land use each year for-
ward in time until 2050 where optimality is defined as maximizing profit and social 
welfare (the sum of profit and consumers' surplus). In the highest resolution with land 
parcels of size one square kilometer, for each year the corresponding LP has 
7,313,847 continuous variables and 814,811 constraints. The focus is on the change 
from current agricultural production to alternative land uses such as carbon plantings, 
environmental plantings, bio-energy or bio-fuels. Food prices are computed endoge-
nously following a maximum welfare approach whereas costs and revenues for non-
agricultural commodities depend on scenarios and exogenous modeling. The platform 
is built to model a range of scenarios involving alternate assumptions about global 
climate change, world carbon emissions trajectories, emissions limits and prices of 
carbon credits, price trajectories for energy, world food demand, supply and price 
trajectories, and agricultural productivity growth [11]. 
 

 

Fig. 1. Area for land use trade optimisation 

 
Efficiently solving a large scale LP problem is the main difficulty that we address 

in this paper. At the present setting, finding an optimal solution for each year takes a 
long time even using commercial software packages. Also, considering that the model 
is build based on one set of fixed scenarios, the further expansion of the project to 
consider simultaneous scenarios for the sake of stochastic optimisation is almost im-
possible at this stage. Therefore, our first aim is to develop an algorithm which can 
solve the large LP pertaining to a particular year in a shorter amount of time. 

One important fact in terms of agricultural land allocation for different products is 
that nearby land parcels have similar economical and geographical properties. They 
indeed have similar proximity to water resources, and main roads leading to similar 
transportation and production costs. In reality it is easy to detect that huge parcels of 
land are allocated to the same agricultural commodity while passing large farms in 



countryside. By drawing inspiration from this fact, instead of considering cells of size 
one square kilometer, the whole Australia is divided into big chunks of land (lower 
resolution) called clusters. The economical properties of each cluster are calculated 
based upon cells in each cluster. This type of aggregation technique in optimisation is 
a handy tool to create a set of smaller problems out of a large problem. However, the 
smaller problem size comes at the cost of lower accuracy. We remedy this by using an 
iterative disaggregation approach. The smaller problem is gradually made a better 
approximation of the original problem by breaking down big clusters into smaller 
clusters, and add new clusters as new column to the small problem.   

There is an increasing level of attention to use optimisation techniques in agricul-
tural and other land use management planning context. As an example, in [7] a hierar-
chical approach is presented for large-scale forest planning. The algorithm is based on 
solving an aggregate problem, which is of moderate size. Another example, in [8] 
authors argue the usage of optimisation techniques in combination with scenario anal-
ysis can provide efficient land use management options for sustainable land use from 
global to sub-global scales. In terms of water resource management, in [9] a spatial 
optimisation techniques implemented among four diffuse source pathways in a 
mixed-use watershed to maximize total reduction of phosphorus loading to streams 
while minimizing associated costs. An interesting utilization of a multi-objective op-
timisation technique is reported for identifying optimum land management adapta-
tions to climate change [10]. 

The rest of the paper is arranged as follows. In the next sections, we describe the 
model in more details. Then a short description of column generation and aggregation 
techniques is provided. The new algorithm is introduced at the next section, and nu-
merical results and the conclusion will conclude the paper.     

2 The Model 

In order to insert demand-production equilibrium, a segmentation of the domain is 
necessary to approximate the nonlinear relationship between the demand and produc-
tion using piecewise linear functions. Also, an appropriate model needs to consider 
satisfaction of the Australian agricultural food demand by imposing supply-
production and supply-demand constraints. As we should allocate every cell, partially 
or totally, to the activities, a set of land-use constraints are introduced. Furthermore, 
in case there are some particular expansion plans for particular activities, some new 
expansion constraints are introduced to fulfill existing capacity for each activity. The 
complete model of the land-use trade-off optimization (LUTO) project is represented 
by equation (1).  Some necessary and technical information of the model is represent-
ed in Table 1. 

With resolution set to one, which is the highest resolution with land parcels of size 
one km2, there are |R|=812,383 regional active cells. Also, there exist |S|=100 price 
and demand segmentation, |J|=9 activities and |F|=24 food commodities. The linear 
model has |R|*|J|+|S|*|F|≈ 7,313,847 continuous variables and |N|+|R|+|F|+|S|*|F| ≈ 



814,811 constraints. The number of variables is almost nine times more than the 
number of constraints. 
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𝑠𝑠∈𝑆𝑆𝑗𝑗 ∈𝐹𝐹

−��𝐶𝐶𝑟𝑟,𝑎𝑎𝑎𝑎𝑗𝑗𝑄𝑄𝑟𝑟,𝑎𝑎𝑎𝑎𝑗𝑗𝑥𝑥𝑟𝑟,𝑎𝑎𝑎𝑎 + ��𝛿𝛿𝑟𝑟𝑟𝑟𝑄𝑄𝑟𝑟𝑟𝑟𝑥𝑥𝑟𝑟𝑟𝑟
𝑟𝑟∈𝑅𝑅𝑗𝑗 ∈𝑁𝑁𝑟𝑟∈𝑅𝑅𝑗𝑗 ∈𝐹𝐹

𝑠𝑠. 𝑡𝑡.   �𝑄𝑄𝑟𝑟𝑟𝑟𝑥𝑥𝑟𝑟𝑟𝑟
𝑟𝑟∈𝑅𝑅

≤ 𝐿𝐿𝐿𝐿𝐿𝐿𝑗𝑗     𝑗𝑗 ∈ {carbon, biofule, bioenergy} ⊂ 𝑁𝑁   Expansion

�𝑄𝑄𝑟𝑟,𝑒𝑒𝑒𝑒𝑒𝑒𝑥𝑥𝑟𝑟,𝑒𝑒𝑒𝑒𝑒𝑒
𝑟𝑟∈𝑅𝑅

≤ 𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒                                                   Biodiversity

�𝑥𝑥𝑟𝑟𝑟𝑟
𝑗𝑗∈𝐽𝐽

≤ 1              ∀𝑟𝑟 ∈ 𝑅𝑅                                                            Land-Use

�𝑦𝑦𝑠𝑠𝑠𝑠
𝑠𝑠∈𝑆𝑆

≤�𝑄𝑄𝑟𝑟,𝑎𝑎𝑎𝑎𝑗𝑗𝑥𝑥𝑟𝑟,𝑎𝑎𝑎𝑎
𝑟𝑟∈𝑅𝑅

      ∀𝑗𝑗 ∈ 𝐹𝐹                   𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑦𝑦𝑠𝑠𝑠𝑠 ≤ 𝐷𝐷𝑠𝑠𝑠𝑠         ∀𝑠𝑠 ∈ 𝑆𝑆, 𝑗𝑗 ∈ 𝐹𝐹                               𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑥𝑥𝑟𝑟𝑟𝑟 ,𝑦𝑦𝑠𝑠𝑠𝑠 ≥ 0                                                          ∀𝑠𝑠 ∈ 𝑆𝑆, 𝑟𝑟 ∈ 𝑅𝑅, 𝑖𝑖 ∈ 𝐹𝐹, 𝑗𝑗 ∈ 𝐽𝐽 

(1) 

 
Sets  

𝐽𝐽 Set of 9 activities including agriculture, carbon sequestra-
tion, environmental planting, biodiversity, tree-based bio-
energy, wheat-based bioenergy, wheat-based biofuel, tree-
based biofuel and wheat-based biofuel and food represented 
as  {𝐴𝐴𝐴𝐴,𝐶𝐶𝐶𝐶,𝐸𝐸𝐸𝐸,𝐸𝐸𝐸𝐸𝐸𝐸,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝐵𝐵𝐵𝐵𝐵𝐵, BfGS, BfWP, BfFS}. 

𝐹𝐹 Set of 24 food commodities, 𝑎𝑎𝑎𝑎𝑗𝑗’s. 
𝑁𝑁 Non-food activities including Carbon, bioenergy, biofuel 

and environmental planting activities; In other words activi-
ties in  𝐽𝐽 other than Ag. 

𝑅𝑅 Set of regions.  
𝑆𝑆 Set of segments in discrete food demand function. 

Variables  
𝑥𝑥𝑟𝑟𝑟𝑟 Ratio allocated to activity 𝑗𝑗 ∈ 𝐽𝐽  at cell 𝑟𝑟 ∈ 𝑅𝑅 (0 ≤ 𝑥𝑥𝑟𝑟𝑟𝑟 ≤ 1), 
𝑦𝑦𝑠𝑠𝑠𝑠  Amount of commodity 𝑗𝑗 ∈ 𝐹𝐹   should be produced at the 

segment 𝑠𝑠 ∈ 𝑆𝑆 at price 𝑃𝑃𝑠𝑠𝑠𝑠  .  
Constants  

𝑄𝑄𝑠𝑠𝑠𝑠  Quantity of activity j that can be produced at cell r. 
𝛿𝛿𝑟𝑟𝑟𝑟 Annualized economic return of activity j at r. 
𝐷𝐷𝑠𝑠𝑠𝑠  Demand for commodity j at segment s, ∑ 𝐷𝐷𝑠𝑠𝑠𝑠 = 𝐷𝐷𝑗𝑗𝑠𝑠 . 
𝐶𝐶𝑟𝑟𝑟𝑟 Production cost of commodity j at region r. 
𝑃𝑃𝑠𝑠𝑠𝑠  Price of commodity j in segment s at demand level 𝑦𝑦𝑠𝑠𝑠𝑠 . 

Table 1. Components of the model 

 



3 Column Generation 

Column generation is a widely used technique to solve large scale linear and integer 
programming problems starting from pioneering publications [1] and [2]. The tech-
nique is frequently utilized when the number of variables is much larger that the 
number of constraints. In such large scale problems, the vast majority of the variables 
are zero at optimality, hence the fundamental concept underlying column generation 
is to solve a smaller problem instead of the original LP by considering a subset of 
columns (variables). The smaller problem is referred as restricted master problem 
(RMP), and new columns are added as required. The generation of new columns is 
accomplished by solving another problem called pricing sub-problem following each 
optimisation of the RMP. In the pricing stage of each iteration, the column(s) with 
minimum (maximum, depending on the objective) reduced cost(s) are added to the 
RMP. The optimality is achieved if it is impossible to add a new column to the RMP. 
For comprehensive surveys on column generation interested readers can consult [3] 
and [4].  

For a formal explanation of the column generation algorithm consider the linear 
programming (1) where the 𝒑𝒑𝑗𝑗  is the 𝑗𝑗𝑡𝑡ℎ column of the coefficient matrix, and the 
number of variables is extremely greater than the number of constraints. Assume that 
an initial basic feasible solution, 𝒙𝒙𝐵𝐵, is available, with associated basis matrix 𝐵𝐵, and 
cost coefficient 𝒄𝒄𝐵𝐵.  The simplex multipliers associated with this basis could be calcu-
lated as 𝜋𝜋 = 𝒄𝒄𝐵𝐵𝐵𝐵−1  and are always available at each iteration of the simplex algo-
rithm. To improve the basic feasible solution we “price out” all columns correspond-
ing to non-basic variables by forming their corresponding reduced cost 𝑐𝑐𝚥𝚥� = 𝑐𝑐𝑗𝑗 − 𝜋𝜋𝒑𝒑𝑗𝑗.   
If max 𝑐𝑐𝚥𝚥� = 𝑐𝑐𝑠𝑠� > 0, then considering  non-degeneracy, the current solution may be 
improved by introducing 𝑥𝑥𝑠𝑠 into the basis via a pivot transformation.   

4 Aggregation Techniques 

An important issue in obtaining an optimal solution of large scale optimisation prob-
lems is the trade-off between the level of details and the ease of solving the model in 
an acceptable amount of time. Aggregation-disaggregation techniques provide some 
methodologies for handling large optimisation problems by combining data, or using 
aggregated problems which are reduced in size. One main approach to construct an 
aggregated problem for a large scale LP is by partitioning the variables and forming 
corresponding columns by weighted average of columns in each partition. A feasible 
solution of the original problem is then achieved by applying a special transformation, 
called disaggregation, to an optimal solution of the aggregated problem. The aggrega-
tion error calculated as the difference between the original optimal objective value 
and the optimal value for the disaggregated solution guides the algorithm towards the 
optimality in an iterative scheme. In this section, a concise description of aggregation 
inspired from [5] is provided. 

Consider the original linear programming problem in the form of 



(𝐿𝐿𝐿𝐿) �
𝑧𝑧∗ = max 𝒄𝒄𝒄𝒄
𝑠𝑠. 𝑡𝑡.  𝐴𝐴𝒙𝒙 ≤ 𝒃𝒃

𝒙𝒙 ≥ 𝟎𝟎
(2) 

    A column aggregation is explained here, which means only variables in (2) are 
aggregated. Let 𝜎𝜎  be a partition of the column indices {1, … ,𝑛𝑛}  into a set of 
ters𝑆𝑆𝑘𝑘 , 𝑘𝑘 = 1, … ,𝐾𝐾, such that𝑆𝑆𝑘𝑘 ∩ 𝑆𝑆𝑝𝑝 = ∅, ⋃ 𝑆𝑆𝑘𝑘 = {1, … ,𝑛𝑛}𝐾𝐾

𝑘𝑘=1 . For the 𝑘𝑘𝑡𝑡ℎ  cluster, 
let its size as|𝑆𝑆𝑘𝑘| = 𝑛𝑛𝑘𝑘, so that  ∑ 𝑛𝑛𝑘𝑘 = 𝑛𝑛𝑘𝑘  . The matrix 𝐴𝐴𝑘𝑘  is defined to be the sub-
matrix of 𝐴𝐴 consisting of those columns whose indices are in 𝑆𝑆𝑘𝑘. Also, the subvectors 
𝒄𝒄𝑘𝑘   and 𝒙𝒙𝑘𝑘  are defined in the same way. Consider a nonnegative 𝑛𝑛𝑘𝑘 -vector 𝒈𝒈𝑘𝑘 =
(𝑔𝑔𝑗𝑗𝑘𝑘), satisfying the following normalizing condition 

𝒈𝒈 ∈ 𝐺𝐺 = {𝒈𝒈| � 𝑔𝑔𝑗𝑗𝑘𝑘 = 1,   𝑔𝑔𝑗𝑗𝑘𝑘 ≥ 0,   𝑘𝑘 = 1, … ,𝐾𝐾, 𝑗𝑗 ∈ 𝑆𝑆𝑘𝑘
𝑗𝑗∈𝑆𝑆𝑘𝑘

} 

and form 
𝐴𝐴𝑘𝑘���� = 𝐴𝐴𝑘𝑘𝒈𝒈𝑘𝑘 , 𝒄𝒄𝑘𝑘��� = 𝒄𝒄𝑘𝑘𝒈𝒈𝑘𝑘 , 𝑘𝑘 = 1, … ,𝐾𝐾 

such that 𝐴𝐴𝑘𝑘���� is a column 𝑚𝑚-vector equal to the linear combination of the columns 
𝒂𝒂𝑗𝑗, 𝑗𝑗 ∈ 𝑆𝑆𝑘𝑘 with the coefficients 𝑔𝑔𝑗𝑗𝑘𝑘  , and 𝒄𝒄𝑘𝑘���  is a scalar defined similarly. The vectors 
𝒈𝒈𝑘𝑘 are called weighting vectors or the weights of aggregation. 

Define the matrix 𝐴̅𝐴 = �𝐴𝐴1���, … ,𝐴𝐴𝐾𝐾����� = [𝑎𝑎𝚤𝚤𝚤𝚤����], and the vector 𝒄𝒄� = (𝒄𝒄1� , … , 𝒄𝒄𝑘𝑘���). Then 
the problem 

(𝐴𝐴𝐴𝐴𝐴𝐴) �
𝑧𝑧̅ = max 𝒄𝒄�𝑿𝑿
𝑠𝑠. 𝑡𝑡.  𝐴̅𝐴𝑿𝑿 ≤ 𝒃𝒃

𝑿𝑿 ≥ 𝟎𝟎
(3) 

defines the (column or variable) aggregated problem corresponding to (2). In (3), 𝑿𝑿 is 
a 𝐾𝐾-vector of aggregated variables. For a given original problem, then, an aggregated 
problem is determined by the pair (𝜎𝜎,𝒈𝒈). It is assumed that (𝜎𝜎,𝒈𝒈) has been chosen so 
that (3) is feasible. The optimal primal and dual solutions of the aggregated problem 
are denoted as (𝑿𝑿∗,𝜋𝜋∗). Interested readers could consult [6] for a general framework 
for aggregation and disaggregation technique and a survey on previous works. 

5 The New Approach 

Solving LP (1) takes a long time even using state of the art LP solver CPLEX as de-
picted in Fig. 2. For a particular instance of LP (1)  used to sketch the chart, finding 
an optimal solution of the LP takes maximum time of 1:08:34, minimum amount of 
0:21:34, and in average it takes 36 minutes per year for a complete run for a period of 
38 years. Considering that the model should be solved for several consecutive years, 
at least for 38 years in this project, obtaining the optimal land allocation policy for a 
long planning horizon becomes quite time consuming. In addition, all the economic 
data, demand and supply figures along with energy price paths are acquired based on 
only one scenario out of thousands of scenarios. As a consequence, considering more 



than one scenario simultaneously for the sake of a stochastic model will result in an 
even larger problem and will require longer computational time. Therefore, for more 
comprehensive investigations on optimal land allocations an efficient solution meth-
odology is necessary to solve the large LP problem in a reasonably shorter amount of 
CPU time. 

 
Fig. 2. CPU time for solving the LP for each year from 2013 to 2050 

There are some interesting properties associated with agricultural land allocation 
that are utilized in our aggregation process. For example, it is quite plausible that 
nearby land parcels would be allocated to similar activities. The reason for this as-
sumption is that geographically close areas have similar economical and soil proper-
ties, and the most profitable land allocation should be almost the same considering 
accessibility, water resources and costs. Therefore, instead of considering land parcels 
(cells) of size one square kilometer, we aggregate them into larger chunks of land 
which are called clusters. Each cluster will act as a decision making unit in the opti-
misation model, and its economic data are obtained by summing over the data related 
to all  active cells in that cluster. 

We start by a lower resolution, say 𝑅𝑅0, and divide Australia into a number of large 
parcels of land. Consider the set of clusters 𝐶𝐶 = {𝐶𝐶𝑘𝑘} , where 𝐶𝐶𝑘𝑘𝑖𝑖 ∩ 𝐶𝐶𝑘𝑘𝑗𝑗 = ∅  for 
𝑘𝑘𝑖𝑖 ≠ 𝑘𝑘𝑗𝑗, and ⋃ 𝐶𝐶𝑘𝑘 = 𝑅𝑅𝑘𝑘 . Each 𝐶𝐶𝑘𝑘 is a nonempty subset of 𝑅𝑅. For each cluster, all the 
economic data including profits and costs of all nine activities and all 24 food prod-
ucts, in addition to other related quantities and capacities are calculated based on re-
lated data of active cells in that cluster. Note that in the aggregated LP model the 
number of land-use constraints is less than in the original problem. The reason is that 
in the original model there is one land-use constraint for each cell. However, in the 
aggregated model we are dealing with clusters of cells, and there is one land-use con-
straint for each cluster. The number of other constraints remains the same as the orig-
inal problem. An aggregated LP is constructed as explained in section 4 with far few-



er variables and constraints, and the optimal primal and dual solutions are obtained by 
solving the problem using CPLEX.   

The plan is to improve the aggregated models consecutively to become as close as 
possible to the original LP with highest resolution but without solving a large scale 
problem. Towards this aim, one possible way is to subdivide large clusters and con-
struct smaller ones, and introduce new clusters into the model as new columns. We 
incorporated reduced costs to separate cells with positive amount inside a cluster from 
the rest of cells in that cluster. Reduced costs are available at the end of optimisation 
process. However, these reduced costs correspond to the clusters, and we need to 
extend this concept to cells inside each cluster.  

 If, for example, 𝑟𝑟𝑘𝑘,𝑎𝑎𝑎𝑎 is the reduced cost of the variable that corresponds to agri-
cultural activity in the cluster k, we need to distribute it between the agricultural activ-
ity of all cells inside the cluster k so that the total sum is equal to 𝑟𝑟𝑘𝑘,𝑎𝑎𝑎𝑎. In other 
words, 

� 𝑟𝑟𝑘𝑘𝑐𝑐,𝑎𝑎𝑎𝑎
𝑐𝑐∈𝐶𝐶𝑘𝑘

= 𝑟𝑟𝑘𝑘,𝑎𝑎𝑎𝑎. 

In this manner, all reduced costs corresponding to all variables related to all activi-
ties for each cell in cluster k are calculated. However, before the calculation of re-
duced costs, we introduce a new concept of semi-reduced costs which is part of the 
final reduced costs and will be formally defined in the next paragraph. For each cell 
all semi-reduced costs are calculated for all activities, and the maximum of them is 
recorded. This quantity represents, to some extent, the most profitable activity for a 
particular cell.  This quantity is also used to distribute the reduced cost of the cluster 
between all cells proportional to the size of its most profitable activity. The reduced 
costs are calculated based on semi-reduced costs, and by means of the sign of final 
reduced costs  we can partition each cluster into two sub-clusters containing cells with 
positive and non-positive reduced costs. The economical quantities for newly con-
structed clusters are calculated using the information of cells belonging to it, and re-
lated information for shrunk clusters are modified considering cells remaining in 
those clusters. The changes in the old cluster transferred into the LP, and a new col-
umn is introduced for each new cluster.   

Mathematically, in iteration t, after solving 𝐿𝐿𝐿𝐿𝑡𝑡 , we obtain optimal primal solution 
𝑥𝑥𝑡𝑡∗  and optimal dual solution  𝜋𝜋𝑡𝑡∗. At this stage, it is easy to calculate the reduced cost 
of each activity j of each cluster k using   𝑟𝑟𝑘𝑘𝑗𝑗 = 𝑐𝑐𝑘𝑘𝑗𝑗 − 𝜋𝜋𝑡𝑡∗𝒑𝒑𝑘𝑘𝑗𝑗 .  To calculate reduced 
costs of each cell, perhaps the easiest way is to distribute 𝑟𝑟𝑘𝑘𝑗𝑗 uniformly between all 
cells included in cluster k. However, this approach treats all the cells with equity, and 
there is not a distinction based on profitability. Another, smarter approach is to dis-
tribute 𝑟𝑟𝑘𝑘𝑗𝑗 in a way that supports cells with higher profit potentials. In order to calcu-
late reduced cost of each cell in each cluster, first we calculate semi-reduced costs,  
𝑟𝑟𝑐𝑐𝚥𝚥�, for the problem in this paper. The semi-reduced cost is the reduced cost without 
the portion related to the optimal dual value of the corresponding land-use constraint. 
In other words, for cell c in cluster k,   𝑟𝑟𝑐𝑐𝑗𝑗 = 𝑟𝑟𝑐𝑐𝚥𝚥� − 𝛼𝛼𝑐𝑐𝜋𝜋𝑘𝑘𝑙𝑙 . For a cell c in cluster k, if 
max𝑗𝑗{𝑟𝑟𝑐𝑐𝚥𝚥�} is positive for activity j, the quantity 𝛼𝛼𝑐𝑐 is defined as 



𝛼𝛼𝑐𝑐 = max
𝑗𝑗

{0,
max
𝑗𝑗

{𝑟𝑟𝑐𝑐𝚥𝚥�}

∑ max
𝑗𝑗

{𝑟𝑟𝑐𝑐𝚥𝚥�}𝑐𝑐
} 

After calculation of reduced costs of each cell in each cluster, the cluster is divided 
into two sub-clusters. One sub-cluster contains all the cells with positive reduced 
costs, and the other one contains all the cells with non-positive reduced costs. The 
economic data of each cluster is updated and new clusters are added into the previous 
aggregated model as new columns. The model is solved again, and the process of 
dividing clusters is continued until further bifurcation is impossible. 

 
Algorithm 1 Aggregation and Column Generation 
1: Make clusters with a low resolution 𝑅𝑅0, and calculate economic attributes of 
each cluster. 
2: Build the aggregated LP, and get optimal primal and dual solutions. 
3: Calculate reduced costs of each activity for each cell in each cluster, and subdi-
vide each cluster into two clusters based on the sign of reduced costs of containing 
cells. 
4: If no new clusters created (no cells with negative reduced cost) then the solution 
is optimal. Stop. 
5: Calculate economic attributes of new clusters, and update corresponding data in 
old clusters. 
6: Improve the aggregated LP and include new columns for each recently created 
cluster, and get the optimal primal and dual solutions. 
7: If a stopping criterion is not met, go to Step 3. 

6 Computational Results 

In this section we present some of the numerical results we obtained through working 
on application of our algorithm to solve the large scale linear programming problem 
originated from land use allocation. As seen in Fig. 2 solving a LP problem for each 
year takes a long amount of time averaging 36 minutes. For a fare comparison, all the 
numerical experiments are carried out on the same computer. It is worthwhile to men-
tion that the optimisation technique discussed in this paper and all linear program-
ming problems were coded in Python 2.7 language and executed on a computer run-
ning a dual core 64-bit Intel(R) Xeon(R) processor at 2.79 GHz with 64 GB RAM. 
The linear programming problems were solved using IBM CPLEX 12.5 solver. 

Table 2 summarizes the output of solving the large scale optimisation problem 
starting with different resolutions. For our algorithm the stopping criterion is met if 
we are unable to subdivide the existing clusters further into new, smaller clusters. 
Resolution 1 is the finest resolution and creates the largest problem. Also, the resolu-
tion level of 7569 divides Australia into 417 clusters at the beginning of the computa-
tion, and creates the smallest possible LP problem in our experiments.  



 We recorded starting number of clusters, 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, final number of clusters, 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒, the 
number of iterations to obtain the final optimal value, and the percentage difference 
between our optimal value with the optimal value of the original problem for each 
resolution. The original problem in its finest resolution of 1 has 812,383 clusters, due 
to considering each cell as a cluster. The algorithm could find the optimal solution in 
one iteration, as it is impossible to break down clusters. We also record the amount of 
time taken for CPLEX to find the optimal solution for each resolution in minutes. 
This column provides us a good measure to compare time performance of our ap-
proach. We did not consider the time necessary for the extraction and calculation of 
parameters in this column, and in the execution time provided in section 5. 

 

resolution iterations 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 Difference 
(%) 

t (min) 

1 1 812383 812383 0.0 53.598 
9 4 138329 138368 0.16 25.930 
81 5 20402 20482 0.27 0.694 

784 5 2784 2899 0.27 0.020 
1600 7 1608 1742 0.26 0.016 
7569 7 417 484 0.49 0.009 

Table 2. Results on running the algorithm of different resolutions 

 
The data in the table demonstrates some interesting facts about our approach and 

its capability to deal with large scale linear programming problems. Instead of solving 
the largest possible problem, the algorithm tries to solve an aggregated problem which 
is a considerably smaller problem. After each iteration, it tries to subdivide clusters 
based on their reduced costs.  As an example, starting with resolution 7,569 which 
divides Australia into 417 clusters at the beginning, only in seven iterations and with 
addition of 67 clusters, the algorithm could reach to the optimal objective function 
with only 0.49 percent deviation in a small portion of a minute. Comparing this out-
come with solving the original problem which needs 53 minutes shows how fast the 
new algorithm could find the optimal solution.  Furthermore, Fig. 3 represents the 
convergence rate to the optimal solution considering each resolution factor.  



 
Fig. 3. Convergence results for each resolution 

It is interesting to notice that choosing a lower resolution of 1,600 causes to start 
with a worse bound than 7,569. However, as shown in the Fig 3 it gets better quick, 
meaning that less clusters do not necessarily mean worse bounds, and also the smaller 
clusters are not necessarily all subsets of the larger clusters. 

Combining the information presented in Table 2 and Fig 3 it is apparent that there 
is a smarter approach of solving the large scale LP in a noticeably shorter amount of 
time by choosing a lower resolution at the beginning and gradually refining the reso-
lution of clusters in the sequel iterations. With this approach, it is meaningful to build 
a stochastic optimisation model of the land allocation planning problem, and obtain 
sensible outcomes in reasonable amount of time and effort.  

7 Conclusion 

In this paper we presented a new efficient algorithm to solve large scale linear pro-
gramming problem originated from optimal land allocation planning. The algorithm 
combines techniques of column generation, aggregation and disaggregation particu-
larly suitable for this problem. We approximated the large problem with a small LP 
problem by considering huge parcels of land as a cluster, and then tried to improve 
the approximation iteratively by subdividing clusters when it is possible. The use of 
our custom aggregation and disaggregation method allows us to easily solve land use 
models at a much higher resolution than would otherwise be possible, thus improving 
the fidelity of the models. In addition, the huge reduction in computational time lays 
the ground for more complex models. For example an extension to stochastic optimi-
sation incorporating multiple scenarios in a single model is being considered. 
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