
HAL Id: hal-01328577
https://inria.hal.science/hal-01328577

Submitted on 8 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Best of Both Worlds Approach to Complex, Efficient,
Time Series Data Delivery

Benjamin Leighton, Simon D. Cox, Nicholas J. Car, Matthew P. Stenson,
Jamie Vleeshouwer, Jonathan Hodge

To cite this version:
Benjamin Leighton, Simon D. Cox, Nicholas J. Car, Matthew P. Stenson, Jamie Vleeshouwer, et al..
A Best of Both Worlds Approach to Complex, Efficient, Time Series Data Delivery. 11th International
Symposium on Environmental Software Systems (ISESS), Mar 2015, Melbourne, Australia. pp.371-
379, �10.1007/978-3-319-15994-2_37�. �hal-01328577�

https://inria.hal.science/hal-01328577
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Best of Both Worlds Approach to Complex, Efficient,
Time Series Data Delivery

Benjamin Leighton1, Simon Cox1, Nicholas J. Car1, Matthew P. Stenson1, Jamie
Vleeshouwer1 and Jonathan Hodge2

1Land & Water Flagship: CSIRO, Melbourne Vic and Brisbane Qld Australia.
Ben.Leighton@csiro.au

 2Oceans and Atmosphere Flagship: CSIRO, Brisbane Qld Australia

Abstract. Point time series are a key data-type for the description of real or
modelled environmental phenomena. Delivering this data in useful ways can be
challenging when the data volume is large, when computational work (such as
aggregation, subsetting, or re-sampling) needs to be performed, or when com-
plex metadata is needed to place data in context for understanding. Some as-
pects of these problems are especially relevant to the environmental domain:
large sensor networks measuring continuous environmental phenomena sam-
pling frequently over long periods of time generate very large datasets, and rich
metadata is often required to understand the context of observations. Neverthe-
less, timeseries data, and most of these challenges, are prevalent beyond the en-
vironmental domain, for example in financial and industrial domains.

A review of recent technologies illustrates an emerging trend toward high
performance, lightweight, databases specialized for time series data. These da-
tabases tend to have non-existent or minimalistic formal metadata capacities. In
contrast, the environmental domain boasts standards such as the Sensor Obser-
vation Service (SOS) that have mature and comprehensive metadata models but
existing implementations have had problems with slow performance.

In this paper we describe our hybrid approach to achieve efficient delivery
of large time series datasets with complex metadata. We use three subsystems
within a single system-of-systems: a proxy (Python), an efficient time series da-
tabase (InfluxDB) and a SOS implementation (52 North SOS). Together these
present a regular SOS interface. The proxy processes standard SOS queries and
issues them to the either 52 North SOS or to InfluxDB for processing. Respons-
es are returned directly from 52 North SOS or indirectly from InfluxDB via Py-
thon proxy where they are processed into WaterML. This enables the scalability
and performance advantages of the time series database to be married with the
sophisticated metadata handling of SOS. Testing indicates that a recent version
of 52 North SOS configured with a Postgres/PostGIS database performs well
but an implementation incorporating InfluxDB and 52 North SOS in a hybrid
architecture performs approximately 12 times faster.

Keywords: time, series, timeseries, SOS, OGC, sensor, database

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

1 Time Series Data, Lots is Hard to Manage

Time series data is frequently used to represent environmental properties and process-
es and is fundamental in environmental science. Hey and Trefethen[1], describe and
predict a scientific data deluge. Managing a deluge of time series data so that it can be
discovered, understood, accessed and used effectively, is an ongoing challenge.

A simple time series of numerical values requires context to be useful. For example
observational time series often include a unit of measure, and some description of an
observed feature. Metadata provides a richer description and context and allows more
complex queries to filter or group data. Furthermore standards for metadata mean data
can be more readily exchanged because compatible systems and data sets can be iden-
tified and interfaced.

Very large amounts of data can be collected by sensors or generated computation-
ally. Metadata can further increase the size and complexity of a dataset. Better analy-
sis and use can be made of large time series data that are richly described. Such de-
scriptions are more computationally expensive to process, require more storage, and
consume more network bandwidth.

To address these challenges we review and compare some technologies for storing,
delivering and managing time series data. We introduce a hybrid approach that merg-
es a lightweight time series database with a standardized metadata-rich service for
delivering sensor observations. This approach provides good performance for a both
large dataset with rich metadata. In testing this approach performs faster than a
standalone combined data and metadata service.

2 Sensor Observation Service for Management

Standards and models for interacting with and describing observations help address
the problem of management, and effective use, of time series data.

The open geospatial consortium sensor observation service (SOS)[2] describes a
standard way of managing and querying observation data. Services compliant to this
standard are capable of returning stored observations and contextual information
about related real world features, sensors, and observational procedures. SOS compli-
ant services can provide observation records that conform to the Open Geospatial
Consortium’s (OGC) Observations and Measurements standard (O&M)[3] . O&M
provides a flexible observations model including information about an observed fea-
ture, property, and the procedure associated with making an observation. SOS imple-
mentations also provide for complex descriptions of sensors, for example, using Sen-
sorML[4].

SensorCloud[5] is an architecture and associated application that performs func-
tions similar to those of described by the SOS standard. SensorCloud specifies a ser-
vice for delivering sensor data and metadata through REST like URL requests. Sen-
sorCloud encodes observations and related data using a JSON format. Sensor metada-
ta is closely modelled on the StarFL[6] format. SensorCloud services can provide
information on networks of sensors, sensor platforms, sensors, phenomena reported

http://www.opengeospatial.org/standards/sensorml
http://www.opengeospatial.org/standards/sensorml
https://wiki.csiro.au/display/sensorcloud/SensorCloud+RESTful+API

by sensors, sensor calibrations and can deliver observations produced by a sensor.
The SensorCloud services also provide create and insert operations for networks,
sensor, platform, and observations data.

Both SensorCloud and OGC SOS standards describe ways of structuring and de-
livering time series data and related metadata in the scientific domain.

3 Other Databases

Beyond the scientific domain there are many databases and services for the storage
and use of time series data. There is a continuum between specialised time series da-
tabases and more general purpose databases. Numerous specialized time series data-
bases exist and many are in active development. Development of time series data-
bases is driven by a broad need to access observations but not always in a scientific
context. For example OpenTSDB[7], while somewhat general purpose, is typically
used to monitor various I.T system metrics. Similarly Cube[8] is generic but was de-
veloped for use cases related to monitoring customer data, website, and system per-
formance.

Time Series databases readily integrate with other systems and often provide web
service based interfaces. REST interfaces and JSON provide rapid integration with
JavaScript frameworks and thus ease integration with web based visualisation tools.
KariosDB[9] is a rewrite of, and intended to be an improvement on, OpenTSDB. It
provides a REST interface alongside other interfaces including a GUI and a telnet
interface. Cube is built on MongoDB[10] and provides a REST like interface. In-
fluxDB[11] provides a REST interface.

More general purpose databases are also used for time series storage. MongoDB
provides the back end database for SensorCloud as well as Cube. PostgreSQL[12] is
one of the possible back-ends for 52 North SOS[13]. Cassandra[14] can be readily
adapted to store time series data. Cois[15] describes a hybrid approach using
Redis[16] and PostgreSQL for an environmental database prioritizing real time event
detection. InfluxDB can use a variety of embedded backend databases.

Databases may be optimized for write versus read operations, can be highly nor-
malised and efficient, or may enable rapid prototyping and querying of unstructured
or loosely structured data.

4 Standards Support and Interoperability

SensorCloud and OGC SOS-compliant systems provide rich metadata models. In
contrast most other time series databases provide minimal metadata and none provid-
ed any time series-specific standards conformance.

Non-relational databases, like MongoDB, provide storage of structured documents
thus support arbitrary metadata schemas. Relational databases like PostgreSQL sup-
port table structures that may accommodate arbitrary metadata schemas. Neither
MongoDB nor PostgreSQL provide a built in metadata model for time series data.
Specialised time series database typically provide limited and inflexible metadata

http://opentsdb.net/
http://square.github.io/cube/
https://code.google.com/p/kairosdb/
https://code.google.com/p/kairosdb/
https://code.google.com/p/kairosdb/
http://square.github.io/cube/
http://www.mongodb.org/
http://www.mongodb.org/
http://square.github.io/cube/
http://square.github.io/cube/
http://www.postgresql.org/
http://52north.org/communities/sensorweb/sos/index.html
http://cassandra.apache.org/
http://planetcassandra.org/blog/post/getting-started-with-time-series-data-modeling
http://strata.oreilly.com/2013/03/large-scale-data-collection-and-real-time-analytics-using-redis.html
http://redis.io/
http://redis.io/
http://www.postgresql.org/
https://en.wikipedia.org/wiki/PostgreSQL

capabilities that do not conform to recognised standards. OpenTSDB provides some
very basic support through unique identifiers[17]. KariosDB annotates values with
tags and a name[18]. Cube is much more flexible and supports arbitrary structured
JSON data at each data point. In InfluxDB, a value is effectively a row consisting of
multiple columns and thus simple metadata structures can be accommodated.

5 Performance Considerations for Rich Metadata Systems

Standards for interoperability and metadata are particularly important in the scientific
domain. Standards provide a basis for a scientific infrastructure where data can be
discovered, compared, reused, and through which experiments can be replicated
[19][20]. Thus time series databases and services that conform to comprehensive
metadata and encoding standard have an advantage over more general database sys-
tems and time series specific databases. Performance is always an important consider-
ation: the ability to rapidly query, analyze and retrieve time series data is a require-
ment for a number of time series use cases. For example, exploratory interactive visu-
alization of time series data is possible if data points can be quickly retrieved, pro-
cessed and displayed. Similarly fast responses ensure that access to time series data is
not a bottleneck in analysis, or when used as an input to a model.

An ongoing concern with the SOS standard is the performance of implementations.
The well-known 52 North SOS implementation provides conformance to the SOS 2.0
standard and includes a number of extension methods and formats. Recent releases
have addressed performance issues however older 52 North SOS implementations
have suffered from numerous performance issues. Results[21] from performance tests
for various older versions of 52 North SOS indicate that under a load of 10 concurrent
requests every 5 seconds, SOS performs quite slowly. For example a GetObservation
request, the average response time for a request for a yearly data set having approxi-
mately 500,000 records was 191 seconds. Similar performance issues with scaling
SOS to millions of records for thousands of sensors have been discussed in the SOS
community[22].

Performance has been greatly improved in 52 North SOS version 4.1[13] however
with dataset sizes likely to increase more than linearly, revolutionary performance
change will be needed in the longer term. Large performance gains may be possible
through alternative approaches to data storage, that behind a SOS interface, leverage
dedicated time series databases.

6 An Alternative Architecture

A good candidate for comparison with 52 North SOS’s large data capacity is Influx
DB. InfluxDB is a “Timeseries, events and metrics” database[23]. InfluxDB is easy to
deploy and is packaged with an embedded backend database. Unlike 52 North SOS,
InfluxDB lacks any native metadata model and provides no standards-compliant inter-
face.

http://opentsdb.net/docs/build/html/user_guide/metadata.html
https://code.google.com/p/kairosdb/wiki/PushingData
https://code.google.com/p/kairosdb/wiki/PushingData
http://square.github.io/cube/
http://influxdb.org/
https://www.seegrid.csiro.au/wiki/SISS4BoM/SOS2PerformanceTest

We developed a hybrid data/metadata architecture, combining InfluxDB with 52
North SOS. We tested an implementation of this architecture to determine whether it
provide better performance than a standalone 52 North SOS instance.

Similar Hybrid architectures have been previously proposed. Cox[24][Fig 1.] de-
scribes scenarios in which SOS services consume data from other OGC standard Web
Feature Services and Web Coverage Services. Bröring et. al. [25] describe patterns for
bridging sensors and sensor delivery services in hybrid like architectures. In particular
Bröring describes using Twitter as a middleware layer to store sensor metadata.

Fig. 1. Hybrid OGC architectures (adapted from Cox[24])

A prototype SOS service has also been developed that, through a heterogeneous
systems architecture, provided a partially SOS-compliant service using a Web Feature
Service (WFS) back-end[26].
Our hybrid architecture aims to meet multiple use cases. It provides a rich SOS im-
plementation for standards compliant interoperability to enable sophisticated queries.
For a subset of queries it provides SOS-compliant responses faster than 52 North SOS
configured with a Postgres/PostGIS backend database. The system should enable
exploration of data across the temporal domain with a minimum of delay to facilitate
use cases such as real time interactive visualisation.

Figure 2 presents a high-level view of the hybrid architecture: SOS requests and
responses are handled via a hybrid internet proxy. The hybrid proxy forwards certain
requests to InfluxDB while others not able to be handled by InfluxDB are redirected
to 52 North SOS.

A test implementation of the hybrid proxy is capable of processing and forwarding
only a small subset of SOS queries to InfluxDB: SOS 2.0 requests provided as key
value pairs (as URL arguments) where the response format is specified as WaterML2.
This subset includes the main data delivery request GetObservation when WaterML2

https://www.seegrid.csiro.au/wiki/SISS4BoM/ThinSOS

format is used. The hybrid proxy can process queries that vary by real world feature
or property of interest for a feature and can handle a temporal filter that specify results
between varying start and end times.

Fig. 2. High-level architecture of a hybrid SOS implementation

SOS queries identified for forwarding to InfluxDB are analysed and used to con-

struct an equivalent InfluxDB query. InfluxDB provides simple responses back to the
proxy in JavaScript Object Notation (JSON) form. The hybrid proxy translates the
JSON response into WaterML (using lookup tables for variables like unit of measure)
and returns it to the requester.

We compared the performance of a realistic 52 North SOS instance as a standalone
service to a test implementation the hybrid proxy architecture incorporating the same
52 North SOS instance alongside InfluxDB.

The 52 North SOS version tested was 4.1 and the particular instance contained ap-
proximately 14 million weather station records stored in a backend a Post-
gres/PostGIS. Two configurations were tested: one in which a query was sent to a
standalone 52 North SOS instance and another in which the query was sent to a hy-
brid proxy configuration combining 52 North SOS and InfluxDB. In the hybrid proxy
configuration the 52 North SOS dataset was replicated into a parallel InfluxDB in-
stance (version 0.7.3).

In both configurations the test used a SOS-compliant query specified as a URL
with key value arguments. The test query varied between the standalone SOS instance
and hybrid proxy implementation by the system specifying URL part only with key
value pair arguments and format remaining the same. The test machines varied in
specification and no attempt was made to compensate for hardware differences or
network latencies. However our estimates are that the server 52 North SOS virtual
machine was significantly more powerful than the Hybrid test virtual machine and the
InfluxDB virtual machine. Therefore we expect that performance results are biased in
favor of the standalone 52 North SOS instance.

The test query in both configurations retrieved approximately 52,230 hourly aver-
age air temperature records for a weather station between 19-11-2010 at midnight and
13-11-2013 at 13:00.

In both test configurations the request was sent using the cURL application. The
cURL “w” parameter and a template file were used to generate response timing in-
formation. Server processing time was considered to be the time between
time_pretransfer and time_starttransfer. This approach minimised noise related to
network overheads and time taken to transport response data. Responses are listed in
Table 1 below.

Run Hybrid 52 North
SOS

First 0.45s 8.485s

Run 1 0.377s 4.891s

Run 2 0.31s 4.594s

Run 3 0.336s 4.282s

Run Average
(excluding first result)

0.368s 4.589s

Table 1. Response times for 52 North standalone and 52 North Influx DB hybrid

The first response was considered an outlier and was significantly slower than sub-

sequent queries for both systems. It was assumed this was because parts of the data-
bases are cached into memory after the first response. In our test the hybrid approach
using InfluxDB generated responses 12 times faster on average than 52 North SOS.
Our results are indicative of a significant performance benefit through the hybrid
approach nevertheless further study could provide more certainty and help remove
confounding factors such as differing machine and network performance.

In addition to high performance a hybrid approach offers other advantages. It
maintains rich metadata capabilities. The hybrid proxy forwards SOS queries that
can’t be handled by InfluxDB to 52 North SOS. In our example InfluxDB replicates
time series data stored in SOS but doesn’t replicate any metadata. For example, In-
fluxDB cannot provide a response to a SOS DescribeSensor request because it doesn’t
store any information about the sensors used to produce a time series. The hybrid
proxy can identify queries that can’t be handled by InfluxDB and redirect these to the
52 North SOS instance. Thus the hybrid proxy handles a subset of queries quickly via
InfluxDB but can also respond to the broader set of possible SOS requests by redirect-
ing these to 52 North SOS. This approach improves performance while maintaining a
rich metadata model. Additionally, a more general approach should be possible inter-
facing to other data stores. These kinds of systems could leverage existing data ser-

vices and adapt those to return SOS responses. This improves the reuse of data and
reduces the need to duplicate data across multiple systems. In turn this “future proofs”
SOS installations against reimplementation if and when data loads require new back-
end database implementations.

7 Conclusion

Time series data is prolific. There are many systems to help manage, store and deliver
time series data. In the scientific domain some systems also provide metadata capabil-
ities that provide more context for understanding and analysing data. Beyond the sci-
entific domain, many other time series databases and services are being developed.
These typically have poor metadata capabilities but may be more scalable and provide
faster performance. Near real time visualisation and other use cases requiring rapid
retrieval and exploration of data would benefit from a system that is standards based,
provides rich metadata and performs fast. The 52 North SOS implementation provides
a standards based service for management and storage of time series data along with
extensive metadata capabilities. Newer versions of 52 North SOS have improved
performance. To investigate whether further performance gains were possible we
developed a hybrid architecture that combined 52 North SOS with InfluxDB, a light-
weight dedicated time series database. We compared the performance of a standalone
52 North SOS instance and a prototype implementation of the hybrid architecture that
coupled the 52 North SOS instance with InfluxDB. Under our tests performance was
approximately 12 times faster in the hybrid system. There are performance benefits
using a hybrid architecture compared to a standalone 52 North SOS instance other
advantages maybe that loose coupling between components readily allows integration
of new technologies and reuse of data in existing deployments.

References

1. Hey, A.J.G., Trefethen, A.E.: The data deluge: An e-science perspective.
Wiley Sons. (2003).
2. Portal.opengeospatial.org: OGC Sensor Observation Service Interface Stand-
ard, https://portal.opengeospatial.org/files/?artifact_id=47599, (2014).
3. Cox, S.: Geographic information: observations and measurements. Doc.
OGC. (2010).
4. Portal.opengeospatial.org: OGC SensorML: Model and XML Encoding
Standard, https://portal.opengeospatial.org/files/?artifact_id=55939, (2014).
5. Peters, C.: SensorCloud RESTful API,
https://wiki.csiro.au/display/sensorcloud/SensorCloud+RESTful+API.
6. Malewski, C., Simonis, I., Terhorst, A., Bröring, A.: StarFL--a modularised
metadata language for sensor descriptions. Int. J. Digit. Earth. 7, 450–469 (2014).
7. Opentsdb.net: OpenTSDB - A Distributed, Scalable Monitoring System,
http://opentsdb.net/, (2014).
8. Square.github.io: Cube, http://square.github.io/cube/, (2014).

9. Code.google.com: kairosdb - Fast scalable time series database - Google Pro-
ject Hosting, https://code.google.com/p/kairosdb/, (2014).
10. Mongodb.org: MongoDB, http://www.mongodb.org/, (2014).
11. Influxdb.com: InfluxDB - Open Source Time Series, Metrics, and Analytics
Database, http://influxdb.com/, (2014).
12. Postgresql.org: PostgreSQL: The world’s most advanced open source data-
base, http://www.postgresql.org/, (2014).
13. Hollmann, C.: 52 North SOS 4.1,
http://blog.52north.org/2014/09/02/52north-sos-4-1/, (2014).
14. The Apache Cassandra Project, http://cassandra.apache.org/.
15. Aaron Cois, C.: Large-Scale Data Collection and Real-Time Analytics Using
Redis - O’Reilly Radar, http://radar.oreilly.com/2013/03/large-scale-data-
collection-and-real-time-analytics-using-redis.html, (2014).
16. Redis, http://redis.io/.
17. Metadata — OpenTSDB 2.0 documentation,
http://opentsdb.net/docs/build/html/user_guide/metadata.html.
18. PushingData - kairosdb - Pushing data into KairosDB - Fast scalable time se-
ries database - Google Project Hosting,
https://code.google.com/p/kairosdb/wiki/PushingData.
19. Haak, L.L., Baker, D., Ginther, D.K., Gordon, G.J., Probus, M.A., Kannan-
kutty, N., Weinberg, B.A.: Standards and infrastructure for innovation data ex-
change. Sci. (New York, NY). 338, 196 (2012).
20. Hendler, J.: Science and the semantic web. Science (80-.). 299, 520 (2003).
21. Tan, F.: SOS 2.0 Performance Test,
https://www.seegrid.csiro.au/wiki/SISS4BoM/SOS2PerformanceTest, (2013).
22. Fwd: ODIP-3 Prototype SOS - Google Groups,
https://groups.google.com/forum/#!searchin/ioostech_dev/geoff/ioostech_dev/Thk
MPTsrEdA/Sv9_iGib1DAJ.
23. InfluxDB Documentation,
http://influxdb.com/docs/v0.8/introduction/overview.html.
24. Cox, S.: No Title,
https://www.seegrid.csiro.au/wiki/pub/AppSchemas/RecentPresentations/IN43C-
07_Cox_Info_Viewpoints_Service_Architectures.ppt, (2007).
25. Broring, A., Foerster, T., Jirka, S.: Interaction patterns for bridging the gap
between sensor networks and the Sensor Web. 2010 8th IEEE International Con-
ference on Pervasive Computing and Communications Workshops (PERCOM
Workshops). pp. 732–737. IEEE (2010).
26. Golodoniuc, P.: ThinSOS < SISS4BoM < SEEGrid,
https://www.seegrid.csiro.au/wiki/SISS4BoM/ThinSOS, (2013).

