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Abstract. Point time series are a key data-type for the description of real or 
modelled environmental phenomena. Delivering this data in useful ways can be 
challenging when the data volume is large, when computational work (such as 
aggregation, subsetting, or re-sampling) needs to be performed, or when com-
plex metadata is needed to place data in context for understanding. Some as-
pects of these problems are especially relevant to the environmental domain: 
large sensor networks measuring continuous environmental phenomena sam-
pling frequently over long periods of time generate very large datasets, and rich 
metadata is often required to understand the context of observations. Neverthe-
less, timeseries data, and most of these challenges, are prevalent beyond the en-
vironmental domain, for example in financial and industrial domains. 

A review of recent technologies illustrates an emerging trend toward high 
performance, lightweight, databases specialized for time series data. These da-
tabases tend to have non-existent or minimalistic formal metadata capacities. In 
contrast, the environmental domain boasts standards such as the Sensor Obser-
vation Service (SOS) that have mature and comprehensive metadata models but 
existing implementations have had problems with slow performance.  

In this paper we describe our hybrid approach to achieve efficient delivery 
of large time series datasets with complex metadata. We use three subsystems 
within a single system-of-systems: a proxy (Python), an efficient time series da-
tabase (InfluxDB) and a SOS implementation (52 North SOS). Together these 
present a regular SOS interface. The proxy processes standard SOS queries and 
issues them to the either 52 North SOS or to InfluxDB for processing. Respons-
es are returned directly from 52 North SOS or indirectly from InfluxDB via Py-
thon proxy where they are processed into WaterML. This enables the scalability 
and performance advantages of the time series database to be married with the 
sophisticated metadata handling of SOS. Testing indicates that a recent version 
of 52 North SOS configured with a Postgres/PostGIS database performs well 
but an implementation incorporating InfluxDB and 52 North SOS in a hybrid 
architecture performs approximately 12 times faster. 
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1 Time Series Data, Lots is Hard to Manage 

Time series data is frequently used to represent environmental properties and process-
es and is fundamental in environmental science. Hey and Trefethen[1], describe and 
predict a scientific data deluge. Managing a deluge of time series data so that it can be 
discovered, understood, accessed and used effectively, is an ongoing challenge.  

A simple time series of numerical values requires context to be useful. For example 
observational time series often include a unit of measure, and some description of an 
observed feature. Metadata provides a richer description and context and allows more 
complex queries to filter or group data. Furthermore standards for metadata mean data 
can be more readily exchanged because compatible systems and data sets can be iden-
tified and interfaced.  

Very large amounts of data can be collected by sensors or generated computation-
ally. Metadata can further increase the size and complexity of a dataset. Better analy-
sis and use can be made of large time series data that are richly described. Such de-
scriptions are more computationally expensive to process, require more storage, and 
consume more network bandwidth.  

To address these challenges we review and compare some technologies for storing, 
delivering and managing time series data. We introduce a hybrid approach that merg-
es a lightweight time series database with a standardized metadata-rich service for 
delivering sensor observations. This approach provides good performance for a both 
large dataset with rich metadata. In testing this approach performs faster than a 
standalone combined data and metadata service. 

2 Sensor Observation Service for Management 

Standards and models for interacting with and describing observations help address 
the problem of management, and effective use, of time series data.  

The open geospatial consortium sensor observation service (SOS)[2] describes a 
standard way of managing and querying observation data. Services compliant to this 
standard are capable of returning stored observations and contextual information 
about related real world features, sensors, and observational procedures. SOS compli-
ant services can provide observation records that conform to the Open Geospatial 
Consortium’s (OGC) Observations and Measurements standard (O&M)[3] . O&M 
provides a flexible observations model including information about an observed fea-
ture, property, and the procedure associated with making an observation. SOS imple-
mentations also provide for complex descriptions of sensors, for example, using Sen-
sorML[4]. 

SensorCloud[5] is an architecture and associated application that performs func-
tions similar to those of described by the SOS standard. SensorCloud specifies a ser-
vice for delivering sensor data and metadata through REST like URL requests. Sen-
sorCloud encodes observations and related data using a JSON format. Sensor metada-
ta is closely modelled on the StarFL[6] format. SensorCloud services can provide 
information on networks of sensors, sensor platforms, sensors, phenomena reported 
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by sensors, sensor calibrations and can deliver observations produced by a sensor. 
The SensorCloud services also provide create and insert operations for networks, 
sensor, platform, and observations data.  

Both SensorCloud and OGC SOS standards describe ways of structuring and de-
livering time series data and related metadata in the scientific domain.  

3 Other Databases 

Beyond the scientific domain there are many databases and services for the storage 
and use of time series data. There is a continuum between specialised time series da-
tabases and more general purpose databases. Numerous specialized time series data-
bases exist and many are in active development. Development of time series data-
bases is driven by a broad need to access observations but not always in a scientific 
context. For example OpenTSDB[7], while somewhat general purpose, is typically 
used to monitor various I.T system metrics. Similarly Cube[8] is generic but was de-
veloped for use cases related to monitoring customer data, website, and system per-
formance. 

Time Series databases readily integrate with other systems and often provide web 
service based interfaces. REST interfaces and JSON provide rapid integration with 
JavaScript frameworks and thus ease integration with web based visualisation tools. 
KariosDB[9] is a rewrite of, and intended to be an improvement on, OpenTSDB. It 
provides a REST interface alongside other interfaces including a GUI and a telnet 
interface. Cube is built on MongoDB[10] and provides a REST like interface. In-
fluxDB[11] provides a REST interface.  

More general purpose databases are also used for time series storage. MongoDB 
provides the back end database for SensorCloud as well as Cube. PostgreSQL[12] is 
one of the possible back-ends for 52 North SOS[13]. Cassandra[14] can be readily 
adapted to store time series data. Cois[15] describes a hybrid approach using 
Redis[16] and PostgreSQL for an environmental database prioritizing real time event 
detection. InfluxDB can use a variety of embedded backend databases.  

Databases may be optimized for write versus read operations, can be highly nor-
malised and efficient, or may enable rapid prototyping and querying of unstructured 
or loosely structured data.  

4 Standards Support and Interoperability 

SensorCloud and OGC SOS-compliant systems provide rich metadata models. In 
contrast most other time series databases provide minimal metadata and none provid-
ed any time series-specific standards conformance.  

Non-relational databases, like MongoDB, provide storage of structured documents 
thus support arbitrary metadata schemas. Relational databases like PostgreSQL sup-
port table structures that may accommodate arbitrary metadata schemas. Neither 
MongoDB nor PostgreSQL provide a built in metadata model for time series data. 
Specialised time series database typically provide limited and inflexible metadata 
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capabilities that do not conform to recognised standards. OpenTSDB provides some 
very basic support through unique identifiers[17]. KariosDB annotates values with 
tags and a name[18]. Cube is much more flexible and supports arbitrary structured 
JSON data at each data point. In InfluxDB, a value is effectively a row consisting of 
multiple columns and thus simple metadata structures can be accommodated. 

5 Performance Considerations for Rich Metadata Systems 

Standards for interoperability and metadata are particularly important in the scientific 
domain. Standards provide a basis for a scientific infrastructure where data can be 
discovered, compared, reused, and through which experiments can be replicated 
[19][20]. Thus time series databases and services that conform to comprehensive 
metadata and encoding standard have an advantage over more general database sys-
tems and time series specific databases. Performance is always an important consider-
ation: the ability to rapidly query, analyze and retrieve time series data is a require-
ment for a number of time series use cases. For example, exploratory interactive visu-
alization of time series data is possible if data points can be quickly retrieved, pro-
cessed and displayed. Similarly fast responses ensure that access to time series data is 
not a bottleneck in analysis, or when used as an input to a model. 

An ongoing concern with the SOS standard is the performance of implementations. 
The well-known 52 North SOS implementation provides conformance to the SOS 2.0 
standard and includes a number of extension methods and formats. Recent releases 
have addressed performance issues however older 52 North SOS implementations 
have suffered from numerous performance issues. Results[21] from performance tests 
for various older versions of 52 North SOS indicate that under a load of 10 concurrent 
requests every 5 seconds, SOS performs quite slowly. For example a GetObservation 
request, the average response time for a request for a yearly data set having approxi-
mately 500,000 records was 191 seconds. Similar performance issues with scaling 
SOS to millions of records for thousands of sensors have been discussed in the SOS 
community[22]. 

Performance has been greatly improved in 52 North SOS version 4.1[13] however 
with dataset sizes likely to increase more than linearly, revolutionary performance 
change will be needed in the longer term.  Large performance gains may be possible 
through alternative approaches to data storage, that behind a SOS interface, leverage 
dedicated time series databases.  

6 An Alternative Architecture 

A good candidate for comparison with 52 North SOS’s large data capacity is Influx 
DB. InfluxDB is a “Timeseries, events and metrics” database[23]. InfluxDB is easy to 
deploy and is packaged with an embedded backend database. Unlike 52 North SOS, 
InfluxDB lacks any native metadata model and provides no standards-compliant inter-
face.  

http://opentsdb.net/docs/build/html/user_guide/metadata.html
https://code.google.com/p/kairosdb/wiki/PushingData
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We developed a hybrid data/metadata architecture, combining InfluxDB with 52 
North SOS. We tested an implementation of this architecture to determine whether it 
provide better performance than a standalone 52 North SOS instance.  

Similar Hybrid architectures have been previously proposed. Cox[24][Fig 1.]  de-
scribes scenarios in which SOS services consume data from other OGC standard Web 
Feature Services and Web Coverage Services. Bröring et. al. [25] describe patterns for 
bridging sensors and sensor delivery services in hybrid like architectures. In particular 
Bröring describes using Twitter as a middleware layer to store sensor metadata.  

 

 
Fig. 1. Hybrid OGC architectures (adapted from Cox[24]) 

A prototype SOS service has also been developed that, through a heterogeneous 
systems architecture, provided a partially SOS-compliant service using a Web Feature 
Service (WFS) back-end[26]. 
Our hybrid architecture aims to meet multiple use cases. It provides a rich SOS im-
plementation for standards compliant interoperability to enable sophisticated queries. 
For a subset of queries it provides SOS-compliant responses faster than 52 North SOS 
configured with a Postgres/PostGIS backend database. The system should enable 
exploration of data across the temporal domain with a minimum of delay to facilitate 
use cases such as real time interactive visualisation. 

Figure 2 presents a high-level view of the hybrid architecture: SOS requests and 
responses are handled via a hybrid internet proxy. The hybrid proxy forwards certain 
requests to InfluxDB while others not able to be handled by InfluxDB are redirected 
to 52 North SOS.  

A test implementation of the hybrid proxy is capable of processing and forwarding 
only a small subset of SOS queries to InfluxDB: SOS 2.0 requests provided as key 
value pairs (as URL arguments) where the response format is specified as WaterML2. 
This subset includes the main data delivery request GetObservation when WaterML2 

https://www.seegrid.csiro.au/wiki/SISS4BoM/ThinSOS


format is used. The hybrid proxy can process queries that vary by real world feature 
or property of interest for a feature and can handle a temporal filter that specify results 
between varying start and end times.  

 
 

 

Fig. 2. High-level architecture of a hybrid SOS implementation  

 
SOS queries identified for forwarding to InfluxDB are analysed and used to con-

struct an equivalent InfluxDB query. InfluxDB provides simple responses back to the 
proxy in JavaScript Object Notation (JSON) form. The hybrid proxy translates the 
JSON response into WaterML (using lookup tables for variables like unit of measure) 
and returns it to the requester.  

We compared the performance of a realistic 52 North SOS instance as a standalone 
service to a test implementation the hybrid proxy architecture incorporating the same 
52 North SOS instance alongside InfluxDB.  

The 52 North SOS version tested was 4.1 and the particular instance contained ap-
proximately 14 million weather station records stored in a backend a Post-
gres/PostGIS. Two configurations were tested: one in which a query was sent to a 
standalone 52 North SOS instance and another in which the query was sent to a hy-
brid proxy configuration combining 52 North SOS and InfluxDB. In the hybrid proxy 
configuration the 52 North SOS dataset was replicated into a parallel InfluxDB in-
stance (version 0.7.3).  

In both configurations the test used a SOS-compliant query specified as a URL 
with key value arguments. The test query varied between the standalone SOS instance 
and hybrid proxy implementation by the system specifying URL part only with key 
value pair arguments and format remaining the same. The test machines varied in 
specification and no attempt was made to compensate for hardware differences or 
network latencies. However our estimates are that the server 52 North SOS virtual 
machine was significantly more powerful than the Hybrid test virtual machine and the 
InfluxDB virtual machine. Therefore we expect that performance results are biased in 
favor of the standalone 52 North SOS instance.  



The test query in both configurations retrieved approximately 52,230 hourly aver-
age air temperature records for a weather station between 19-11-2010 at midnight and 
13-11-2013 at 13:00.  

In both test configurations the request was sent using the cURL application. The 
cURL “w” parameter and a template file were used to generate response timing in-
formation. Server processing time was considered to be the time between 
time_pretransfer and time_starttransfer. This approach minimised noise related to 
network overheads and time taken to transport response data. Responses are listed in 
Table 1 below. 
 

Run Hybrid  52 North 
SOS 

First 0.45s 8.485s 

Run 1 0.377s 4.891s 

Run 2 0.31s 4.594s 

Run 3 0.336s 4.282s 

Run Average  
(excluding first result) 

0.368s 4.589s 

Table 1. Response times for 52 North  standalone and 52 North Influx DB hybrid 

 
The first response was considered an outlier and was significantly slower than sub-

sequent queries for both systems. It was assumed this was because parts of the data-
bases are cached into memory after the first response. In our test the hybrid approach 
using InfluxDB generated responses 12 times faster on average than 52 North SOS. 
Our results are indicative of a significant performance benefit through the hybrid 
approach nevertheless further study could provide more certainty and help remove 
confounding factors such as differing machine and network performance. 

In addition to high performance a hybrid approach offers other advantages. It 
maintains rich metadata capabilities. The hybrid proxy forwards SOS queries that 
can’t be handled by InfluxDB to 52 North SOS. In our example InfluxDB replicates 
time series data stored in SOS but doesn’t replicate any metadata.  For example, In-
fluxDB cannot provide a response to a SOS DescribeSensor request because it doesn’t 
store any information about the sensors used to produce a time series. The hybrid 
proxy can identify queries that can’t be handled by InfluxDB and redirect these to the 
52 North SOS instance. Thus the hybrid proxy handles a subset of queries quickly via 
InfluxDB but can also respond to the broader set of possible SOS requests by redirect-
ing these to 52 North SOS. This approach improves performance while maintaining a 
rich metadata model. Additionally, a more general approach should be possible inter-
facing to other data stores. These kinds of systems could leverage existing data ser-



vices and adapt those to return SOS responses. This improves the reuse of data and 
reduces the need to duplicate data across multiple systems. In turn this “future proofs” 
SOS installations against reimplementation if and when data loads require new back-
end database implementations. 

7 Conclusion  

Time series data is prolific. There are many systems to help manage, store and deliver 
time series data. In the scientific domain some systems also provide metadata capabil-
ities that provide more context for understanding and analysing data. Beyond the sci-
entific domain, many other time series databases and services are being developed. 
These typically have poor metadata capabilities but may be more scalable and provide 
faster performance. Near real time visualisation and other use cases requiring rapid 
retrieval and exploration of data would benefit from a system that is standards based, 
provides rich metadata and performs fast. The 52 North SOS implementation provides 
a standards based service for management and storage of time series data along with 
extensive metadata capabilities. Newer versions of 52 North SOS have improved 
performance. To investigate whether further performance gains were possible we 
developed a hybrid architecture that combined 52 North SOS with InfluxDB, a light-
weight dedicated time series database. We compared the performance of a standalone 
52 North SOS instance and a prototype implementation of the hybrid architecture that 
coupled the 52 North SOS instance with InfluxDB. Under our tests performance was 
approximately 12 times faster in the hybrid system. There are performance benefits 
using a hybrid architecture compared to a standalone 52 North SOS instance other 
advantages maybe that loose coupling between components readily allows integration 
of new technologies and reuse of data in existing deployments.  
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